LarvaTagger: Manual and automatic tagging of Drosophila larval behaviour - Institut Pasteur
Article Dans Une Revue Bioinformatics Année : 2024

LarvaTagger: Manual and automatic tagging of Drosophila larval behaviour

Tihana Jovanic

Résumé

Motivation As more behavioural assays are carried out in large-scale experiments on Drosophila larvae, the definitions of the archetypal actions of a larva are regularly refined. In addition, video recording and tracking technologies constantly evolve. Consequently, automatic tagging tools for Drosophila larval behaviour must be retrained to learn new representations from new data. However, existing tools cannot transfer knowledge from large amounts of previously accumulated data. We introduce LarvaTagger, a piece of software that combines a pre-trained deep neural network, providing a continuous latent representation of larva actions for stereotypical behaviour identification, with a graphical user interface to manually tag the behaviour and train new automatic taggers with the updated ground truth. Results We reproduced results from an automatic tagger with high accuracy, and we demonstrated that pre-training on large databases accelerates the training of a new tagger, achieving similar prediction accuracy using less data. Availability All the code is free and open source. Docker images are also available. See https://gitlab.pasteur.fr/nyx/LarvaTagger.jl .
Fichier principal
Vignette du fichier
2024.03.18.585197v1.full.pdf (8.01 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

pasteur-04629791 , version 1 (30-06-2024)

Licence

Identifiants

Citer

François Laurent, Alexandre Blanc, Lilly May, Lautaro Gándara, Benjamin Cocanougher, et al.. LarvaTagger: Manual and automatic tagging of Drosophila larval behaviour. Bioinformatics, 2024, 40 (7), pp.btae441. ⟨10.1093/bioinformatics/btae441⟩. ⟨pasteur-04629791⟩
270 Consultations
88 Téléchargements

Altmetric

Partager

More