Post-translational formation of strained cyclophanes in bacteria - Institut Pasteur Access content directly
Journal Articles Nature Chemistry Year : 2020

Post-translational formation of strained cyclophanes in bacteria

Abstract

Cyclic peptide natural products have served as important drug molecules, with several examples used clinically. Enzymatic or chemical macrocyclization is the key transformation for constructing these chemotypes. Methods to generate new and diverse cyclic peptide scaffolds enabling the modular and predictable synthesis of peptide libraries are desirable in drug discovery platforms. Here we identify a suite of post-translational modifying enzymes from bacteria that install single or multiple strained cyclophane macrocycles. The crosslinking occurs on three-residue motifs that include tryptophan or phenylalanine to form indole- or phenyl-bridged cyclophanes. The macrocycles display restricted rotation of the aromatic ring and induce planar chirality in the asymmetric indole bridge. The biosynthetic gene clusters originate from a broad range of bacteria derived from marine, terrestrial and human microbiomes. Three-residue cyclophane-forming enzymes define a new and significant natural product family and occupy a distinct region in sequence-function space.
No file

Dates and versions

pasteur-02923755 , version 1 (27-08-2020)

Identifiers

Cite

Thi Quynh Ngoc Nguyen, Yi Wei Tooh, Ryosuke Sugiyama, Thi Phuong Diep Nguyen, Mugilarasi Purushothaman, et al.. Post-translational formation of strained cyclophanes in bacteria. Nature Chemistry, 2020, ⟨10.1038/s41557-020-0519-z⟩. ⟨pasteur-02923755⟩

Collections

PASTEUR
64 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More