Statistical Tests for Force Inference in Heterogeneous Environments - Institut Pasteur Access content directly
Journal Articles Scientific Reports Year : 2020

Statistical Tests for Force Inference in Heterogeneous Environments


We devise a method to detect and estimate forces in a heterogeneous environment based on experimentally recorded stochastic trajectories. In particular, we focus on systems modeled by the heterogeneous overdamped Langevin equation. Here, the observed drift includes a "spurious" force term when the diffusivity varies in space. We show how Bayesian inference can be leveraged to reliably infer forces by taking into account such spurious forces of unknown amplitude as well as experimental sources of error. The method is based on marginalizing the force posterior over all possible spurious force contributions. The approach is combined with a Bayes factor statistical test for the presence of forces. The performance of our method is investigated analytically, numerically and tested on experimental data sets. The main results are obtained in a closed form allowing for direct exploration of their properties and fast computation. The method is incorporated into TRamWAy, an open-source software platform for automated analysis of biomolecule trajectories.
Fichier principal
Vignette du fichier
Robust_inference.pdf (1.3 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

pasteur-02865729 , version 1 (11-06-2020)



Alexander S Serov, François Laurent, Charlotte Floderer, Karen Perronet, Cyril Favard, et al.. Statistical Tests for Force Inference in Heterogeneous Environments. Scientific Reports, 2020, 10 (1), pp.3783. ⟨10.1038/s41598-020-60220-1⟩. ⟨pasteur-02865729⟩
133 View
115 Download



Gmail Facebook Twitter LinkedIn More