Numerical Optimization Techniques in Maximum Likelihood Tree Inference - Institut Pasteur
Chapitre D'ouvrage Année : 2019

Numerical Optimization Techniques in Maximum Likelihood Tree Inference

Résumé

In this chapter, we present recent computational and algorithmic advances for improving the inference of phylogenetic trees from the analysis of homologous genetic sequences under the maximum likelihood criterion. In particular, we detail how the use of matrix algebra at the core of Felsenstein’s pruning algorithm, combined with the architecture of modern day computer processors, leads to efficient techniques for optimizing edge lengths. We also discuss some properties of the likelihood function when considering the optimization of the parameters of mixture models that are used to describe the variation of rates-across sites .
Fichier non déposé

Dates et versions

pasteur-02405302 , version 1 (11-12-2019)

Identifiants

Citer

Stéphane Guindon, Olivier Gascuel. Numerical Optimization Techniques in Maximum Likelihood Tree Inference. Tandy Warnow. Bioinformatics and Phylogenetics: Seminal Contributions of Bernard Moret, 29, Springer, pp.21-38, 2019, Computational Biology (COBO), 978-3-030-10837-3. ⟨10.1007/978-3-030-10837-3_2⟩. ⟨pasteur-02405302⟩
96 Consultations
0 Téléchargements

Altmetric

Partager

More