Rere-dependent Retinoic Acid signaling controls brain asymmetry and handedness - Institut Pasteur Access content directly
Preprints, Working Papers, ... Year : 2019

Rere-dependent Retinoic Acid signaling controls brain asymmetry and handedness

David Brasse
Claire Simons
  • Function : Author

Abstract

While the vertebrate brain appears largely bilaterally symmetrical in humans, it presents local morphological Left-Right (LR) asymmetries as, for instance, in the petalia. Moreover, higher functions such as speech or handedness are asymmetrically localized in the cortex. How these brain asymmetries are generated remains unknown. Here, we reveal a striking parallel between the control of bilateral symmetry in the brain and in the precursors of vertebrae called somites, where a “default” asymmetry is buffered by Retinoic Acid (RA) signaling. This mechanism is evident in zebrafish and mouse and, when perturbed in both species, it translates in the brain into lateralized alterations of patterning, neuronal differentiation and behavior. We demonstrate that altering levels of the mouse RA coactivator Rere results in subtle cortex asymmetry and profoundly altered handedness, linking patterning and function in the motor cortex. Together our data uncover a novel mechanism that could underlie the establishment of brain asymmetries and handedness in vertebrates.
Fichier principal
Vignette du fichier
578625.full.pdf (2.1 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

pasteur-02335963 , version 1 (28-10-2019)

Licence

Attribution - NonCommercial - NoDerivatives

Identifiers

Cite

Michael Rebagliati, Gonçalo C. Vilhais-Neto, Alexandra Petiet, Merlin Lange, Arthur Michaut, et al.. Rere-dependent Retinoic Acid signaling controls brain asymmetry and handedness. 2019. ⟨pasteur-02335963⟩
150 View
202 Download

Altmetric

Share

Gmail Facebook X LinkedIn More