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10 Abstract (214 words)

11 Wolbachia is an endosymbiotic bacterium infecting a wide array of invertebrates that gained 

12 attention for its potential to curb the transmission of vector-borne diseases. Its capacity to colonize 

13 arthropod populations is generally driven by vertical transmission and reproductive manipulation. 

14 In some insect species, Wolbachia additionally became an essential nutritional symbiont, 

15 providing vitamins to its host. As mosquito larvae require microbe-derived vitamins for 

16 development, we studied whether such a support of Wolbachia would exist in mosquitoes but be 

17 masked by the presence of other microbes. We chose Culex quinquefasciatus species to address 

18 this question, as it is highly colonized with Wolbachia. We developed a method to produce Culex 

19 quinquefasciatus devoid of extracellular microbiota and demonstrated that Wolbachia alone is 

20 insufficient to support larval development. Using transient colonization with Escherichia coli, we 

21 managed to produce adult Culex quinquefasciatus harboring Wolbachia only. When curbing 

22 Wolbachia infection of these E. coli-colonized larvae via tetracycline treatment, we obtained a 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2024. ; https://doi.org/10.1101/2024.12.03.626537doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.03.626537
http://creativecommons.org/licenses/by/4.0/


2

23 higher larval development. Together, our data indicate that Wolbachia does not support 

24 development but rather acts here as a metabolic burden, and that E. coli is sufficient for 

25 development success even in a species that grows in “dirty” water. This opens the way towards 

26 gnotobiology studies in Culex quinquefasciatus and highlights the complex relationships between 

27 Wolbachia and its mosquito host. 

28 Author summary (175 words)

29 Wolbachia is a bacterium infecting many invertebrates that gained attention for its potential to 

30 curb the transmission of vector-borne diseases, such as dengue. In some insect species, Wolbachia 

31 provides vitamins to its host. As mosquito larvae require microbe-derived vitamins for 

32 development, we studied whether such a support of Wolbachia would exist in mosquitoes but be 

33 masked by the presence of other microbes. We chose Culex quinquefasciatus species to address 

34 this question, as it is highly colonized with Wolbachia. We developed a method to produce Culex 

35 quinquefasciatus devoid of extracellular microbiota and demonstrated that Wolbachia alone is 

36 insufficient to support larval development. We transiently colonized these larvae with Escherichia 

37 coli to rescue larval development and to produce adults harboring Wolbachia only. When curbing 

38 Wolbachia infection of these E. coli-colonized larvae via tetracycline treatment, we obtained a 

39 higher larval development. Together, our data indicate that Wolbachia does not support 

40 development but rather acts here as a metabolic burden, and that E. coli is sufficient for 

41 development success even in a mosquito species that grows in “dirty” water. 

42
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43 Introduction

44 Mosquito-borne diseases are a worldwide health threat. New vector control tools that are safe for 

45 people and the environment are needed. One efficient approach uses the release of Aedes 

46 mosquitoes infected with the endosymbiotic bacterium Wolbachia to suppress mosquito 

47 populations, ultimately reducing the incidence of mosquito-borne diseases (1). This approach has 

48 allowed significant progress in reducing dengue incidence in high burden settings worldwide (2,3). 

49 Wolbachia is a genus of intracellular alphaproteobacteria that infect many invertebrate species. It 

50 has attracted particular interest due to its diverse effects on hosts. In arthropods, Wolbachia is 

51 present in approximately 65 % of terrestrial species (4); and half of aquatic species (5). While its 

52 interaction with nematodes is clearly mutualistic, contributing to worm nutrition, its role in 

53 arthropods is generally parasitic, as it manipulates host reproduction for its own benefit (6–8). 

54 Within arthropods, it is highly concentrated in female germlines, enabling vertical transmission 

55 while simultaneously acquiring resources for survival and growth (8). 

56 Among the reproductive manipulation phenomena, cytoplasmic incompatibility (CI) is most 

57 common. In CI, infected males mating with uninfected females produce embryonic death, while 

58 they can fertilize infected females, resulting in viable offspring. This increases the relative 

59 competitiveness of infected females within the population, promoting Wolbachia transmission (9). 

60 When two mosquito populations harbor different Wolbachia strains, bidirectional CI can occur. 

61 Wolbachia also induces other phenotypic changes, often increasing the population´s proportion of 

62 females, which further enhances its spread. These changes include: a) induction of 

63 parthenogenesis, leading to female offspring; b) male killing, where Wolbachia infection in mated 

64 females selectively eliminates developing male embryos by manipulating the sex-determination 
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65 system; and c) feminization, where males develop female characteristics due to hormone 

66 manipulation (10).

67 Recently, two hemipteran species have been found to maintain an unexpected nutritional link with 

68 Wolbachia. In bedbugs, wCle (Wolbachia of Cimex lectularius) promotes nymph development, 

69 lifespan and fecundity by producing riboflavin and biotin (8,11,12). In two planthoppers species, 

70 Wolbachia-cured insects are sterile, but their fecundity levels are rescued by experimental 

71 reinfection with wLug (Wolbachia of Nilaparvata lugens) and wStri (Wolbachia of Laodelphax 

72 striatellus), respectively (13). 

73 Wolbachia has been found naturally in some dipterans, such as mosquitoes and flies (14–16). This 

74 includes the common domestic mosquitoes Culex quinquefasciatus and Culex pipiens where 

75 Wolbachia is highly prevalent (17), in contrast to other mosquito species, notably Aedes aegypti 

76 and Anopheles species, where Wolbachia has rarely been detected (18–20). 

77 Culex mosquitoes are vectors of multiple medically significant arboviruses, such as West Nile 

78 virus, Japanese encephalitis virus, Usutu virus, Saint Louis encephalitis virus, Western and Eastern 

79 equine encephalitis viruses (21–24). In addition to viruses, Cx mosquitoes can also transmit 

80 nematodes responsible for lymphatic filariasis and protists that cause avian malaria (25,26).

81 Another known role for Wolbachia in dipterans is increased resistance to viral replication in flies 

82 (27) as well as in transinfected mosquitoes (28,29). In Culex mosquitoes, several studies have 

83 shown that, except for bidirectional cytoplasmic incompatibility, the impact of Wolbachia on life 

84 history traits is low or moderate. Wolbachia-cured mosquitoes exhibit an increased and a delayed 

85 egg production, a minor decrease in lifespan, and a slight decrease in resistance to mosquitocidal 

86 bacterial strains (30,31). Wolbachia in Culex mosquitoes exhibits a complex relationship with 

87 insecticide resistance, potentially exploiting hosts with resistance genes by increasing bacterial 
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88 density, while also differentially affecting susceptibility to various insecticides, as seen with 

89 increased deltamethrin sensitivity but neutral effects on DDT resistance (32,33). 

90 In insects, the extracellular and intracellular microbiota contribute to essential microelements 

91 beyond the host genome´s metabolic capacities (34). Mosquitoes, with their life cycle comprising 

92 immature aquatic instars and one aerial adult stage, can potentially host a wide spectrum of 

93 bacteria. The microbiota plays various roles including larval nutritional support and direct impacts 

94 on adult fitness, measured as lifespan and reproduction (35–41). Despite the significant impact of 

95 microbiota on mosquitoes, there is a lack of studies on the role of maternally inherited Wolbachia 

96 in the fitness of Culex mosquitoes in the absence of their microbes. It is unclear if Wolbachia´s 

97 effects might be partially buffered by the microbiota. Our laboratory recently developed a method 

98 to produce germ-free Aedes aegypti (39). We adapted this approach to Cx quinquefasciatus to 

99 analyze Wolbachia´s role in larval development without other microbiota members.

100 Results

101 Development of an egg sterilization protocol for Culex quinquefasciatus

102 Mosquito production in sterile conditions requires protocol optimization, taking into account the 

103 specificities of mosquito species. While gnotobiotic Ae. aegypti (i.e. carrying a defined microbiota 

104 composition) have now been reared in several laboratories, we needed to define conditions to rear 

105 Culex mosquitoes in microbiologically-controlled conditions. To this aim, we used as a starting 

106 point a transient colonization method that was previously developed for Aedes aegypti in our 

107 laboratory, allowing to support larval development via monocolonization with a bacterium that is 

108 lost at the time of metamorphosis (39). This consists of a three-step procedure. First, eggs are 

109 surface-sterilized, producing germ-free larvae. Second, newly hatched germ-free larvae are reared 
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110 in the presence of a mutant bacterium, E. coli HA416, which is auxotrophic for two amino-acids 

111 essential for peptidoglycan biosynthesis. As long as larvae are provided with a special sterile diet 

112 supplemented with these amino acids, E. coli HA416 (AUX) grows and supports larval 

113 development. Third, pupae are transferred to a rearing environment devoid of the specific amino-

114 acids, allowing the emergence of germ-free adults. We decided to adapt this approach for field-

115 collected Cx quinquefasciatus egg rafts to produce mosquitoes with no culturable microbiota. 

116 Ae. aegypti eggs are laid individually and survive for weeks after drying; their hatching is 

117 stimulated when they are covered with water, notably due to the lack of oxygen. In contrast, Cx 

118 quinquefasciatus eggs are laid as rafts containing up to several dozens of eggs (Figure 1A), which 

119 float on the water surface. These eggs remain wet and close to the water surface throughout their 

120 uninterrupted development, limiting laboratory flexibility. When using the Ae. aegypti egg-

121 sterilization protocol to surface-sterilize Cx quinquefasciatus eggs (Figure 1A), we observed that 

122 the egg rafts disaggregated into individual eggs or small clusters, sinking to the bottom of the flask. 

123 Almost no larvae hatched in these conditions. We hypothesized that either the eggs needed to 

124 remain attached throughout development or the raft’s location at the surface of the water was 

125 crucial for successful development, possibly due to oxygenation. To investigate the importance of 

126 the egg raft, we performed a delicate wash, minimizing raft disintegration while constantly 

127 submerging it in sterilizing solutions (sodium hypochlorite and ethanol). Alternatively, egg rafts 

128 were thoroughly washed to separate eggs, while a control group remained non-sterile. To maintain 

129 egg proximity to the surface, we incubated eggs in a minimal water layer, 1-2 mm deep (3-5 mL 

130 in a 25 cm2 flask laid horizontally). The next day, only 6.6% of preserved sterilized rafts hatched, 

131 compared to 71 % of individualized sterile eggs (Figure 1B-E). Non-sterile eggs exhibited the 

132 highest hatching rate (91%). 
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133 The presence of Wolbachia in sterile larvae was confirmed by qPCR, and egg sterility was verified 

134 after incubation in liquid Luria Bertani medium (LB) or on LB agar plates. We thus refer to these 

135 individuals as germ-freeWol+, indicating they are germ-free except for the presence of the 

136 Wolbachia endosymbiont. To assess whether Wolbachia alone could support larval development, 

137 we monitored the development and lifespan of larvae provided sterile conventional food for 10 

138 days. Larvae remained in their first instar, and supplementing the diet with a cocktail of B vitamins 

139 that are essential for Cx quinquefasciatus larval development (42) or with medium for bacterial 

140 culture did not improve development (Figure 1F). However, these larvae were still able to develop, 

141 as provision of live bacteria efficiently rescued 77% of individuals to adulthood. Approximately 

142 80% of sterile larvae survived until day 5, but survival sharply declined in the following days, 

143 resulting in around 20% of surviving individuals on day 10 (Figure 1G). We confirmed by qPCR 

144 that Wolbachia colonization was unaffected by the absence of other bacteria. Wolbachia levels 

145 remained stable in first instar larvae even after 72 hours, independently of the presence of E. coli 

146 (Figure 1H).

147 Together, these data indicate that Wolbachia alone is insufficient to support larval development in 

148 the absence of other bacteria. Furthermore, although Cx quinquefasciatus typically thrives in a 

149 microbe-rich environment compared to other mosquito larvae, the sole presence of E. coli is 

150 sufficient to complement its requirements for larval development.

151 Production of germ-freeWol+ Culex quinquefasciatus adults

152 Having successfully produced germ-freeWol+ larvae, we investigated whether the transient 

153 colonization approach could yield germ-freeWol+ adults. To accomplish this, we added the 

154 auxotrophic bacterial culture, using an E. coli wild-type as a positive control (Figure 2A).
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155 We monitored development daily and found no significant differences in development success 

156 rates or timing between larvae monocolonized with E. coli wild-type and those on AUX. Larval 

157 development success to pupa was slightly higher on AUX (Figure 2B-E). Their sex ratio and adult 

158 wing size, used as a readout of the adult size, were also similar (Figure 2F-G). Reanalyzing 

159 developmental rates data with those from subsequent experiments, we found that the overall 

160 development rate to adulthood in AUX condition increased and the development timing to pupa 

161 significantly decreased (pupae: p<0.0001, adults: p=0.18, GLMM with lsmeans), although masked 

162 here by replicate variation. Pupae transfer occurred under sterile conditions, and colony forming 

163 unit (CFU) tests confirmed that 10-day old gnotobiotic mosquitoes were colonized with E. coli 

164 while germ-freeWol+ mosquitoes were not (Figure 2H). 

165 Impact of Wolbachia on development success of germ-free Culex quinquefasciatus mosquitoes

166 Wolbachia alone is insufficient to support larval development. However, previously published 

167 Culex-derived Wolbachia genomes indicate the bacterium can synthesize several B vitamins, 

168 including riboflavin, thiamin and pyridoxin, but not folate or biotin (7). Additionally, Wolbachia 

169 possesses complete purine and pyrimidine biosynthesis pathways. Given that bacteria-derived 

170 riboflavin and folate are essential larval development metabolites, and Wolbachia provides purine 

171 and pyrimidine to fly larvae (39,41,43,44), we wondered if Wolbachia could aid larval 

172 development under suboptimal E. coli conditions. Alternatively, we hypothesized that Wolbachia 

173 might burden larval development by consuming some nutrients. Thus, we tested the impact of 

174 Wolbachia load reduction on monocolonized larvae development success. 

175 The most widely used method to clear Wolbachia in various insects is tetracycline antibiotic, which 

176 is also the first-choice treatment for Culex mosquitoes (33,45). Our AUX bacterial strain, used for 

177 transient colonization, also possesses a tetracycline-resistance cassette in addition to the 
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178 kanamycin resistance cassette employed in our standardized protocol (46). We thus decided to test 

179 the impact of a tetracycline treatment on larvae colonized with AUX to assess larval development 

180 success (47). We treated larvae with three tetracycline doses (5µg/mL, 25 µg/mL, or 50µg/mL, 

181 see Methods) and confirmed that all concentrations effectively reduce Wolbachia load in larvae 

182 and adults (Figure 3A-B). Development outcomes were highly concentration-dependent. Treating 

183 with 5µg/mL tetracycline significantly increased development success to adulthood, indicating 

184 that Wolbachia is a burden rather than a nutritional benefit during larval development (Figure 3F-

185 3G). This observation is consistent with the fact that WT-colonized larvae had a lower Wolbachia 

186 load and a higher development success than their AUX-colonized counterparts (Figure 3A, 3F, 

187 3G). Increasing tetracycline concentrations progressively decreased development success, 

188 suggesting direct antibiotic toxicity to larvae (Figure 3F, 3G). The tetracycline solution at the 

189 highest concentration (50 μg/mL) underwent a noticeable color change from light yellow to 

190 brownish after 5-7 days, indicating antibiotic degradation (48). This transformation can potentially 

191 harm larvae, as tetracycline and its degradation products have been shown to have toxic effects on 

192 various organisms, including algae, at concentrations above 5 mg/mL (49). 

193 Development of AUX-colonized larvae and pupae was delayed compared to WT-colonized ones; 

194 this was partly rescued in 5 µg/mL tetracycline treated group (Figure 3H-3I). Similarly, AUX-

195 colonized larvae led to a slightly lower proportion of females than WT-colonized ones and 5 

196 µg/mL tetracycline-treated ones. As females require more nutrients for development than males, 

197 this points to a lower nutritional status in AUX conditions. CFU analysis confirmed that WT-

198 colonized mosquitoes indeed contained live E. coli, while the AUX and AUX+TET did not (Figure 

199 3E), which matches the loss of bacteria after metamorphosis while not during larval stages (Figure 

200 3C-D).
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201 Discussion

202 In this study, we established a protocol to produce mosquitoes harboring solely Wolbachia and no 

203 other microbiota. We demonstrated that Wolbachia alone is insufficient to support larval 

204 development. Conversely, our data indicate that this endosymbiont negatively impacts mosquito 

205 larval development.

206 Culex mosquitoes are generally known to grow in “dirty” water, i.e. stagnant bodies of water that 

207 are turbid (1,50,51), whereas Aedes mosquitoes typically breed in cleaner water or with a moderate 

208 amount of organic matter present (52). For instance, we generally set Aedes oviposition traps with 

209 clear water, while we add chicken manure to attract Culex. Hence, one may expect that Cx 

210 quinquefasciatus larvae require more bacteria, and potentially a higher diversity of 

211 microorganisms, to grow compared to Aedes aegypti. However, we observed that E. coli alone was 

212 able to rescue larval development of Cx quinquefasciatus, as already found for Ae. aegypti. 

213 Nonetheless, we achieved a slightly lower success rate (~75 %) than what we typically observe 

214 with Ae. aegypti (~85%), particularly when rearing mosquitoes on AUX E. coli (~60%), which 

215 tends to be present at lower loads at the end of larval development (39). This suggests that there 

216 might still be a difference in the requirement for microbial metabolites between the two mosquito 

217 species, which may be quantitative rather than qualitative. Moreover, we observed that E. coli is 

218 highly efficiently transmitted through metamorphosis in Cx quinquefasciatus, as 100% adults 

219 reared on WT-E coli were positive to the bacterium, compared to only 50% in Ae. aegypti (Figure 

220 2H and (39)). 

221 The eggs of Culex mosquitoes are laid as a raft, allowing them to remain on the water surface. 

222 Consequently, their upper side is dry and in direct contact with open air. Our rigorous sterilization 

223 protocol caused the eggs to sink into the hatching water, and a low hatching rate was observed 
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224 only when the water layer was very thin and the eggs were individualized. We interpret these 

225 results as indicating a high oxygen requirement for Culex egg development (53–55). 

226 The presence of Wolbachia in a high proportion of terrestrial and aquatic insects is due to its ability 

227 to manipulate reproduction through cytoplasmic incompatibility, its stability within the insect, and 

228 its efficient vertical transmission. Our data corroborate this stability in Cx quinquefasciatus, as the 

229 antibiotic treatment did not allow complete clearance of Wolbachia. In line with these 

230 observations, protocols for antibiotic treatments to clear Wolbachia generally involve treatment on 

231 several generations (45). Beyond its efficient colonization through manipulation of mosquito 

232 reproduction, Wolbachia’s ability to colonize populations can be enhanced by positively impacting 

233 mosquito fitness. Symbionts combining parasitism and mutualism to enhance their population 

234 colonization are often termed “Jekyll and Hyde” symbionts (56), in reference to the Dr Jekyll and 

235 Mr Hyde novel, whose main character recurrently shifts between being a criminal and a gentleman. 

236 Wolbachia has notably been shown to provide biotin and riboflavin to bedbugs (8,12) and 

237 planthoppers (13). It has recently been reported as a nutritional symbiont in Drosophila, shifting 

238 to an energy-save profile during growth and development, and increasing resistance to stress (43). 

239 As microbiota-derived B vitamins, especially riboflavin, are crucial for mosquito development 

240 (41), we hypothesized that Wolbachia might also support larval development in Culex sp., which 

241 are heavily colonized by Wolbachia. The genome of Culex-associated Wolbachia, wPip, lacks the 

242 biotin operon but is predicted to possess a complete riboflavin biosynthesis pathway (13). 

243 However, our data indicate that Wolbachia clearance benefits mosquito development, suggesting 

244 that Wolbachia is detrimental to larval development under our experimental conditions. We 

245 hypothesize that Wolbachia competes with its host for resources. Our findings align with a 

246 previous study showing a non-significant trend towards lower development success of Wolbachia-
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247 colonized compared to Wolbachia-cured Aedes albopictus larvae at a medium larval density of 1 

248 larva/mL (57). 

249 These data indicate that Wolbachia is a metabolic parasite during larval development, in addition 

250 to its previously characterized role as a reproductive parasite. Nevertheless, it may still be 

251 considered a Jekyll and Hyde symbiont, as it can benefit its host inducing resistance to viruses in 

252 flies and mosquitoes (58). This protective activity is suggested to enhance Wolbachia’s success. 

253 Indeed, Wolbachia-mediated antiviral protection has been shown to prolong survival in various 

254 host-virus combinations, thereby positively impacting host fitness (59). Furthermore, Wolbachia 

255 has been found to protect Drosophila against viral infections at 25°C but not at 18°C, correlating 

256 with higher Wolbachia colonization in tropical compared to temperate regions (59).

257 Our data further indicates a concentration-dependent toxicity of tetracycline in mosquito larvae. 

258 Tetracycline inhibits bacterial protein synthesis via interacting with the 30S ribosomal subunit, 

259 inhibiting the binding of aminoacyl-tRNAs (60). While ribosomes of eukaryotes, including in 

260 insects, are composed of 60S and 40S subunits and are hence not sensitive to tetracyclines, 

261 mitochondrial ribosomes may be targeted by this drug (61). So far, several negative impacts of 

262 tetracycline on insects have been reported, yet some may be linked to the loss of the microbiota. 

263 A tetracycline treatment to clear Culex pipiens of Wolbachia using 10-20% solutions resulted in a 

264 development success as low as 10-15% (62), yet this strong impact may rather be due to the loss 

265 of other microbes, which are essential for mosquito larval development. Some other studies on 

266 Wolbachia clearance in Culex larvae did not report survival rates or indicated no effect on larval 

267 development, which may be linked to the presence of tetracycline-resistant bacteria (30,45,47,63). 

268 In ticks, tetracycline has been found to reduce the reproductive fitness by downregulating 

269 vitellogenesis and embryogenesis, although this effect is likely linked to microbiota depletion (64). 
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270 Our results obtained in otherwise germ-free conditions, indicate a direct toxic impact of 

271 tetracycline on mosquitoes. They are consistent with a previous report of long-lasting impact of 

272 tetracycline on mitochondrial metabolism (65).

273 Beyond arthropods, tetracycline has been documented to cause DNA damage, metabolic 

274 alterations, and oxidative stress in earthworms (66). In zebrafish embryos, exposure to this 

275 antibiotic also leads to developmental delay, reactive oxygen species (ROS) production, and cell 

276 death (67). In common freshwater green algae, the active form (tetracycline) and most common 

277 degraded forms (anhydrotetracycline and epitetracycline) inhibited the growth of Chlamydomonas 

278 reinhardtii, with tetracycline exhibiting the highest toxicity (49). We observed a brown staining 

279 after a few days in our larval breeding water, indicating that it becomes oxidized over time. It 

280 remains unclear whether the toxicity observed in our larvae can be attributed to tetracycline or to 

281 its oxidized product. 

282 Conclusions

283 While Wolbachia studies related to the impact in fitness in mosquitoes are sometimes hindered by 

284 the fact that antibiotic treatments affect the insect microbiota, we managed to set up a method to 

285 investigate the role of Wolbachia in Culex mosquitoes in the absence of other microbiota members. 

286 We observed that Wolbachia is not able to support larval development on its own. This is 

287 consistent with the absence of the biotin operon reported in Wolbachia pipiens, contrary to strains 

288 found in bedbugs and planthoppers. Our results indicate that Wolbachia has a parasitic impact on 

289 larval development, hence point that reproductive parasitism in itself is sufficient to support the 

290 strong colonization capacity of Wolbachia in Cx quinquefasciatus populations.
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291 Materials and Methods

292 Culex quinquefasciatus mosquitoes

293 Up to three breeding sites were placed inside the campus of the Institut Pasteur de la Guyane in 

294 Cayenne, French Guiana (GPS coordinates: 4.943100, -52.325350) for collecting egg rafts. They 

295 consisted in containers containing tap water, soil and chicken manure, as this organic matter-

296 enriched water attracts wild gravid Cx quinquefasciatus females to lay eggs. Each breeding site 

297 was checked daily, covered with a net on weekends and changed every 14 days to avoid potential 

298 escaping mosquitoes from uncollected larvae. Mosquito species were confirmed using a taxonomy 

299 key at the beginning of the project (68,69). As this species is by far the commonest species in 

300 urban areas in French Guiana (69), further checks were not performed in subsequent experiments, 

301 but no variations in the shape of egg rafts, larvae or adults were noticed during stereoscopic 

302 observations.

303 Sterilization protocol and bacterial inoculum

304 Egg rafts were recovered from the breeding site bucket and transported to the lab, a pre-wash with 

305 tap water was made to remove organic matter from the liquid. Under the biosafety cabinet rafts 

306 were sterilized following lab protocol (39). Sterile eggs were kept in sterile conditions and placed 

307 in a 25 cm2 culture flask with a minimal water layer (3-5 mL depending on the number of eggs) 

308 in horizontal position, a sterility control test in a petri dish with LB agar was tested each experiment 

309 and kept until 48 h to verify sterility.

310 After egg rafts sterilization protocol, 24 h post-hatched first instar larvae were individually placed 

311 into 24-wells plates with 1.5 mL of E. coli HA416 supplemented with D-Alanine (50 µg/mL) and 

312 acid meso-diaminopimelic (12.5 µg/mL), with one drop (0.05-0.1 mL) of sterile 5 % (w/v) 
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313 TetraMin baby™ fish food solution. Plates were maintained in a climatic chamber at 28 C with a 

314 light-dark cycle 12 h/12 h with 80 % relative humidity.

315 For a control rearing, E. coli HS (wild-type, WT) was used in the same culture conditions as the 

316 mutant bacteria.

317 Sterile larvae survival, pupation and development success tests, were recorded daily during 14 

318 days. Hatching rates were counted under microscope at 24 h after sterilization. 

319 Antibiotic treatment during transient colonization rearing 

320 E. coli HA416 contains a tetracycline resistance cassette, a parallel treatment with the antibiotic to 

321 remove Wolbachia was viable without hindering bacterial culture added to rear axenic mosquitoes. 

322 An initial dose of 5, 25 and 50 g/mL was added to each larva, and then at day 3 and 5, 25 and 50 

323 g/mL were added again to sustain a level on the antibiotic concentration, also at day 2 and 4 

324 bacterial culture was added as well in “AUX” treatment (33,45). 

325 Wolbachia detection 

326 For detection of Wolbachia, individual female and male mosquitoes were placed in screwcaps 

327 tubes with crystal beads and frozen at -80 ºC until use. Samples were processed for DNA extraction 

328 using the MagBio HighPrep Blood and Tissue DNA kit. Tissue lysis was performed with a 

329 Precellys Evolution bead beater homogenizer (Berting Technologies) following manufacturer’s 

330 conditions.

331 Protein digestion was completed with Proteinase K incubation overnight at 55 C.  Automatic 

332 DNA extraction was accomplished with the kit in a KingFisher Duo Prime system (Thermo 

333 Scientific). DNA was eluted in nuclease-free water and saved at -80 C until use. Genomic DNA 

334 was diluted to 25 ng/L using a Nanodrop spectrophotometer (Thermo Scientific) for qPCR test.  
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335 Quantitative PCR test was performed in a Roche 480 Lightcycler with a 2x SYBR-green master 

336 mix using standard protocol instructions (Takara). Total Wolbachia density was analyzed by 

337 relative quantification of the Wolbachia surface protein against the mosquito homothorax gene. 

338 Wolbachia primers, wsp (Fwd) 5’ - ATCTTTTATAGCTGGTGGTGGT -  3’, wsp (Rev) 5’ -

339 AAAGTCCCTCAACATCAACCC -3’; housekeeping hth (Fwd) 5’- 

340 TGGTCCTATATTGGCGAGCTA – 3’, hth (Rev) 5’-TCGTTTTTGCAAGAAGGTCA – 3’ (Ant 

341 et al., 2020).

342 Statistical analysis

343 Egg rafts and individual first instar larvae were photographed with a stereomicroscope.  

344 Numerical observation data was collected and organized in excel sheets, statistical analysis was 

345 performed in R studio 2023.06.2+561 under R 4.3.1. Survival curve was made using survival and 

346 survminer packages. Multicomparisons were performed using genealized mixing models (GLMM) 

347 with the packages lsmeans (70), and glmer (71). 

348 Bar and scatter plots were made using GraphPad Prism 10.3.1 for Mac.
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550 Figure legends

551

552 Figure 1. Culex quinquefasciatus germ-freeWol+ larvae hatch but do not develop without 
553 extracellular bacteria. 

554 A. Egg rafts collected from a local breeding site at time=0 h, just after collection. B-D. Aspect of 

555 the eggs 24 h after collection and treatment, whether they were not sterilized (B), sterilized with a 

556 harsh washing procedure to disrupt the rafts into individualized eggs (C) or following a delicate 
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557 washing procedure, so as to preserve rafts (D). E. Hatching rate of the eggs imaged in B-D. NS vs 

558 SI p<0.0001, SI vs SR p<0.0001, NS vs SR p<0.0001. GLMM fit by maximum likelihood, 

559 binomial distribution, pairwise comparisons with Bonferroni adjustment. F. Development success 

560 of larvae on sterile diets compared to larvae monocolonized with E. coli. B_vit vs LB p=1.0, B vit 

561 vs Water p=1.0, B vit vs E. coli WT p<0.0001, LB vs Water p=1.0, LB vs E. coli WT p<0.0001, 

562 Water vs E. coli WT p<0.0001. Type III ANOVA with Satterthwaite’s method and pairwise 

563 comparisons with Bonferroni adjustment. Dev: developed to adults by day 14; Non dev: stalled in 

564 development or dead. G. Survival curve of sterile larvae provided with autoclaved Tetramin baby 

565 fish food. H. qPCR quantification of the load of Wolbachia in germ-freeWol+ and E. coli colonized 

566 larvae. No difference in water vs E. coli p=0.77. Type III ANOVA with Satterthwaite’s method 

567 and pairwise comparisons with Tukey’s adjustment.  NS – Non-sterile, SI – Sterile individuals, 

568 SR – Sterile rafts, B vit – B vitamin cocktail defined in (42), LB – lysogeny broth. In 1A-1D, 

569 representative images from 6 independent replicates. 1E, 1F, 1H; average ± SEM from 6, 3 and 2 

570 independent replicates, respectively; 1G: average of 4 independent replicates.

571

572 Figure 2. Transient colonization allows to produce germ-freeWol+ adults. A. Experimental 

573 design for rearing germ-freeWol+ or monocolonizedWol+ larvae via transient colonization. B. 

574 Percentage of pupation success between groups with wild-type and auxotrophic bacteria. AUX vs 

575 WT p<0.0001. GLMM fit by maximum likelihood with binomial distribution and pairwise 

576 comparison. C. Percentage of developmental success. AUX vs WT p=0.1432. GLMM fit by 

577 maximum likelihood with binomial distribution and pairwise comparison. D-E. Duration of larval 

578 development to pupae (D, AUX vs WT p<0.0001) and metamorphosis (E, AUX vs WT p=0.1767) 

579 in days. Type III ANOVA with Satterthwaite's method and pairwise comparisons. F. Sex ratio in 
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580 emerged adults’ post-treatment, AUX vs WT p=0.1591. GLMM fit by maximum likelihood with 

581 binomial distribution and pairwise comparison. G. Wing size. AUX vs WT p=1.0 Type III 

582 ANOVA with Satterthwaite's method and pairwise comparison. H. Colony forming units per 

583 mosquito. AUX vs WT p<0.0001. Type III ANOVA with Satterthwaite's method and pairwise 

584 comparison. WT - Reared with wild-type E. coli. AUX – Reared with auxotrophic E. coli. In 2B-

585 F: average ± SEM of 6 independent replicates. 2G-H: average ± SEM of 3 independent replicates.

586

587

588 Figure 3. Wolbachia negatively impacts development success. A. Wolbachia load in larvae 

589 pools during larval development. AUX vs AUX+TET25 p<0.0001, AUX vs AUX+TET5 

590 p=0.0002, AUX vs WT p=0.0433, AUX+TET25 vs AUX+TET5 p=1.0, AUX+TET25 vs WT 

591 p=0.0944, AUX+TET5 vs WT p=0.1790. LMM fit by REML and pairwise comparisons with 

592 Bonferroni adjustment. B. Wolbachia load in adult mosquitoes. AUX vs AUX+TET25 p<0.0001, 

593 AUX vs AUX+TET5 p<0.0001, AUX vs AUX+TET50 p=0.0111, AUX vs WT p=0.03653, 

594 AUX+TET25 vs AUX+TET5 p=1.0, AUX+TET25 vs AUX+TET50 p=1.0, AUX+TET25 vs WT 

595 p=0.0047, AUX+TET5 vs WT p=0.0221, AUX+TET50 vs WT p=0.6282. LMM fit by REML and 

596 pairwise comparisons with Bonferroni adjustment. C. Bacterial decolonization in larvae. AUX vs 

597 AUX+TET25 p=1.0, AUX vs AUX+TET5 p=1.0, AUX vs WT p=1.0, AUX+TET25 vs 

598 AUX+TET5 p=1.0, AUX+TET25 vs WT p=1.0, AUX+TET5 vs WT p=1.0. LMM fit by REML 

599 and pairwise comparisons with Bonferroni adjustment. D. Bacterial decolonization in mosquitoes. 

600 AUX vs AUX+TET25 p=1.0, AUX vs AUX+TET5 p=1.0, AUX vs WT p=0.0012, AUX+TET25 

601 vs AUX+TET5 p=1.0, AUX+TET25 vs WT p=0.0012, AUX+TET5 vs WT p=0.0012. LMM fit 

602 by REML and pairwise comparisons with Bonferroni adjustment. E. Bacterial decolonization 
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603 measured with CFU test. AUX vs AUX+TET5 p=1.0, AUX vs WT p<0.0001, AUX+TET5 vs WT 

604 p<0.0001. Type III ANOVA with Satterthwaite’s method and pairwise comparison with 

605 Bonferroni adjustment. F. Pupation ratio success in treated larvae with different tetracycline doses. 

606 AUX vs AUX+TET25 p=0.0007, AUX vs AUX+TET5 p<0.0001, AUX vs AUX+TET50 

607 p=0.5103, AUX vs WT p<0.0001, AUX+TET25 vs AUX+TET5 p<0.0001, AUX+TET25 vs 

608 AUX+TET50 p=1.0, AUX+TET25 vs WT p<0.0001, AUX+TET5 vs AUX+TET50 p<0.0001, 

609 AUX+TET5 vs WT p=1.0, AUX+TET50 vs WT p<0.0001. GLMM fit by maximum likelihood 

610 and pairwise comparison with Bonferroni adjustment. G. Adult metamorphosis success in treated 

611 groups with different tetracycline doses. AUX vs AUX+TET25 p=0.0006, AUX vs AUX+TET5 

612 p<0.0001, AUX vs AUX+TET50 p<0.0001, AUX vs WT p<0.0001, AUX+TET25 vs AUX+TET5 

613 p<0.0001, AUX+TET25 vs AUX+TET50 p=1.0, AUX+TET25 vs WT p<0.0001, AUX+TET5 vs 

614 AUX+TET50 p<0.0001, AUX+TET5 vs WT p=1.0, AUX+TET50 vs WT p<0.0001. GLMM fit 

615 by maximum likelihood and pairwise comparison with Bonferroni adjustment. H. Duration of 

616 larval development until pupation. AUX vs AUX+TET25 p=0.0003, AUX vs AUX+TET5 

617 p<0.0001, AUX vs WT p<0.0001, AUX+TET25 vs AUX+TET5 p<0.0001, AUX+TET25 vs WT 

618 p<0.0001, AUX+TET5 vs WT p<0.0001. Type III ANOVA with Satterthwaite’s method and 

619 pairwise comparison with Bonferroni adjustment. I. Duration of metamorphosis from pupae to 

620 adults. AUX vs AUX+TET25 p=0.0003, AUX vs AUX+TET5 p<0.0001, AUX vs WT p<0.0001, 

621 AUX+TET25 vs AUX+TET5 p<0.0001, AUX+TET25 vs WT p<0.0001, AUX+TET5 vs WT 

622 p<0.0001. Type III ANOVA with Satterthwaite’s method and pairwise comparison with 

623 Bonferroni adjustment. J. Sex ratio in treated groups. AUX vs AUX+TET25 p=1.0, AUX vs 

624 AUX+TET5 p=1.0, AUX vs WT p=0.0278, AUX+TET25 vs AUX+TET5 p=0.6009, 

625 AUX+TET25 vs WT p=0.0630, AUX+TET5 vs WT p=1.0. GLMM fit by maximum likelihood 
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626 and pairwise comparison with Bonferroni adjustment. Average  SEM of 3 (3A, 3E), 4 (3B, 3C) 

627 and 2 (3D), independent replicates. In 3F-3J, average  SEM of 9 independent replicates (12 

628 replicates), treated groups independent replicates were 4 in AUX+TET5 and AUX+TET25 

629 conditions, and 3 for AUX+TET50 (F-J). 

630
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