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In Brief
Our study reveals how influenza
A virus (IAV) infection rewires the
CRL4 E3 ubiquitin ligase
complex’s interactome. Using
Affinity Purification coupled with
Mass Spectrometry (AP-MS), we
show that IAV infection disrupts
interactions of CRL4
components, including DDB1
and DCAF11, while enhancing
DCAF12L1 associations. This
dynamic remodeling impacts
proteins crucial for cellular
processes including protein
folding, ubiquitination, and stress
responses. Our findings highlight
potential targets for novel host-
directed antiviral therapies by
detailing the altered functional
landscape of CRL4s during
infection.
Highlights
• IAV infection leads to a remodeling of the CRL4 E3 ubiquitin ligase interactome.

• Distinct CRL4 factors target different cellular processes and stress responses in IAV.

• CRL4 interactors with a role in IAV infection highlight antiviral and proviral targets.
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RESEARCH
Profiling Cullin4-E3 Ligases Interactomes and
Their Rewiring in Influenza A Virus Infection
Guillaume Dugied1,2 , Thibaut Douche3 , Melanie dos Santos2,
Quentin Giai Gianetto.Q3,4 , Camille Cassonnet1, Françoise Vuillier1 ,
Patricia Cassonnet2, Yves Jacob2, Sylvie van der Werf2, Anastassia Komarova1,2,
Mariette Matondo3 , Marwah Karim1,*,‡ , and Caroline Demeret1,2,*,‡
Understanding the integrated regulation of cellular pro-
cesses during viral infection is crucial for developing host-
targeted approaches. We have previously reported that an
optimal in vitro infection by influenza A virus (IAV) requires
three components of Cullin 4-RING E3 ubiquitin ligases
(CRL4) complexes, namely the DDB1 adaptor and two
substrate recognition factors, DCAF11 and DCAF12L1,
which mediate non-degradative poly-ubiquitination of the
PB2 subunit of the viral polymerase. However, the impact
of IAV infection on the CRL4 interactome remains elusive.
Here, using Affinity Purification coupled with Mass Spec-
trometry (AP-MS) approaches, we identified cellular
proteins interacting with these CRL4 components in
IAV-infected and non-infected contexts. IAV infection in-
duces significant modulations in protein interactions,
resulting in a global loss of DDB1 and DCAF11 in-
teractions, and an increase in DCAF12L1-associated
proteins. The distinct rewiring of CRL4’s associations
upon infection impacted cellular proteins involved in pro-
tein folding, ubiquitination, translation, splicing, and stress
responses. Using a split-nanoluciferase-based assay, we
identified direct partners of CRL4 components and via
siRNA-mediated silencing validated their role in IAV
infection, representing potential substrates or regulators
of CRL4 complexes. Our findings unravel the dynamic
remodeling of the proteomic landscape of CRL4’s E3
ubiquitin ligases during IAV infection, likely involved in
shaping a cellular environment conducive to viral replica-
tion and offer potential for the exploration of future host-
targeted antiviral therapeutic strategies.

Viruses co-opt the host cellular machinery by engaging in
protein-protein interactions with the host proteome to facilitate
their replication and overcome cellular restrictions. Ubiquitina-
tion, a major post-translational modification, involves the
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covalent attachment of ubiquitin molecules to target proteins,
which can be reversed by deubiquitination (1). Ubiquitination is
mediated by an enzymatic cascade involving ubiquitin activation
(E1 ubiquitin-activating enzymes), conjugation (E2 ubiquitin-
conjugating enzymes), and transfer (E3 ubiquitin ligases
responsible for the recruitment of substrate proteins), while
ubiquitin removal is mediated by de-ubiquitinases (DUBs). Mul-
tiple types of protein ubiquitination exist, such as mono-
ubiquitination and poly-ubiquitination, wherein variations in
ubiquitin linkages depend on the lysine residue engaged in poly-
ubiquitin chain formation (2, 3). The specific type of ubiquitin
chains determines the fate of the protein substrate, i.e.,
proteasome-mediated degradation, regulation of signaling
pathways, or localization to specific subcellular compartments.
The targeting of ubiquitinated proteins to the proteasome for
degradation is amajor pathway of regulated protein stability, and
ubiquitination plays a central role in multiple cellular processes,
such as cell cycle progression, signal transduction, antigen
presentation, and immune responses (4).
The set of proteins driving ubiquitination and its regulation,

termed theUbiquitin-ProteasomeSystem (UPS), plays a dual role
in viral pathogenesis, manifesting both pro-viral and antiviral ef-
fects. Indeed, the UPS can enhance viral protein function by
inducing their non-degradative ubiquitination or modifying host
factors required for the viral life cycle (5). Conversely, it can act as
a restriction factor by promoting ubiquitin-dependent degrada-
tion of viral proteins, activating immune signaling pathways, or
controlling cell cycle events (6). This dual role makes the UPS a
key target for viruses to rewire the degradative apparatus and
manipulate host signaling pathways (7, 8). From a molecular
standpoint, virus-induced rewiring of E3-ligases results from
either gaining interactions via the recruitment of new protein
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Rewiring of CRL4 Interactomes in IAV Infection
partners or losing interactions with natural cellular protein sub-
strates. In the context of influenza A virus (IAV) infection, the
involvement of the UPS has been documented at various stages
of the viral life cycle, resulting in both pro- and anti-viral outcomes
(9). For instance, NS1 protein prevents RIG-I ubiquitination by
interacting with TRIM25 E3 ligase, suppressing the antiviral
interferon response (10), while ubiquitination of matrix protein M1
by Itchy E3 ligase aids the release of viral genomic segments from
late-endosomes (11). Ubiquitination of polymerase subunits PB1,
PB2, PA, and nucleoprotein (NP) contributes to viral genome
replication and transcription (12, 13). Furthermore, ubiquitination
of NP by the CNOT4 E3 ligase promotes viral replication (14),
while polyubiquitination by TRIM22 and TRIM41 E3 ligases tar-
gets NP for proteasome-dependent degradation (15, 16), a pro-
cess reversed by the de-ubiquitinase USP11 (17).
We have previously demonstrated that the PB2 protein of IAV

undergoes non-degradative ubiquitination at different lysines,
mediated by two RING-E3 ubiquitin ligases based on Cullin 4
(CRL4s), thereby promoting the viral life cycle (18). PB2 directly
binds to the recruitment modules of these CRL4s, consisting of
the DDB1 adaptor and the substrate recognition factors (SRF)
DCAF11 (CRL4DCAF11) or DCAF12L1 (CRL4DCAF12L1) (19).
Several viral encoded proteins have been reported to hijack
CRL4s E3 ligases for ubiquitination, leading to the degradation
of antiviral or regulatory host factors by bridging a cellular
protein to DDB1 or to an SRF (20–22). While this infection-
induced rewiring of E3 ubiquitin ligases is a recurring strategy
of viruses for tailoring the cellular environment to their replica-
tion cycle, such phenomena have never been documented for
IAV infection. To bridge this gap, we investigated whether the
substrate specificity of these CRL4s is altered during infection,
using affinity purification-mass spectrometry (AP-MS). Our re-
sults revealed substantial modulations in the interaction net-
works of the three factors, DDB1, DCAF11, and DCAF12L1,
characterized by a comprehensive reduction in DDB1 and
DCAF11 interactions, while DCAF12L1 interactors increased
upon infection. Furthermore, we assessed a subset of these
interactors for their direct interactions with the CRL4s factors
using a mammalian cell-based nano-luciferase (N2H) assay,
unveiling potential infection-regulate substrates or regulators of
these E3 ligases. The silencing of a sub-set of CRL4s targets
showed their involvement in IAV infection. These findings un-
ravel the proteomic landscape entwined with CRL4's E3 ubiq-
uitin ligases and their dynamic remodeling during IAV infection
and provide a foundation for future exploration of host-targeted
antiviral therapeutic strategies.
EXPERIMENTAL PROCEDURES

Cell Culture and Generation of Stable Cell Lines

Human embryonic kidney cell lines HEK-293T and HEK-293 (ATCC)
were cultured in complete Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% v/v fetal calf serum (FCS) and 1%
Pen-strep antibiotics. Canine Kidney-derived MDCK-SIAT cells (23)
2 Mol Cell Proteomics (2024) 23(11) 100856
were grown in Modified Eagle's Medium (MEM) supplemented with
5% FCS.

For the generation of stable cell lines, HEK293 cells were
transfected using Jetprime (Polypus) with expression vectors for
Strep-tagged DDB1, DCAF11, DCAF12L1, or mCherry. At 48 h post-
transfection, cells were selected for neomycin (400 μg/ml)
resistance. Single clones were sorted, expanded, and assessed for
Strep fusion protein expression levels by immunoblotting. All cells
were maintained in a humidified incubator with 5% CO2 at 37 ◦C and
tested negative for mycoplasma using the MycoAlert mycoplasma
detection kit (Lonza).

Viruses and Infection

The recombinant influenza virus strain A/WSN/33 (H1N1WSN) was
produced by reverse genetics, as mentioned in the reference (24). For
infection, HEK293 cells stably expressing Strep-tagged CRL4 factors
and mCherry were mock-treated medium alone or infected with the
influenza virus strain A/WSN/33 (H1N1WSN) at a multiplicity of infection
(MOI) of 3 for 6 h at 37 ◦C.

Plasmids

For protein complementation assay based on the split luciferase
(N2H) assay, the Gateway-entry plasmids containing the DDB1,
DCAF11, DCAF12L1, and other cellular proteins ORFs were obtained
from the human ORFeome resource (Center for Cancer Systems
Biology (CCSB) human ORFeome 8.1 collection). To generate vectors
encoding complementary NanoLuc fragments F1- and F2-, as well as
Strep-fusion proteins, the ORFs were transferred into a Gateway
compatible pDESTN2H-GW or pIBA105-GW destination vectors using
recombination cloning (Gateway technology, Invitrogen).

Gene-specific RT-qPCR Assay

HEK293 cells stably expressing Strep-tagged CRL4 factors or
A549-ACE2 cells depleted for CRL4s interactors were harvested,
lysed, and subjected to total RNA extraction with the RNeasy mini-kit
(Qiagen). RT-qPCR was conducted with gene-specific forward and
reverse primers, following the manufacturer’s protocol outlined in the
LightCycler RNA amplification kit SYBR green I (Roche). The se-
quences of the oligo couple will be provided upon request. The cellular
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA in the
infected cells served as an internal control.

Strep Pulldown and Western Blot

HEK293 cells stably expressing Strep-tagged CRL4 factors or
mCherry were washed twice with cold PBS and lysed in 20 mM
MOPS-KOH (pH 7.4), 120 mM KCl, 2 mM ß-mercaptoethanol, 0.5%
IGEPAL supplemented with 1× protease inhibitor Cocktail (Roche) for
30 min on ice. For Strep-tag purification, cell lysates were clarified by
centrifugation at 16,000g for 15 min at 4 ◦C and incubated with Strep-
Tactin beads (Strep-Tactin Sepharose high performance; GE Health-
care) for 2 h at 4 ◦C on a spinning wheel. Beads were washed three
times in wash buffer (20 mM MOPS-KOH, pH 7.4, 120 mM of KCl,
2 mM β-mercaptoethanol, protease inhibitor cocktail).

For Western blot analysis, the bound protein complexes were
eluted from Strep-Tactin beads with desthiobiotin and diluted in
Laemmli buffer (Invitrogen). Immunoblot membranes were incubated
with peroxidase-conjugated Strep-Tactin or with primary antibody
directed against PB2 (GTX125926, GeneTex), then an HRP-
conjugated anti-rabbit antibody (GE Healthcare), then revealed with
the ECL2 substrate (Pierce). The chemiluminescence signals were
acquired using a G-Box and the GeneSnap software (SynGene).
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Silver Staining and Coomassie Staining

After Strep pulldown, protein complexes were eluted from Strep-
Tactin beads with desthiobiotin. Eluted proteins were precipitated
using 12% TCA and washed with ice-cold acetone. The purified
proteins were analyzed by SDS-PAGE and revealed by silver staining
(Sigma) according to the manufacturer's guidelines.

For Coomassie blue staining, the experiment was performed as
described above. The whole cell lysates (WHL), flow-through after
immuno-precipitation, washes 1, 2, and 3, beads after elution of
protein, and the eluted proteins after TCA precipitation were loaded in
the SDS-PAGE and revealed by instant blue Coomassie staining
(Expedeon).
SAMPLE PREPARATION FOR MASS SPECTROMETRY

Pull-Down Digestion

After Strep pulldown, protein complexes were eluted from
Strep-Tactin beads with desthiobiotin. Eluted proteins were
precipitated using 12% TCA (final concentration) overnight at
4 ◦C. Protein pellets were washed twice with ice-cold acetone
and then resuspended in a denaturation buffer containing 8M
urea and 100 mM NH4HCO3. Cysteine bonds were reduced
with 50 mM TCEP (Sigma-Aldrich) for 1 h and sonicated twice
for 1 min each on ice. Proteins were alkylated with 50 mM
iodoacetamide (Sigma-Aldrich) for 1 h at room temperature in
the dark. Samples were digested with rLys-C (Promega) ratio
50:1 (protein:rLysC) for 4 h at 37 ◦C and then digested with
Sequencing Grade Modified Trypsin (Promega, France) ratio
25:1 (protein: trypsin) overnight at 37 ◦C after a dilution in
100 mM NH4HCO3 to decrease the urea under 1M. The
digestion was stopped with 4% formic acid (FA) (Fluka), and
digested peptides were purified with C18 Spin Columns
Pierce (ThermoFisher Scientific). Peptides were eluted with
2 × 80% Acetonitrile (ACN)/0.1% FA. The resulting peptides
were speed-vac dried and resuspended in 2% ACN/0.1% FA
for further analysis.

LC-MS/MS

LC-MS/MS analysis of CRL4s–specific protein complexes
was performed on a Q Exactive Plus Mass Spectrometer
(Thermo Fisher Scientific) coupled with a Proxeon EASY-nLC
1000 (Thermo Fisher Scientific). The same volume of peptides
was injected into a homemade 35-cm C18 column (1.9-μm
particles, 100-Å pore size, ReproSil-Pur Basic C18, Dr Maisch
GmbH, Ammerbuch-Entringen) and eluted with a multistep
gradient from 2 to 7% buffer B (80% ACN/0.1% FA) for 5 min,
seven to 23% for 70 min, 23 to 45% for 30 min, and 45 to 95%
fir 5 min, at a flow rate of 250 nl/min over 132 min. The column
temperature was set to 60 ◦C. MS data were acquired using
Xcalibur software using a data-dependent method. MS scans
were acquired at a resolution of 70,000, and MS/MS scans
(fixed first mass 100 m/z) at a resolution of 17,500. The
automatic gain control (AGC) target and maximum injection
time for the survey scans and the MS/MS scans were set to
3 × 106, 20 ms, and 1 × 106, 60 ms, respectively. An automatic
selection of the 10 most intense precursor ions was activated
(top 10) with a 45-s dynamic exclusion. The isolation window
was set to 1.6 m/z and normalized collision energy fixed to 28
for higher energy collisional dissociation fragmentation. We
used an underfill ratio of 1.0% for an intensity threshold of
1.7 × 105. Unassigned precursor ion charge states, as well as
1, 7, 8, and >8 charged states, were rejected, and peptide
match was disabled.

Bioinformatics Analysis of LC-MS/MS Data

The analysis of raw data was performed using MaxQuant
software version 1.5.5.1. The MS/MS spectra were searched
against two databases: the Human Swiss-Prot database
(comprising 20,203 entries from the UniProt, dated 12/04/
2018) and the personal Influenza A virus database (8 entries).
Variable modifications (methionine oxidation, N-terminal
acetylation, and lysine ubiquitinylation) and fixed modification
(cysteine carbamidomethylation) were set for the search, and
trypsin with a maximum of two missed cleavages was chosen
for searching. The minimum peptide length was set to seven
amino acids, and a false discovery rate (FDR) of 0.01 was
applied for peptide and protein identification. Identification of
proteins mandated at least a unique peptide per protein
group. The main search peptide tolerance was set to 4.5 ppm,
with the MS/MS match tolerance set at 20 ppm. Second
peptides were enabled to identify co-fragmentation events,
and a match between runs option was selected, with a match
time window of 0.7 min for an alignment time window of
20 min. Quantification was performed using the XIC-based
LFQ algorithm with the Fast LFQ mode as described previ-
ously (25). Acceptance criteria for quantification included
unique and razor peptides, including modified peptides, with
at least 2 ratio counts. The mass spectrometry proteomics
data have been deposited to the ProteomeXchange Con-
sortium via the PRIDE (26) partner repository with the data set
identifier PXD050261.

AP-MS Analysis Pipeline

For the differential analyses, proteins identified in the
reverse and contaminant databases and proteins “only iden-
tified by site”, were first excluded from the list of identified
proteins. Then, only proteins with two quantified intensity
values in a given condition are kept. Following log2 trans-
formation, LFQ values were normalized by median centering
within conditions, using the normalized function of the R
package DAPAR (27). The remaining proteins without any LFQ
value were considered as present in one condition and absent
in another. These proteins were set aside and considered as
differentially abundant proteins. Next, missing values were
imputed using the imp.norm function of the R package norm
(28). Proteins with a fold-change under 2.0 were considered
not significantly differentially abundant. For the remaining
proteins with a fold-change over 2.0, statistical analysis was
conducted using a limma t test (29), with the R package limma
Mol Cell Proteomics (2024) 23(11) 100856 3
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(30). An adaptive Benjamini-Hochberg procedure was applied
to the resulting p-values using the function adjust.p of R
package cp4p (31), employing the robust method (32), to es-
timate the proportion of true null hypotheses among the set of
statistical tests. The proteins associated with an adjusted p-
value below FDR of 1% were considered significantly differ-
entially abundant. Finally, the proteins of interest are those
that emerged from this statistical analysis, complemented by
those that are present in one condition and absent in another.

Experimental Design and Statistical Rationale for MS

MS experiments were conducted in three independent
biological replicates to ensure the robustness and reproduc-
ibility of the results. As shown in Figure 2A and Supplemental
Fig. S2, the correlation between each pair of samples was
computed using all complete pairs of observations in these
samples. A high level of confidence (>0.8) was obtained,
ensuring the reliability of the findings reported in the MS-
based proteomic study.

GO Enrichment Analysis

The GO term enrichment analysis of the AP-MS datasets
was performed using gProfiler (33), with database versions
Ensembl 110, Ensembl Genomes 56 and Wormbase ParaSite
18. The transcriptome data of HEK293 taken from the Human
Protein Atlas (version 21.1) (34) was used as the background
dataset. Adjusted p-values were calculated using the
Benjamini-Hochberg procedure. Subsequent analysis was
performed using R (https://www.R-project.org/).

Mammalian N2H Assay

Mammalian N2H assay was performed as described in Choi
et al. (35). Briefly, HEK293T cells were seeded the day before
transfection at 6 x 104 cells per well in 96-well plates. Cells
were then transfected with 100 ng of each N2H plasmid
(pN2H-N1 or C1 plus pN2H-N2 or C2). Twenty-4 hours after
transfection, 50 μl of a 100× diluted NanoLuc substrate was
added per well after removal of the culture medium. The
substrate used (Q-108) was obtained in a concentrated solu-
tion, from the corresponding O-acetylated derivative
hikarazine-108, following acidic hydrolysis as previously
described (36–38). Luciferase enzymatic activity was
measured using a CentroXS luminometer (Berthold; 2 s inte-
gration time). For each protein pair, the obtained RLU was
divided by the RLU generated by each of the partners co-
expressed with the complementary nanoluciferase fragment
expressed either unfused or fused to a non-interacting protein
(commonly referred to as N1-CTRL or N2-CTRL), giving a
Normalized Luminescence Ratio (NLR) as follows: NLR = RLU
[N1-CellP x N2-CRL4]/RLU [N1-CellP x N2 CTRL] + [N1-CTRL
x N2-CRL4]. The calculation of NLR thus enables consider-
ation of the interaction background of each partner in the
protein pairs under examination.
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siRNA Transfection and Efficiency

siRNA transfection and efficiency. siRNAs targeting the
CRL4’s partners were purchased from Dharmacon (ON-TAR-
GETplus SMARTpools and non-targeting control). A549 cells
were transfected with 25 nM siRNA using the Interferin
transfection reagent (Polyplus). At 48 h post-transfection, cells
were infected with the A/WSN/33 (H1N1) at a multiplicity of
infection (moi) of 10−3 pfu/cell. Plaque assays with MDCK
cells were performed as described in (39). Viral titer is
expressed as ratios relative to the titers obtained with non-
targeting siRNA. Data were analyzed with GraphPad Prism
using Mann-Whitney multiple comparison t test.

RESULTS

Overview of the Methodology for Identifying CRL4 Factors
Proteomes in IAV-Infected Cells

We have previously shown that the PB2 subunit of IAV RNA-
dependent RNA polymerase undergoes non-degradative
poly-ubiquitination following its binding to various factors of
the multi-components CRL4 E3 ligases, namely the adapter
DDB1 and the SRFs, DCAF11 and DCAF12L1 (18). To assess
the rewiring of these CRL4s E3 ligases upon IAV infection, we
explored the landscape of the cellular proteins bound to these
CRL4 components in infected and non-infected cells using
Affinity Purification-Mass Spectrometry (AP-MS) (Fig. 1A). For
this purpose, we generated HEK293 cells stably expressing
each Strep-tagged CRL4 factor and Strep-mCherry as con-
trols. A single clone of each cell line was selected based on
the comparable expression levels of Strep-tagged proteins
among Strep-tagged CRL4s and Strep-mCherry
(Supplemental Fig. S1A). Assessment of DDB1 levels
showed no strong overexpression of Strep-DDB1 compared
with its endogenous protein, while the endogenous DCAF11
or DCAF12L1 could not be detected owing to a lack of suit-
able antibodies (Supplemental Fig. S1A). We detected a higher
expression of DCAF12L1 protein and mRNA levels than
DCAF11 and DDB1 (Supplemental Fig. S1B). We employed
AP-MS analysis to investigate the landscape of cellular pro-
teins bound to each CRL4 factor (DDB1, DCAF12L1, and
DCAF11) in HEK293 cells stably expressing Strep-tagged
CRL4s and Strep-mCherry (as a negative control), either
mock infected or infected with H1N1WSN at MOI of 3. At 6 h
post-infection, cells were lysed, and a Strep pull-down was
performed on an equivalent amount of whole cell lysates. The
co-purifying proteins eluted from the StrepTactin-beads were
identified via LC-MS/MS analysis (Fig. 1A). The purification of
Strep-tagged proteins was monitored throughout the pull-
down procedure by Coomassie blue staining (Supplemental
Fig. S1C), and the pattern of eluted proteins was analyzed
by silver staining, with prominent bands corresponding to the
pulled Strep-tagged proteins (Fig. 1B). Immunoblot analysis of
the pulled fractions from IAV-infected cells revealed PB2 co-
precipitation with all three CRL4 factors, while only marginal

https://www.r-project.org/


H1N1 WSN  or Mock 
(MOI 3)

HEK-293 cells expressing 
Strep tagged DDB1/ 

DCAF12L1/DCAF11/mCherry

Whole cell lysates 

StrepTactin 
beads

Copurification of 
Strep-CRL4

Strep-CRL4 
co-complexes 

LC-MS/MS
(Strep-CRL4 co-complex)

target protein

interacting protein

non-interacting protein

StrepTactin beads

Western Blot, C

Silver Staining, B 

Cell lysis

A

Comassie Staining, 
S1C

D
C

AF
12

L1

D
C

AF
11

D
D

B1

m
C

he
rry

B

C

D
C

AF
12

L1

D
C

AF
11

D
D

B1

m
C

he
rry

Strep-
Tactin

αPB2

StrepTactin 
pulldown 

Pull down: StrepTactin 

130

100

70

55

100

70

130
100
70

55

250

35
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purifying with Strep-CRL4 factors or with Strep-mCherry were digested into peptides and analyzed by Mass spectrometry to measure changes
in protein abundance upon infection compared to mCherry control and non-infected condition. Equivalent amounts of the whole cell lysates
(input) were also analyzed by MS. All conditions were performed in biological triplicate. B, proteins co-eluted with the indicated Strep-CRL4s
factors after StrepTactin-affinity purification (pull down) were visualized by silver staining of SDS gels. C, detection of PB2 co-purified with
CRL4 factors d by Western blot. The bands corresponding to Strep-CRL4 factors and mCherry are indicated with arrows.

Rewiring of CRL4 Interactomes in IAV Infection
PB2 co-purified with the Strep-mCherry control (Fig. 1C). It
should be noted that the PB2 protein level is too low to be
directly detectable in infected cell lysates before pull-down in
the volume of extraction for AP-MS. PB2 has nevertheless
been detected after the pull-down with the CRL4s factors
(Fig. 1C), in line with our earlier findings in similar experimental
conditions (18). For each Strep-CRL4 and Strep-mCherry
expressing cell, three independent infections were per-
formed, in parallel to mock treatment, followed by affinity
chromatography purification and LC-MS/MS analysis. Each
series of biological replicates exhibited a high number of
consistently quantified proteins/peptides, strongly correlated,
and consistent distribution across all replicates indicating
robust experimental reproducibility and reliability of our
quantification process (Fig. 2A, Supplemental Fig. S2, A–F
and Supplemental Table S1). Following quality control mea-
sures and in-house statistical pipelines, proteins detected in at
least two replicates were retained for each condition (see
Mol Cell Proteomics (2024) 23(11) 100856 5
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FIG. 2. Global comparison of the host CRL4 interactomes during H1N1WSN infection. A, correlation matrix of the three biological repli-
cates of HEK-293 cell lines stably expressing Strep-DDB1 versus Strep-Cherry controls in H1N1WSN infected cells (Left) or non-infected cells
(Right). B, stacked to the total number of partners found either as enriched relative to the control cherry pull-down or as exclusive (i.e. not
detected associated with Strep-mCherry) in infected and non-infected condition (Excl_INF, Excl_NI, Enrich_INF, Enrich_NI). C, Venn diagrams
depicting the number and percentage of interactors in infected, non-infected, or both (both) conditions are shown in orange, yellow, and gray
respectively. D, Venn diagrams showing the number and percentage of common CRL4 interactors from the mass-spectrometry in the infected
(left) and non-infected (right) conditions. Excl, exclusive; INF, infected; NI, non-infected.

Rewiring of CRL4 Interactomes in IAV Infection
Experimental Procedures). The overall protein levels quantified
in inputs between the three CRL4s are comparable across all
cell extracts, regardless of the infection status (Supplemental
Table S1). Proteins present only in Strep-CRL4-expressing but
not in Strep-mCherry cells, were assigned as exclusively
associated with the corresponding CRL4 factor.
For the remaining non-exclusive proteins, a differential

analysis was applied to identify those significantly more
abundant with the CRL4 factors than with the mCherry control
(log2 FC over mCherry >1, p-value < 0.001). Our AP-MS
analysis identified a total number of 190, 221, and 885 high
confidence (HC) interactions with DDB1, DCAF11, and
DCAF12L1, respectively, combining infected and non-infected
conditions, with a constant higher proportion of proteins
exclusively associated with the CRL4s factors, indicating a
correct stringency of the pull-down (Fig. 2B and Supplemental
Table S1). The higher number of proteins detected for
DCAF12L1 is likely attributable to a higher accumulation of
Strep-DCAF12L1, which was observed by silver staining of
the eluted proteins after Strep-DCAF12L1 pull-down and
6 Mol Cell Proteomics (2024) 23(11) 100856
despite our efforts to minimize differences in CRL4 expression
levels (Fig. 1B). Combining infected and non-infected condi-
tions, 119, 209, and 542 cellular proteins were identified
associated with DDB1, DCAF11, and DCAF12L1 (Fig. 2C and
Supplemental Table S2). A significant rewiring of the CRL4s
interaction partners was observed, particularly for DDB1 for
which only 26% of the 119 interactors remained constant
upon infection, whereas 49% and 65% remained unchanged
for DCAF11 and DCAF12L1, respectively. A global loss of
interacting protein partners during influenza infection is
observed for both DDB1 and DCAF11, which interact
respectively with 69 and 73 proteins only in non-infected cells,
and with 19 and 33 exclusively in infected cells (Fig. 2C and
Supplemental Table S2). Conversely, DCAF12L1 gains cellular
interactors upon infection, with 143 only in infected cells
compared to 48 proteins associated exclusively in non-
infected cells (Fig. 2C). Among the HC interactors, 60 were
identified to interact with all CRL4s in the non-infected con-
dition, against 31 in the infected condition (Fig. 2D and
Supplemental Table S2). Additionally, we observed an



Rewiring of CRL4 Interactomes in IAV Infection
increased proportion of factors interacting only with
DCAF12L1 in the infection compared to the non-infected
condition.

The DDB1 Interactome During IAV Infection

DDB1 is a well-characterized protein, and several of its
interactors have previously been identified by mass spec-
trometry in non-infectious conditions (40, 41). We detected
numerous known interacting proteins, including Cul4 (A and
B), RBX1, and several DWD-containing substrate recogni-
tion receptors (DCAFs), underscoring the presence of
physiological DDB1 partners related to its role as an adapter
of CRL4 E3 ligases. Additionally, members of the COP9
signalosome complex (CSN) were detected in association
with DDB1, in line with its role in regulating CRL4 E3 ligases
(Fig. 3A). The association of DDB1 with the CRL4s-related
factors essentially remained unchanged upon infection.
Furthermore, we identified several proteasome subunits,
indicating the delivery of some CRL4s E3 ligases targets for
proteasome-mediated degradation, specifically in non-
infected cells. Beyond these known interactions, our
approach detected alterations in the recruitment of cellular
proteins to DDB1, including translation regulators, ribosomal
proteins, chaperones, and members of the Chaperonin
Containing TCP-1 (CCT) complex. DBB1 was strongly
remodeled upon IAV infection, with the majority of these
changes being specific to non-infected cells (Fig. 3, A and
B).
We performed a pathway enrichment analysis by querying

the REACTOME database with the list of factors gained or
lost upon infection (Supplemental Table S3). By comparing
the top 20 enriched pathways in both lists of factors, we
identified pathways related to influenza infection, influenza
virus RNA transcription, and replication as amongst the
most significant pathways enriched upon infection, sug-
gesting a shift of DDB1-associated factors toward factors
involved in influenza virus infection (Fig. 3C). Infection-
specific DDB1-associated factors targeted translation elon-
gation and termination as well (Fig. 3C). Pathways related to
virus infection and mRNA translation, metabolisms of amino
acids, RNA and cellular responses to stress/stimuli were
enriched in non-infected cells, suggesting their potential
hijacking by the virus during infection.

Substrate Recognition Receptors DCAF11 and DCAF12L1
Exhibit Distinct Protein Associations in Response to IAV

Infection

DCAF11 has been established to function as an SRF of
CRL4 (42, 43). We identified 23 out of the 103 interactors of
DCAF11 reported in BioGRID (https://thebiogrid.org/123251)
(Supplemental Fig. S3). These interactors included compo-
nents of CRL4 E3 ligase, the CRL4 regulator complex CSN,
and the CCT complex (Supplemental Fig. S3), and we found
their association with DCAF11 to be independent of IAV
infection (Fig. 4, A and B). Similar to DDB1, DCAF11 is
associated with protein chaperones and the prefoldin
complex, which, in conjunction with the CCT complex,
points to a connection between certain CRL4 ligases and
protein folding. Additionally, DCAF11 engaged associations
with transcription and chromatin factors, which were lost
following infection. Conversely, distinct sets of ribosomal
proteins and splicing factors were associated with DCAF11
in infected versus non-infected cells (Fig. 4, A and B). GO-
term enrichment analysis pointed to the loss of factors
regulating host translation, metabolism of RNA, and influ-
enza A infection upon infection, while the DCAF11’s tar-
geting upon infection affected cellular responses to stress
and stimuli (Fig. 4C).
Little is known about the function of DCAF12L1, which we

nevertheless demonstrated to act as a bona fide SRF of
CRL4, mediating ubiquitination of PB2 from IAV (18). Given
the high number of cellular partners associated with
DCAF12L1 (Fig. 2D), we categorized these association
patterns based on three occurrences, i.e., present only in
infected cells, only in non-infected cells, or in both condi-
tions (Fig. 5, A–C). We detected the association of
DCAF12L1 with CRL4 E3 ligase components and ribosomal
proteins, with minor changes upon infection (Fig. 5, A and
B). Protein chaperones, Prefoldin, and CCT complexes were
among the consistent interactors of DCAF12L1, under-
scoring its significance in modulating protein folding, a
fundamental process targeted by the three CRL4 factors
studied. We also identified an association of DCAF12L1 with
the proteasome and CSN complexes, with multiple subunits
lost upon infection (Fig. 5, A–C). DCAF12L1 targeted pro-
teins involved in mRNA splicing, transcription, and chro-
matin regulation, with increased associations during
infection. Additionally, components of the Cleavage and
Polyadenylation and Specificity Factor (CPSF), central
components of the 3′ processing machinery for poly-
adenylated mRNAs, were recruited specifically upon infec-
tion (Fig. 5B). The top-enriched GO-terms targeted by
DCAF12L1 associated factors upon infection include pro-
cesses exploited by influenza virus, such as metabolism of
RNA, RNA splicing and more precisely the processing of
capped-intron-containing pre-mRNA which may be related
to the influenza-specific process of cap snatching. In non-
infected cells, DCAF12L1 showed a higher association
with factors impacting UPS-related processes such as
neddylation, proteasome, and protein degradation (Fig. 5D).
Such GO-term enrichment supports our previous proposals
that (i) DCAF12L1 might be the preferred SRF of CRL4s
during infection, (ii) the CRL4s-mediated ubiquitination
might be shifted toward non-proteolytic, proteasome inde-
pendent ubiquitination under infection.
Our MS-based analysis of the CRL4’s associated factors

upon IAV infection revealed a remodeling of their respective
interactomes. Different binding profiles emerged, with the
Mol Cell Proteomics (2024) 23(11) 100856 7
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FIG. 3. Protein interaction network of DDB1-associated proteins upon H1N1WSN infection. A, proteins co-purified with DDB1 in non-
infected cells, corresponding to the combination of proteins associated with DDB1 in both non-infected and infected conditions (both) and
specifically those found in non-infected cells. B, proteins co-purified with DDB1 in infected cells, correspond to the combination of proteins
identified in both conditions and those only in infected cells. Clusters of proteins functionally enriched are highlighted in different colors. Proteins
associated with DDB1 specifically in non-infected (A), or infected (B) conditions are depicted in yellow. C, gene Ontology enrichment analysis of
the significantly altered proteins using Benjamini-Hochberg correction analysis. HEK293 gene set from the Human Protein Atlas was used as a
reference for background. INF= H1N1WSN infected condition, NI = non-infected condition. All DDB1-associated proteins are listed in
Supplemental Table S2.

Rewiring of CRL4 Interactomes in IAV Infection
number of associated partners decreasing upon infection for
DDB1 and DCAF11, while DCAF12L1 gained interactors. Our
results are consistent with a modified repertoire of active
CRL4 E3 ligases upon IAV infection, with those using
DCAF12L1 as an SRF gaining a prevailing effect in CRL4-
8 Mol Cell Proteomics (2024) 23(11) 100856
mediated ubiquitination that serves infection. Protein trans-
lation, RNA metabolism/processing, or splicing are among the
main cellular processes impacted by CRL4’s rewiring upon
infection, probably accounting for their intricate control over
the course of the infection.
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FIG. 4. Protein interaction network and functional assessment of DCAF11-associated proteins upon H1N1WSN infection. A, proteins co-
purified with DCAF11 in non-infected cells, corresponding to the combination of proteins associated with DCAF11 in both non-infected and
infected conditions (both) and those found specifically in non-infected cells. B, proteins co-purified with DCAF11 in infected cells, correspond to
the combination of proteins identified in both conditions and those only in infected cells. Clusters of proteins functionally enriched are high-
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the Human Protein Atlas was used as a reference for background. INF, H1N1WSN infected condition; NI = non-infected condition. All DCAF11-
associated proteins are listed in Supplemental Table S2.

Rewiring of CRL4 Interactomes in IAV Infection
N2H-Based Identification of Direct Targets of the CRL4s

To explore the direct protein-protein interactions (PPIs)
within the MS dataset, we implemented an orthogonal
approach based on a mammalian split-nano luciferase assay
known as N2H assay (35). Briefly, the N2H assay involves the
co-expression of a protein pair in HEK293T cells, with each
partner fused to a hemi-nanoluciferase fragment, enabling the
reconstitution of an active nanoluciferase enzyme. The choice
of hemi-luciferase tagging configurations for the protein pair
influences PPI detection (35). Therefore, we first aimed to
determine the optimal configuration for N2H assay for
Mol Cell Proteomics (2024) 23(11) 100856 9
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detecting direct PPIs involving the CRL4 factors. To this end,
we examined the binary interactions between DDB1 and
DCAF11 or DCAF12L1, previously reported to be part of the
CRL4 E3 ubiquitin ligase complex (18) (Fig. 6A and
Supplemental Table S4). The N2H signals were calculated as a
Normalized Luminescence Ratio (NLR) for each protein pair to
measure the level of interaction, factoring in background sig-
nals against a negative control (see methods). For DDB1, a C-
terminal fusion nanoluciferase (DDB1-C1/2) proved more
effective in detecting interactions with both SRFs. For
DCAF11, equivalent N2H signals were generated against
DDB1 with either N- or C- configuration (N1/2- or DCAF11-C1/
2), while for DCAF12L1, the N-terminal fusion (N1/2-
DCAF12L1) appeared more suitable for detecting PPI with
DDB1. Our PPI matrix generated robust signals upon co-
expression of DCAF11 or DCAF12L1 with themselves or be-
tween DCAF11-DCAF12L1 pairs, while no interactions were
detected with negative control proteins, indicating a pro-
pensity for homo- and hetero-dimer formation in line with the
presence of DWD domains.
To assess binary PPIs within the AP/MS dataset encom-

passing the three CRL4 factors, we selected 182 cellular
proteins (CP) available in the human ORFeome collection
(http://horfdb.dfci.harvard.edu/) for binary PPI testing in N2H
assay. This selection was made from a total of 330 CP that
were differentially associated with the CRL4 factors (Fig. 6B
and Supplemental Table S2). All CPs were tagged with the F1
hemi-nanoluciferase at their N-terminus (N1-CP), and the
CRL4 factors were fused to the F2 fragments in the appro-
priate configuration, i.e. DDB1-C2, N2-DCAF11 and N2-
DCAF12L1 (Fig. 6C). N2H experiments were performed in
two biological replicates, each with four technical replicates
(Supplemental Fig. S4, A–C and Supplemental Table S5). The
positive NLR values determined for DDB1/DCAF11, DCAF11/
DDB1, and DCAF12L1/DDB1, were used as standards to
define the threshold of positive PPIs.
Of the 53 DDB1-associated factors assessed in N2H, only 4

(8%) scored positive for interaction with DDB1, consisting of
the COP9 signalosome subunit GPS1, the HSP90A chaperone
protein, the mitochondrial chaperone TRAP1, and the HADHA
enzyme of the mitochondrial beta-oxidation pathway
(Supplemental Table S5). For DCAF11, 15 of the 85 factors
tested (17%) were identified as direct interactors (Fig. 6D and
Supplemental Table S5): 4 of the 23 infection-specific factors
(17%), 5 of the 40 infection-free specific factors (12.5%), and 6
of the 22 invariant DCAF11 partners (27.3%). These invariant
partners include UPS factors (RBX1) and regulators (COP9
signalosome subunits COPS5, COPS7B, and GPS1), all pre-
viously identified as DCAF11 interactors in BioGRID (https://
thebiogrid.org/123251). The four infection-specific factors
that scored positive are the STUB1 E3 ubiquitin ligase, which
targets misfolded chaperone substrates toward proteasomal
degradation, the HSPA2 chaperone, the SSRP component of
the FACT complex regulating chromatin organization, and
prohibitin 2 (PHB2), which acts, among others as a receptor
for mitophagy. Additionally, positive interactors of DCAF11
that were lost upon infection encompass splicing factors
THRAP3 and SRSF5, the microtubule-associated protein
MAP4, mitochondrial ribosomal protein MRPL12, and the
TUFM mitochondrial translation elongation factor.
Of 542 factors found associated with DCAF12L1 in AP-

MS, 166 were tested in N2H assay, of which 58 (35%)
exhibited direct binding to DCAF12L1 (Supplemental
Table S5). Among these, 25 of the 73 infection-specific
(34%) and 10 of the 26 infection-free specific factors
(38.4%) are directly bound to DCAF12L1. Additionally, 23
factors maintained their association with DCAF12L1 inde-
pendent of infection, including UPS factors and regulators,
proteins involved in translation and folding, and RNA pro-
cessing. Interestingly, eight of these factors also interacted
with DCAF11, suggesting that both DCAFs are involved in
the regulation of common cellular processes (Fig. 6D). In
contrast, only 3 of the 25 factors binding to DCAF12L1 upon
infection also interacted with DCAF11 (Supplemental
Table S6), suggesting a rewiring specific to DCAF12L1,
which primarily encompasses transcription factors and
chromatin regulators.

Exploration of the Functional Impact of the CRL4s Rewiring

To assess the functional relevance of our datasets, we
first conducted literature mining to determine the role of 41
host proteins that differentially interacted with either
DCAF11 or DCAF12L1 upon infection. Out of these, 19
proteins are reported as being involved in influenza virus
infection (Supplemental Table S7). They all include factors
binding to one of the SRFs (primarily DCAF12L1). To further
assess the functional impact of CRL4’s rewiring, we per-
formed siRNA-mediated silencing of 19 differentially tar-
geted CRL4 partners in A549-ACE2 cells, followed by
infection with the H1N1WSN strain. RAB11A was taken as a
positive control as its depletion was previously reported to
affect influenza virus production (44). The knockdown effi-
cacy of these factors was measured by RT-qPCR
(Supplemental Fig. S5). The silencing of 7 out of the 19
explored rewired CRL4 partners had an impact on infection
compared to non-targeting siRNA (SCBL) (Fig. 6E),
supporting their involvement in the viral life cycle. Among
them, 3 emerge as pro-viral factors, whose depletion affects
the virus production: HMGB1, PHB2, and PRPF19, corrob-
orating their contribution to IAV infection (45–47). By
contrast, silencing of the other 4 siRNAs led to increased
viral production: COPS5, MAP4, MID1IP1, and SRSF5,
indicative of antiviral factors whose depletion benefits to the
viral cycle (48–51) (Fig. 6E and Supplemental Table S8).
Thus, the differential binding of these factors to SRFs upon
infection likely contributes to modulating the influenza virus
life cycle.
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DISCUSSION

The significance of the UPS in virus replication and patho-
genesis is underscored by its involvement in the ubiquitination
of viral proteins or modifications in the host proteome ubiq-
uitination. Despite multiple documented UPS-mediated mod-
ifications of IAV viral proteins, the impact of infection on host
proteome regulation through the UPS has remained largely
unexplored. To address this gap, we aimed to investigate how
IAV infection impacts the host proteome binding repertoire of
two specific E3 ubiquitin ligase complexes, namely
CRL4DCAF11 and CRL4DCAF12L1. Previously, we reported that
these multicomponent E3 ubiquitin ligases promote IAV
infection through non-degradative ubiquitination of the viral
PB2 protein. Using AP-MS proteomics, we identified changes
in DDB1, DCAF11, and DCAF12L1-associated proteins in
both non-infected and H1N1WSN virus-infected human
HEK293 cells. Our analyses revealed substantial alterations in
the associated proteins of CRL4 factors upon infection,
uncovering the rewiring of functionally relevant E3 ubiquitin
ligases during IAV infection.
The roles of DDB1 and DCAF11 as CRL4 components are

well-documented (40–42). We successfully identified several
of their known interacting partners, validating the robustness
of our experimental AP-MS datasets. To our knowledge, this
study provides the first comprehensive report on the
DCAF12L1 interactome, revealing its association with other
CRL4s components, supporting our prior finding that it can
function as an SRF of CRL4 E3 ubiquitin ligases (18). All three
CRL4 factors were associated with the proteasome complex,
responsible for the degradation of ubiquitinated proteins.
Interestingly, such association decreased upon infection for
DDB1 and DCAF12L1, suggesting a shift towards non-
proteolytic ubiquitination, consistent with our previous
findings on PB2 ubiquitination (18). Components of the
de-neddylation CSN complex, a negative regulator of CRLs
(52), were also associated with the three CRL4s factors. Such
associations were already reported with some DCAF proteins,
including DCAF11 (53), and could mediate the sequestration
of pre-assembled CRLs. Chaperones, including the prefoldin
and/or the TriC/CCT complexes, emerged as partners of the
three CLR4s factors, with their association to DDB1 being
decreased upon infection while remaining constant with both
SRFs. Remarkably, the PB2 subunit of IAV polymerase co-
purified with chaperones, including Hsp90 and members of
the CCT complex in an infection context (41, 54), highlighting
the importance of protein folding in influenza infection, and
implicating CRL4 E3 ligases in this process.
At a global level, the remodeling of CRL4 factors upon IAV

infection exhibited opposite trends, with a loss of DDB1- and
DCAF11-associated factors and a gain of DCAF12L1-
associated factors, suggesting a shift toward CRL4DCAF12L1

E3 ubiquitin ligases upon infection. Infection-induced alter-
ations in the binding profiles of DCAF11 and DCAF12L1
targeted common cellular processes, including translation,
RNA metabolism, and transcription, all intricately regulated
through ubiquitination. Functional specificities also emerged
for the two SRFs, with, for example, pathways related to
cellular response to stress or stimuli being specifically tar-
geted by DCAF11 upon infection, while multiple mechanisms
linked to the trafficking of proteins to membranes are targeted
by DCAF12L1. Moreover, multiple mechanisms related to
ubiquitination-induced degradation of proteins associated
with DCAF12L1 are lost upon infection, in line with the
observed release of proteasome from DCAF12L1.
Our AP-MS datasets illustrate the co-complexes associated

with the CRL4s factors. To increase the precision of their
rewiring induced by IAV infection, we probed AP-MS datasets
for direct interactions using a split nanoluciferase-based N2H
assay (35). Overall, our data highlight a connection between
CRL4s and mitochondrial proteins: the HADHA mitochondrial
enzyme is bound by the three CRL4 factors, both SRFs
interact with MRPL12, TUFM, and PHB2, and the mitochon-
drial chaperone TRAP1 interacts with DDB1. In line with this,
CRL4 E3 ligases recently emerged as critical for the regulation
of mitochondrial structure and function (55). Moreover, a
fraction of the PB2 protein from human IAV localizes in mito-
chondria, where it may contribute to preserving mitochondria
functions (56, 57). It is possible that CRL4-mediated ubiquiti-
nation of mitochondrial proteins participates in maintaining
mitochondria integrity, which nevertheless remains to be
addressed. Additionally, three RNA polymerase II binding
proteins, PAF1, PRPF19, and TCERG1I, were shown to
interact with DCAF12L1. Such interactions could mediate the
ubiquitination and degradation of RNA polymerase II via the
proteasome pathway occurring at late stages of infection (58),
and CRL4 DCAF12L1 E3 ligases may be involved in such here-
tofore undiscovered activity. As SRF, DCAF proteins serve to
recruit target proteins for CRL4-mediated ubiquitination. The
distinct PPI profiles of DCAF11 and DCAF12L1 likely reflect
their different roles toward ubiquitination and potentially other
cellular activities.
To assess the functional relevance of the rewired proteins,

we proceeded to a literature search for each CRL4 interactor
and identified 19 out of 41 proteins with a reported role in IAV
infection. We assessed the impact of siRNA-mediated
depletion of these 19 targets on productive infection in
A549 cells and confirmed the role of 7 of them. In addition, 3 of
the CRL4’s interactors reduced the production of viral parti-
cles, suggesting a pro-viral role. These include HMGB1,
PHB2, and PRPF19. In contrast, the silencing of 4 of the
CRL4s interactors favored infection, suggesting an antiviral
role, and restrictive activity. These include COPS5, MAP4,
MID1IP1 and SRSF5. All these factors had been reported
previously as involved in influenza virus infection
(Supplemental Table S7), and we confirmed here their
involvement in the viral life cycle, thus providing evidence of
Mol Cell Proteomics (2024) 23(11) 100856 13
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the implication of the rewiring of the CRL4s in influenza virus
infection.
The unbiased global proteomics presented here mapped

the landscape of interaction partners of two CRL4DCAF11 and
CRL4DCAF12L1 complexes of known relevance for IAV infection
and uncovered their virus-induced rewiring. Alterations in their
interaction profile upon IAV infection might contribute to the
proteome remodeling triggered by IAV infection and partici-
pate in shaping a cellular environment conducive to viral
infection. As such, it can ultimately be leveraged for the
development of antiviral therapeutic strategies against influ-
enza virus infection.
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