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Abstract
Clostridioides difficile (CD) infections are defined by toxins A (TcdA) and 
B (TcdB) along with the binary toxin (CDT). The emergence of the ‘hyper-
virulent’ (Hv) strain PR 027, along with PR 176 and 181, two decades ago, 
reshaped CD infection epidemiology in Europe. This study assessed MALDI- 
TOF mass spectrometry (MALDI- TOF MS) combined with machine learning 
(ML) and Deep Learning (DL) to identify toxigenic strains (producing TcdA, 
TcdB with or without CDT) and Hv strains. In total, 201 CD strains were ana-
lysed, comprising 151 toxigenic (24 ToxA+B+CDT+, 22 ToxA+B+CDT+ Hv+ and 
105 ToxA+B+CDT−) and 50 non- toxigenic (ToxA−B−) strains. The DL- based 
classifier exhibited a 0.95 negative predictive value for excluding ToxA−B− 
strains, showcasing accuracy in identifying this strain category. Sensitivity 
in correctly identifying ToxA+B+CDT− strains ranged from 0.68 to 0.91. 
Additionally, all classifiers consistently demonstrated high specificity (>0.96) 
in detecting ToxA+B+CDT+ strains. The classifiers' performances for Hv strain 
detection were linked to high specificity (≥0.96). This study highlights MALDI- 
TOF MS enhanced by ML techniques as a rapid and cost- effective tool for 
identifying CD strain virulence factors. Our results brought a proof- of- concept 
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INTRODUCTION

Clostridioides difficile (CD) is a major cause of 
healthcare- associated diarrhoea and can cause out-
breaks in healthcare settings. The latest European 
survey performed in 2017 showed that the median in-
cidence of C. difficile infection (CDI) cases in hospital 
facilities was 4.1 per 10,000 bed- days in Europe and 
2.3 in France (Viprey et al., 2023).

The main virulence factors of this anaerobic bacteria 
are toxins A (TcdA) and B (TcdB) encoded by tcdA and 
tcdB genes, and a third toxin, the binary toxin (CDT) en-
coded by cdtA and cdtB genes is considered to be an 
additional virulence factor (Eckert et al., 2018). Current 
diagnosis of CDI relies on both clinical (i.e. diarrhoea or 
pseudomembranous colitis) and microbiological crite-
ria (i.e. presence of TcdA and TcdB in stools detected 
by immuno- enzymatic tests or presence of a toxigenic 
strain detected by toxigenic culture or molecular meth-
ods) (Crobach et al., 2016).

Twenty years ago, the epidemiology of CDI changed 
dramatically. Large outbreaks of severe CDI were de-
scribed first in North America and then in Europe. 
These outbreaks were attributed to a specific clone, 
the epidemic PCR- ribotype (PR) 027 strain, also 
called NAP- 1 or BI, according to the typing method 
used. This so- called ‘hypervirulent’ (Hv) PR 027 strain 
is CDT- positive and characterized by an overproduc-
tion of TcdA, TcdB and CDT. A deletion in position 117, 
leading to a stop codon in the negative regulator tcdC 
gene of the transcription of tcdA and tcdB, could be 
responsible for the increased virulence of this strain 
(Warny et al., 2005). Based on a European multi- 
centre point prevalence survey performed in 2018, 
PR 027 represents 11% of toxigenic strains isolated in 
Europe. This strain and the closely related PR 181 and 
PR 176 strains are the predominant ribotypes isolated 
in Eastern Europe (Viprey et al., 2022).

Epidemiologic surveillance of circulating clones in 
Europe is based on PCR ribotyping. Currently, there is 
a lack of rapid and inexpensive methods to allow rec-
ognition of Hv clones or to detect clusters in hospital 
facilities for the timely implementation of infection con-
trol measures.

Some molecular methods are able to give a pre-
sumptive identification of this PR027 strain by detect-
ing the deletion in position 117 in tcdC (e.g. Xpert® 
Cdiff/Epi, Cepheid; VERIGENE® Clostridium difficile 
nucleic acid test [CDF], Luminex) or a putative conju-
gative transposon pct (e.g. Amplidiag C. difficile+027®, 
Mobidiag Ltd.) found in these Hv strains. However, 
these methods are expensive, and the result has to 

be confirmed by the reference PCR ribotyping method 
which is time- consuming and not routinely performed 
by non- reference laboratories.

Matrix- assisted laser desorption/ionization time- 
of- flight mass spectrometry (MALDI- TOF MS) is a 
reliable method for identifying microorganisms in med-
ical microbiological laboratories (Croxatto et al., 2012). 
Besides identification, other applications of MALDI- TOF 
MS, such as identifying strains associated with viru-
lence factors, are increasingly being evaluated (Flores- 
Treviño et al., 2019; Huang et al., 2015). Furthermore, 
artificial intelligence techniques have shown promise 
in analysing and designing algorithms (also called 
classifiers), enabling the results generated by MALDI- 
TOF MS to be improved, especially for bacterial iden-
tification (Garrigos et al., 2021; Godmer et al., 2021; 
Rodríguez- Temporal et al., 2023), detection of antimi-
crobial resistance, and identification of clonal strains 
associated with outbreaks (Flores- Treviño et al., 2019; 
Mohammad et al., 2023; Weis et al., 2022). Of the ar-
tificial intelligence techniques, machine learning (ML) 
focuses on developing algorithms that learn from a 
training data set to optimize a performance criterion, 
also known as a cost function (e.g. accuracy, Cohen's 
kappa and cross- entropy loss) with the goal of solving 
a given problem, for example the most precise classifi-
cation prediction possible. A field of ML that uses neu-
ral networks, deep learning (DL), solves complex tasks 
using artificial neural architectures composed of many 
hidden layers. Therefore, ML, including DL, paves the 
way for the development of inexpensive and easy- to- 
use alternative methods enabling MALDI- TOF MS to 
be used for the surveillance of epidemic clones such as 
PR- 027 or for the detection of virulence factors.

The objectives of our study were to evaluate the abil-
ity of MALDI- TOF MS coupled with ML- based classifi-
ers to identify (i) toxigenic CD strains (producing TcdA, 
TcdB, so- called A+B+, with or without CDT) and (ii) Hv 
CD strains (PR 027 and closely related PR 176 and PR 
181 strains).

EXPERIMENTAL PROCEDURES

Bacterial isolates

A total of 201 toxigenic and non- toxigenic CD strains 
representative of the diversity of those circulating in 
France were used in this study. These strains included 
reference strains (Brazier–Kuijper–Wilcox collection) 
and strains collected from the National Reference 
Laboratory for CD (Saint- Antoine Hospital, Paris, 

concerning the ability of MALDI- TOF MS coupled with ML techniques to de-
tect virulence factor and potentially improve the outbreak's management.
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France). Strains were previously identified by MALDI- 
TOF MS and characterized by multiplex PCR for the 
detection of the main virulence factors (tcdA, tcdB and 
cdt genes), and PR was determined by capillary gel- 
based electrophoresis PCR ribotyping as previously 
described (Eckert et al., 2018).

The 201 CD strains included 50 non- toxigenic 
strains (tcdA− tcdB−) (designated ToxA−B−) belonging 
to 19 different PRs, and 151 toxigenic strains harbour-
ing toxins A and B genes (ToxA+B+). Among the 151 
ToxA+B+ strains, 46 (8 different PRs) also harboured 
the binary toxin genes (ToxA+B+CDT+) and 105 (23 
different PRs) did not (ToxA+B+CDT−). Finally, among 
the 46 ToxA+B+CDT+ strains, 22 belonged to the Hv 
strains, that is, PR 027 (n = 13), PR 176 (n = 5) and PR 
181 (n = 4) strains (ToxA+B+CDT+Hv) (Table S5).

The strains were divided into two datasets: (i) the 
first corresponded to 50% of the strains (n = 102) (the 
‘Optimization dataset’) and was used to train the clas-
sifiers and to identify the most efficient pipelines and 
(ii) the second corresponded to the rest of the strains 
(n = 99) the ‘Test dataset’ and was used to estimate the 
performance of the pipelines previously identified with 
the ‘Optimization dataset’.

Sample preparation

Each isolate was stored at −80°C (Microbank, Inc., 
Canada) and thawed and cultivated on CBA (bioMé-
rieux SA, Marcy l'Etoile, France) incubated in an an-
aerobic atmosphere at 37°C for 48 h. A subculture 
was performed in the same conditions. Chemical pro-
tein extraction was then carried out. Briefly, a single 
colony was suspended in 200 μL water and vortexed. 
After adding 900 μL ethanol, samples were vortexed 
and centrifuged at 13,000 × g for 2 min. The super-
natant was removed, and the remaining ethanol was 
evaporated at room temperature. Next, 25 μL of 70% 
formic acid was added and mixed with the pellet, then 
25 μL of acetonitrile was added. After centrifugation 
at 13,000 × g for 2 min, the supernatant was ready for 
analysis. Each isolate was extracted once, and eight 
deposits were made for each extract (eight technical 
replicates). The dried spots were coated with MALDI 
matrix (10 mg/mL of α- cyano- 4- hydroxy- cinnamic acid 
[α- HCCA] in 50% acetonitrile- 2.5% trifluoroacetic acid; 
Bruker® Daltonics, Bremen, Germany) and each spot 
was analysed three times by MALDI- TOF MS. A total of 
17 target plates were necessary to product spectra at a 
rate of one plate per day.

MALDI- TOF MS acquisition and analysis

Mass spectra were acquired using a Microflex LT in-
strument (Bruker® Daltonics, Bremen, Germany). 

The standard parameters of the CE- IVD (Conformité 
Européenne—In Vitro Diagnostic) method recom-
mended by the manufacturer were used. As recom-
mended by the Bruker® manufacturer for database 
creation (Fergusson et al., 2020), spectra from the 
same strain were visually analysed to discard those 
of poor quality according to the following criteria: (i) 
presence of outlier peaks compared to the other spec-
tra, (ii) presence of spectra with flat peaks compared 
to the other spectra and (iii) spectra with a mass shift 
greater than 500 ppm compared to the other spectra. 
A minimum of 20 spectra were selected per strain and 
imported in R using the MALDIForeign package (Gibb 
& Franceschi, 2022). The different stages of post- 
acquisition signal processing were performed in the 
R environment using the MsclassifR and MALDIquant 
packages (Gibb & Strimmer, 2012; Godmer et al., 2022) 
according to the following pipeline: (i) square root 
intensity transformation, (ii) spectrum smoothing 
(Undecimated Wavelet Transform [UDWT] algorithm), 
(iii) baseline processing (SNIP for statistics- sensitive 
non- linear iterative peak- clipping algorithm), (iv) inten-
sity calibration (TIC for Total Ion Current algorithm) 
and (v) spectrum alignment (500 ppm) and selection of 
peaks with signal- to- noise ratio (S/N) greater than 3.

Design of the machine learning analysis

Spectra from the ‘optimization dataset’ were divided 
into two sub- datasets: the first—the ‘training dataset’ 
(70% of the spectra)—was used to train the classifiers, 
and the second—the ‘validation dataset’ (30% of the 
spectra)—was used to estimate the performances of 
the generated classifiers of ML algorithms (Figure 1). 
Spectra from the same strain could only be part of one 
of the two datasets.

Due to the training characteristics of each ML- based al-
gorithm to build classifiers, two classification approaches 
were used to achieve the objectives of the study:

 (i) Multi- class classification, where the ML- based 
classifiers were trained to classify the spectra into 
a single exclusive class. Each spectrum was as-
signed to one of the possible classes (a spectrum 
belongs to a category with the highest probability). 
In this study, the classes were (i) ToxA−B− strains, 
(ii) ToxA+B+CDT− strains, (iii) ToxA+B+CDT+ 
strains and (iv) ToxA+B+CDT+Hv strains. Each 
spectrum was classified into one of these classes 
based on its spectral characteristics.

 (ii) Multilabel classification, where the classifiers 
were trained to predict multiple classes for the 
same spectrum at the same time. This means that 
a single spectrum can be associated with more 
than one class using a score between 0 and 1 with 
a cut- off of 0.5 for each category independently.
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 (iii) For the implementation of these approaches, 
the ML- based classifier approach was used for 
multi- class classification, where traditional ML 
techniques were applied. In addition, another ML- 
based classifier was performed using DL algo-
rithms (Ctox- classifier) (Figure 1).

Design of the machine learning- based 
classifiers approach

Twelve traditional ML- pipelines including two steps 
were used to create various ML- based classifiers using 
the MSclassifR R package (Godmer et al., 2022).

The first step eliminated non- informative mass- over- 
charge values that mainly lead to intensity peaks cor-
responding to background noise. Three methods using 
ML algorithms were used:

 (i) ‘Mean decrease accuracy’ (mda), which consisted 
of selecting variables using the distribution of mda 
values previously determined by measuring the 
effect of a random variable permutation using a 
random forests (RF) algorithm.

 (ii) ‘SelectionVarStat’ consisted of selection of infor-
mative peaks using analysis of variance (ANOVA) 
to determine if the variables were significantly dif-
ferent across the different groups.

 (iii) ‘Sparse partial least squares discriminant analy-
sis’ (sPLS- DA) with k- folds cross- validation (k = 5). 

In this process, in the first iteration, the first fold 
(k = 1) was used as a test for the algorithm, while 
the others (k = 4) were used for training; this pro-
cess is then repeated until every fold has been 
used as a test set.

The second step estimated classification models 
using ML algorithms from the intensity peaks measured 
at mass- over- charge values shortlisted from the first 
step. Four ML algorithms were used: (i) linear regres-
sion (multinom), (ii) single- hidden- layer neural network 
(nnet), (iii) RF and (iv) linear support vector machine 
(svm). These classifiers were trained with k- fold cross- 
validation (k = 5) on the training dataset. The various 
hyperparameters for each algorithm and each training 
session were researched using a random search grid. 
For a mass spectrum, each classifier provides probabil-
ities that it belongs to any of the considered categories. 
Finally, we considered a mass spectrum to belong to 
a particular category when this category was associ-
ated with the maximum of these probabilities measured 
on all categories. According to the predictions of each 
ML algorithm from the different pipelines, performance 
criteria (Cohen's kappa (kappa) coefficients) were es-
timated for each ‘validation dataset’. The optimization 
dataset was randomly split 10 times into a training 
dataset (70%) and a validation dataset (30%) while 
preserving the proportion of each category in each set. 
This allowed variations of the performance criteria to be 
estimated.

F I G U R E  1  Performances of the 12 ML- based pipelines on the ‘optimization dataset’ to distinguish ToxA−B−, ToxA+B+CDT−, 
ToxA+B+CDT+, and ToxA+B+CDT+Hv strains using traditional ML- based algorithms. mda, Mean Decrease Accuracy; multinom, linear 
regression; nnet, single- hidden- layer neural network; RF, random forests; SelectionVarStat, ANOVA test; sPLSDA, Sparse Partial Least 
Squares Discriminant Analysis; svm, linear Support Vector; ToxA−B−, spectra from non- toxigenic strains; ToxA+B+, spectra from strains 
harbouring toxins A and B genes; ToxA+B+CDT+, spectra from strains harbouring toxins A, B and binary toxin genes; ToxA+B+CDT+Hv, 
strains harbouring toxins A, B and binary toxin genes and hypervirulent strains (associated with PR 027, PR 176, PR 181).

 17517915, 2024, 6, D
ow

nloaded from
 https://envirom

icro-journals.onlinelibrary.w
iley.com

/doi/10.1111/1751-7915.14478 by Inst Past Paris, W
iley O

nline L
ibrary on [23/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



   | 5 of 12CLOSTRIDIOIDES DIFFICILE VIRULENCE FACTOR DETECTION USING ML

In addition, a DL- based classifier (the Ctox- classifier) 
was performed using a different approach, that is, the 
open- source library Keras using an artificial neuronal 
network organized in several layers (Keras: deep learn-
ing for humans, n.d.). Because this Ctox classifier took 
longer to train, only one classifier was generated after 
determining the appropriate learning rate using a ran-
dom search grid. We used an architecture consisting of 
a fully connected network structure with six layers: (i) 
an input layer containing the variables, (ii) a first hidden 
layer with 256 nodes, (iii) a second hidden layer with 
64 nodes, (iv) a third hidden layer with 256 nodes (v) 
a fourth hidden layer with 512 nodes and (vi) an out-
put layer with four nodes and which used the sigmoid 
activation function. The activation function of a fully 
connected network was ‘rectified linear units’. The bi-
nary cross- entropy was selected as the loss function 
and was selected as the optimizer ‘Root Mean Square 
Propagation’ (RMSprop). The learning rate was set to 
0.001 and the number of epochs was set to 200. This 
C- tox- classifier was trained with the same methodology 
as previously described using the ‘optimization dataset’. 
Due to the imbalanced data, the metric to train the MPL 
classifier was an area under the precision- recall curve 
(AUC- PR), and a weighting of the loss function or bias 
was applied during the training process. Of note, the 
classifier may have been biased in favour of the majority 
class in unbalanced datasets where some groups were 
under- sampled relative to others. Therefore, by giving 
more weight to the minority class, the weighting of the 
loss function mitigates the effect of class imbalance.

Determination of the most 
efficient pipeline

Among the 12 standard ML- based pipelines, the three 
with the highest median kappa coefficient combined 
with the lowest standard deviation were considered 
the most efficient. In addition, due to imbalanced data, 
the classifiers from the three best ML- based pipelines 
were retrained using the following resampling methods: 
(i) down- sampling, randomly removing majority class 
spectra; (ii) up- sampling, randomly replicating minor-
ity class spectra and (iii) synthetic minority oversam-
pling technique, using a machine learning algorithm 
(K- nearest- neighbours) to generate new minority class 
spectra. Since one classifier was employed using DL al-
gorithms (the Ctox- classifier), we included it in the study.

Machine learning- based classifiers 
evaluation on the test dataset

The performance of each classifier was evaluated on 
the different ‘test datasets’ using Cohen's kappa coeffi-
cient. The classifiers trained with or without resampling 

methods from the three best ML- based pipelines deter-
mined by the high mean kappa coefficient and the Ctox- 
classifier were selected to estimate the performance on 
the ‘test dataset’. The performance of the classifier for 
each pipeline with the best kappa coefficient and that of 
the Ctox- classifier were then reported.

Peak analysis

Discriminant peaks with a frequency ≥ 90% were identi-
fied in one group of spectra and with a frequency ≤ 10% 
in the other three groups. This was done using an in- 
house programme in the R environment. The visualiza-
tion tool is available at https:// agodm er. github. io/ Clost ri/ .

Statistical analysis

To evaluate the ML- based classifiers comprehen-
sively, several metrics were used to estimate perfor-
mance on the ‘test dataset’: accuracy (proportion of 
correctly classified spectra out of the total), sensitiv-
ity (corresponding to the proportion of well- identified 
spectra in this study per subspecies), the reliability of 
identification representing the percentage of certainty 
of correct identification (corresponding to the positive 
predictive value [PPV]), and the reliability of identifica-
tion indicating the percentage of certainty in correct 
identifications of negative results (corresponding to the 
negative predictive value [NPV]). In addition, the kappa 
coefficient (which measures inter- rater reliability on a 
scale from −1 [complete disagreement] to 1 [complete 
agreement]) was also reported. All these metrics were 
calculated using the caret package in the R software 
(version 4.2.2) (Kuhn, 2008). Statistical comparisons 
were performed using the unilateral Wilcoxon rank sum 
tests with the Benjamini–Hochberg correction, and a p- 
value < 0.05 was considered as statistically significant.

Data storage

The spectra generated during this study are available 
only for medical research in accordance with the FAIR 
principle (Godmer et al., 2023).

RESULTS

Determination of the ML- based most 
efficient pipelines

A total of 4659 spectra were generated. The ‘optimiza-
tion dataset’ consisted of 2363 spectra from 102 strains 
across 41 different PR and served as the training set 
for ML- based classifiers. These classifiers have been 
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developed from a variety of combinations of ML- based 
algorithms through various ML pipelines (Figure 2). 
During the training process, resampling methods were 
applied to account for the significantly different num-
bers of strains in each group. Subsequently, the ‘test 
dataset’ encompassed 2296 spectra from 99 strains 
across 42 PR, and it was employed to assess the per-
formance of the ML- based classifiers derived from ML 
pipelines.

The 12 ML pipelines designed from the ‘optimiza-
tion dataset’ led to the conception of 120 ML- based 
classifiers, enabling predictions to be made accord-
ing to the study objectives (each pipeline was esti-
mated on 10 pairs of training and validation sets). A 
preliminary assessment of the ‘optimization data-
set’ showed that the global performance (accuracy, 
mean ± standard deviation [SD]) to identify ToxA−B−, 
ToxA+B+CDT−, ToxA+B+CDT+, and ToxA+B+CDT+ Hv 
strains translated to a global rate of correct identifica-
tion of 0.65 ± 0.16 (Table S1). The three best pipelines 
were sPLSDA- RF, mda- RF, and SelectionVarStat- RF 
with mean ± SD kappa coefficients of 0.70 ± 0.01, 
0.70 ± 0.01, and 0.69 ± 0.01, respectively (Figure 2; 
Table S1). In addition, Random Forest (RF) corre-
sponding to the algorithm selected in these three 
ML- based pipelines demonstrated statistically better 
performance versus all the other ML- based algorithms 
(p < 10−7) (Table S2).

Detection of toxigenic strains by MALDI 
Biotyper® (Bruker®) coupled with ML-  and 
DL- based approaches (Table 1)

The maximum performance of the classifiers from the 
ML- based approaches for detecting toxigenic strains 
with the highest kappa coefficient values is presented 
in Table 1. The global performance of all the traditional 
ML- based classifiers (excluding the Ctox- classifier ob-
tained with the DL method) from the 12 ML- based are 
listed in Table S3. Regarding the traditional ML- based 
classifiers, no resampling method statistically outper-
formed the others (Table S4).

Regarding the ability to identify strains producing no 
toxins (ToxA−B−) with the ML- based classifiers, sensi-
tivities and specificities ranged from 61% to 86% and 
90% to 94%, respectively, which also reflected an in-
creased ability to exclude a ToxA−B− spectrum (i.e. pos-
itive predictive value (PPV) or negative predictive value 
(NPV), respectively), rather than to correctly identify a 
ToxA−B− spectrum, considering the prevalence of this 
group in our setting.

Regarding the ability to identify strains producing 
toxins (ToxA+B+) with the ML- based classifiers, sensi-
tivities and specificities ranged from 65% to 91% and 
68% to 99%, respectively. More specifically, the ML- 
based classifiers generally performed better at classi-
fying spectra for ToxA+B+ CDT− strains in comparison 

F I G U R E  2  Workflow of machine learning (ML)- based approach used in this study. *The Ctox classifier was performed using Deep 
Learning algorithms, whereas the other classifiers were obtained using traditional ML- based algorithms.
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to those for ToxA+B+CDT+ strains (mean sensitivity and 
standard deviation: 0.86 ± 0.06 for the ToxA+B+CDT− 
group versus 0.72 ± 0.05 for the ToxA+B+CDT+ group). 
Conversely, there was a reversal of this trend when con-
sidering mean specificity, with the values of 0.78 ± 0.07 
for the ToxA+B+CDT− group and 0.98 ± 0.01 for the 
ToxA+B+ CDT+ group.

Detection of Hv strains (ToxA+B+CDT+ Hv) 
by MALDI Biotyper® (Bruker®) coupled 
with ML- DL approaches (Table 1)

The maximum performances of the classifiers from 
the ML- based approaches for detecting Hv strains 
(ToxA+B+CDT+ Hv) with the highest kappa coefficient 
values are presented in Table 1. Regarding the tradi-
tional ML- based classifiers, no resampling method sta-
tistically outperformed the others (Table S4). In general, 
the ML- based classifiers exhibited similar performance 
with better specificity (96% to 100%) than sensitivity 
(65% to 76%) which translated to high PPV or NPV, 
considering the prevalence of Hv strains in our setting.

Analysis of discriminant peaks

Among the 2127 peaks analysed, we found two spe-
cific peaks that were associated with non- Hv strains: 
(i) m/z = 6650 was found in 94.4% of spectra of non-
 Hv strains versus 5.6% of Hv spectra (ii) m/z = 3354 
was found in 90.5% of spectra of non- Hv strains ver-
sus 9.5% of Hv spectra. Discriminating peaks capa-
ble of separating the other groups were not found with 
our method. A visualization tool is available at https:// 
agodm er. github. io/ Clost ri/ .

DISCUSSION

MALDI- TOF MS is a widely used, fast, and cost- saving 
laboratory method for the identification of microorgan-
isms (Dekker & Branda, 2011). MALDI- TOF coupled 
with ML techniques has been used successfully to 
identify genetically similar species, to detect antibiotic 
resistance or virulence factors, and to detect epidemic 
clones (Elbehiry et al., 2022; Flores- Treviño et al., 2019; 
Li et al., 2022; Weis et al., 2022). For example, the 
Escherichia coli B2 phylogroup, which is more virulent 
than the other phylogroups, can be distinguished using 
MALDI- TOF MS (Sauget et al., 2014), as well as entero-
hemorrhagic E. coli pathotypes (Christner et al., 2014; 
Clark et al., 2013; Fagerquist et al., 2010; Mazzeo 
et al., 2006). In this work, we assessed the potential 
of MALDI- TOF MS to distinguish between different 
groups of toxin- producing CD strains, including some 
Hv strains.

Previously, several methods to detect virulence fac-
tors by MALDI- TOF MS have been used. One of these 
is based on the detection of a discriminant peak cor-
responding to the virulence factor. In this method, the 
peak should belong to the mass range studied by com-
mercial equipment for routine use (2–20 kDa), such as 
the Delta- Toxin from Staphylococcus aureus (Gagnaire 
et al., 2012). However, the toxins often have molecular 
weights outside the mass range studied by commercial 
equipment, such as the Shiga toxin 1 and Shiga toxin 
2 harboured by some E. coli strains (32–33 kDa) (Kubo 
et al., 2021). As the toxins produced by CD fall into this 
latter category (~308 and ~270 kDa for TcdA and TcdB, 
respectively), we chose to use ML- based algorithms to 
detect spectral patterns associated with strains produc-
ing virulence factors.

To the best of our knowledge, the ML- based ap-
proaches used in the literature for CD have mostly 
been used to distinguish specific PRs (Calderaro 
et al., 2021, 2022). Unfortunately, some of the most pre-
dominant PRs were absent in these studies (Calderaro 
et al., 2021, 2022). For instance, Caldarero et al. used 
ML- based models based on the Genetic Algorithm, 
QuickClassifier and Supervised Neural Network algo-
rithms to create ML- based classifiers for the identifi-
cation of 61 CD strains from 10 PR (arbitrarily noted 
PR1- 10, PR1 and PR2 corresponding to PR 018 and 
PR 126, respectively, while other PRs remained un-
known) with recognition close to 100% for PR1- 5 (55 
strains) whereas the six strains from PR6- 10 could not 
be classified (Calderaro et al., 2021). Also, some au-
thors have also used a statistical approach to identify 
a particular PR, such as PR017, which is particularly 
widespread in China (Li et al., 2018). The Brazilian study 
used MALDI- TOF MS to distinguish 19 PR of CD. Using 
an approach involving clustering of spectral data, 73% 
of spectra were correctly classified in a double- blind 
validation using 13 biomarker profiles. More specifi-
cally, the method proved highly effective for epidemic 
PR 027 and Brazilian- specific PR, with an accuracy 
of between 94% and 100% (Carneiro et al., 2021). To 
date, only one study has successfully evaluated (with 
greater than 95% accuracy) the use of MALDI- TOF MS 
in conjunction with ML- based algorithms (excluding 
DL- based methods) to distinguish strains producing bi-
nary toxin from strains that do not produce binary toxin 
(classified as Hv or non- Hv in their study) (Abdrabou 
et al., 2023). Unlike this study, our objective was not 
only to separate binary toxin- producing strains from the 
others but also to separate several distinct populations 
such as ToxA−B−, ToxA+B+CDT−, ToxA+B+CDT+ and 
ToxA+B+CDT+Hv. Despite different objectives com-
pared to the Abdrabou et al. study, we also highlighted 
the effectiveness of the RF algorithm for spectral data 
analysis. In our research, we found that, among the 
ML- based classifiers we performed, RF demonstrated 
superior performance (Table 1). These observations 
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confirm that the RF algorithm is particularly suitable 
for a variety of spectral data classification tasks, in-
cluding distinguishing genetically related species, ac-
cording to the results reported by Rodríguez- Temporal 
et al. (2023) and Candela et al. (2023).

Concerning DL methods, we showed that MALDI- 
TOF coupled with the Ctox- classifier could accurately 
exclude ToxA−B− spectra in 95% of cases. Regarding 
the identification of the ToxA+B+CDT+ strains, the 
specificity and observed NPV were more than 96% for 
all classifiers performed, indicating that this approach 
could be useful to exclude this type of strain. It should 
be noted that the observed NPV and PPV calculated in 
this study depend on the prevalence of each group of 
strains included and do not reflect that of the general 
population. The integration of the peak selection step 
directly into the neural architecture makes the use of the 
Ctox- classifier with DL algorithms an attractive choice. 
This approach eliminates the need for additional ML 
algorithms, simplifying the otherwise time- consuming 
process of testing multiple ML- based algorithms. In 
addition, with this method, the Ctox- classifier achieves 
performance that is comparable to other ML- based 
classifiers (Table 1).

In the present study, we were not able to correctly 
identify Hv strains (ToxA+B+CDT+ Hv) by MALDI- TOF 
combined with the ML- based classifier, but we could 
reliably exclude this type of strain. Interestingly, these 
results can be explained by the absence of two discrim-
inating peaks in ToxA+B+CDT+ Hv strains (m/z = 6650, 
3354). The first discriminant peak (m/z = 6650–
6654) was previously described by Flores- Treviño 
et al. (2019). The authors used the absence of peak 
m/z = 6654 to successfully distinguish PR 027 strains 
from other strains with a sensitivity of 100%, specific-
ity of 91.7%, and a PPV of 95%. Of note, in the same 
study, the peak at m/z = 6654 was also absent in PR 
176, which is aligned with our findings. In addition, this 
peak was not found in the third PR (PR 181) which is 
closely related to PR 027 and PR 176 that we included 
in the ToxA+B+CDT+Hv.

Moreover, the second discriminant peak found in our 
study (m/z = 3354), with a frequency of less than 10% in 
ToxA+B+CDT+Hv but higher (90.5%) in non- Hv strains, 
also appears to be of interest but to our knowledge has 
not been described in the literature. These two peaks 
effectively exclude PR 027 strains, in agreement with 
the classifiers developed with specificities close to 1. 
However, the presence of the peak with an estimated 
variation of 6 Da between studies m/z = 6706–6712, 
which was considered to be specific for PR 027 strains 
in other studies (Emele et al., 2019; Flores- Treviño 
et al., 2019; Reil et al., 2011), was less discriminatory in 
our study. The latter (m/z = 6709 for our study) was as-
sociated with a frequency of 93.2% in ToxA+B+CDT+Hv 
strains but was also present with a significant frequency 
in non- Hv strains (18.2%).

Our study has some limitations. We used the 
Columbia blood agar (CBA) medium, and the medium 
used can have an effect on the spectra and, notably, 
can affect the presence of discriminant peaks (Popović 
et al., 2023). It is therefore necessary to evaluate the 
ML- based classifiers with strains cultivated on other 
types of media, especially selective media that are fre-
quently used in laboratories, to confirm our findings. 
We used a chemical extraction technique to get better- 
quality spectra. It would be useful to validate this meth-
odology on deposits directly placed on the identification 
plate. This could result in a gain of time and make the 
technique simpler. Also, to validate the generalization 
and reproducibility of ML and DL- based classifiers, it 
would have been necessary to repeat the extractions. 
Another limitation of the study is that it was performed 
in a single centre. It would be interesting to test this 
algorithm on a much broader range of isolates with 
different MALDI- TOF SM instruments in different lab-
oratories. This study is a proof- of- concept that demon-
strates MALDI- TOF MS to be an easy and inexpensive 
technique to detect TcdA, TcdB and CDT and to pre-
sumptively exclude PR 027 strains.

While this methodology shows promise, it is cur-
rently facing challenges in being routinely integrated 
into microbiological laboratory diagnostics. Contrary to 
molecular PCR and immunochromatographic tests that 
are directly applicable to stool samples, our technique 
necessitates pre- processing involving both a culturing 
phase and an extraction procedure prior to MALDI- TOF 
MS analysis. These prerequisites are time- consuming 
and may hinder the effectiveness of the method for im-
mediate diagnostic needs. However, for epidemiological 
surveillance and outbreak management, our approach 
offers complementary advantages over molecular 
methods. It is worth noting that MALDI- TOF MS coupled 
with algorithms based on ML including DL provides high 
specificity, which has the potential to rapidly identify and 
rule out some types of strains such as ToxA+B+CDT+Hv. 
For instance, this could eliminate the need for more ex-
pensive and time- consuming molecular typing methods 
such as PCR ribotyping or whole genome sequencing. 
A targeted application could considerably improve re-
sponse strategies to epidemics and contribute to the 
rapid implementation of infection control measures. 
Targeted applications could significantly improve epi-
demic response strategies and contribute to the rapid 
implementation of infection control measures. For ex-
ample, the high NPV observed in our study for CDT+ 
strains, such as PR 078 strains known to cause epidem-
ics of severe diarrhoea in communities and particularly 
in young people, means that this type of strain can be 
immediately excluded in an epidemic context.
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