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Supérieure de Lyon, Univ Lyon, Villeurbanne, France, 4 Centre national de Référence des Légionelles–
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Abstract

Natural transformation is the only mechanism of genetic exchange controlled by the recipi-

ent bacteria. We quantified its rates in 786 clinical strains of the human pathogens Legio-

nella pneumophila (Lp) and 496 clinical and environmental strains of Acinetobacter

baumannii (Ab). The analysis of transformation rates in the light of phylogeny revealed they

evolve by a mixture of frequent small changes and a few large quick jumps across 6 orders

of magnitude. In standard conditions close to half of the strains of Lp and a more than a third

in Ab are below the detection limit and thus presumably non-transformable. Ab environmen-

tal strains tend to have higher transformation rates than the clinical ones. Transitions to non-

transformability were frequent and usually recent, suggesting that they are deleterious and

subsequently purged by natural selection. Accordingly, we find that transformation

decreases genetic linkage in both species, which might accelerate adaptation. Intragenomic

conflicts with chromosomal mobile genetic elements (MGEs) and plasmids could explain

these transitions and a GWAS confirmed systematic negative associations between trans-

formation and MGEs: plasmids and other conjugative elements in Lp, prophages in Ab, and

transposable elements in both. In accordance with the hypothesis of modulation of transfor-

mation rates by genetic conflicts, transformable strains have fewer MGEs in both species

and some MGEs inactivate genes implicated in the transformation with heterologous DNA

(in Ab). Innate defense systems against MGEs are associated with lower transformation

rates, especially restriction-modification systems. In contrast, CRISPR-Cas systems are

associated with higher transformation rates suggesting that adaptive defense systems may

facilitate cell protection from MGEs while preserving genetic exchanges by natural transfor-

mation. Ab and Lp have different lifestyles, gene repertoires, and population structure. Nev-

ertheless, they exhibit similar trends in terms of variation of transformation rates and its
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determinants, suggesting that genetic conflicts could drive the evolution of natural transfor-

mation in many bacteria.

Introduction

Natural transformation consists in the uptake of exogenous DNA from the external surround-

ings of bacteria and its integration in their chromosome by homologous recombination.

Unlike conjugation and transduction, 2 other key mechanisms of horizontal gene transfer

(HGT), natural transformation is not encoded by mobile genetic elements (MGEs). It is the

only known mechanism of HGT encoded and under the direct control of the recipient bacte-

ria. It is the mechanism behind the “transforming principle” that resulted in the discovery of

HGT [1] and ultimately to the identification of DNA as the material of genetics [2]. Transfor-

mation requires a transient physiological state, the “competence” state, during which the

machinery necessary for DNA import and integration in the chromosome is expressed [3].

Relatively few species have been demonstrated to be naturally transformable, but many more

encode the necessary machinery and it is suspected that they are also transformable [4]. The

process starts by the capture of exogenous DNA by an extracellular type IV pilus (Pil genes),

whose retraction conveys the DNA at the cell surface [5]. In Helicobacter this step depends on

a machinery derived from type 4 secretion system [6]. A nuclease converts the DNA into sin-

gle-stranded DNA (ssDNA) before its transport to the cytoplasm by ComEC [3]. Once in the

cytoplasm, the incoming ssDNA is protected from degradation by DprA, which also recruits

RecA [3]. The recipient homologous recombination machinery is then involved in genetic

exchanges with the bacterial chromosome. In diderms, the ComM protein has a key role in

this process, facilitating genetic exchanges between long heterologous DNA sequences [7].

Even if competence for natural transformation was discovered almost a century ago, the

reasons for its existence are still debated [8] (S1 Fig). They include the promotion of allelic

recombination [8], the acquisition of nutrients [9], and the uptake of DNA for repair [4]. The

impact of transformation is significant. Thanks to homologous recombination, transformation

can break co-adapted gene complexes and thus increase the efficacy of natural selection.

Transformation also allows bacteria to acquire new functions that can be of adaptive value. For

example, transformation enabled the acquisition of antibiotic resistance determinants by Cam-
pylobacter jejuni [10], Streptococcus pneumoniae [11], and Acinetobacter baumannii [12].

Recently, it was proposed that transformation eliminates deleterious MGEs by recombination

in the flanking chromosomal core genes [13]. This chromosome-curing hypothesis implicates

the existence of intragenomic conflicts between MGEs and the host regarding natural transfor-

mation. Accordingly, MGEs of V. cholerae (an integrative conjugative element, ICE) and of C.

jejuni (a prophage) encode DNases that prevent transformation [14,15]. Many other MGEs

insert and disrupt key competence genes [13]. Finally, several components of the transforma-

tion pathway are involved in other functions (e.g., adhesion and virulence with the Type IV

pilus and homologous recombination with RecA) and pleiotropic interactions could contrib-

ute to the maintenance of transformation in natural populations. It is possible that several of

these hypotheses contribute to selection for natural transformation.

The core components of the DNA uptake system and of homologous recombination are

widely conserved across bacteria. Yet, large variations of transformation frequencies have been

observed and many species are described as non-transformable even though they encode all

necessary components. For example, Pseudomonas stutzeri is transformable, whereas
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Pseudomonas aeruginosa is widely viewed as non-transformable [16]. Differences in trans-

formability within species have also been observed. In well-established transformable species

such as S. pneumoniae, P. stutzeri, and Haemophilus influenzae, from 30% to 60% of the iso-

lates [17–19] consistently failed to transform. Extensive variations were also reported in wild-

life, clinical and human isolates of Acinetobacter baumannii [20] and in clinical isolates of

Legionella pneumophila [21]. The reasons of such large within-species variations in transfor-

mation frequencies remain poorly understood. Of note, hypotheses explaining the existence of

transformation do not necessarily explain large variations of their rates within species. For

example, one does not expect huge variations in transformation between strains under similar

growth conditions when there is selection for DNA repair or use of DNA as a nutrient. This

does not imply that such hypotheses are incorrect, yet suggests that additional forces are at

play. Notably, if intra-genomic conflicts affect transformation rates then low transformation

rates could evolve even if they are deleterious to the bacterium [21].

The previously cited studies used relatively small samples (fewer than 150 strains and some-

times a few dozens), which precludes the use of powerful statistical methods to understand the

genetic basis of phenotypic variation. Here, we characterize the transformation rates and iden-

tify their genetic determinants in 2 phylogenetically distant Gammaproteobacteria species, L.

pneumophila (Lp) and A. baumannii (Ab). These are important pathogens with different char-

acteristics. Ab is one of the most worrisome antibiotic-resistant nosocomial pathogens [22].

Some strains are now resistant to nearly all antibiotics [23], an evolutionary process driven by

chromosomal recombination events (possibly resulting from transformation) and by MGEs

carrying antibiotic resistance genes [24]. Lp is an intracellular pathogen responsible for com-

munity-acquired severe pneumonia [25], where recombination and HGT drive the emergence

of epidemic clones [26], but is not usually antibiotic resistant. Ab and Lp are therefore comple-

mentary models for revealing commonalities, and specificities, in the evolution of natural

transformation. Here, we obtained 2 very large sets of genomes and transformation rates to

characterize the distribution and evolutionary pace of these rates and to test if the trait is under

selection. We use them to assess the hypothesis that genetic conflicts caused by MGEs contrib-

ute to explain variations in transformation rates.

Results

Variable transformation rates across Acinetobacter and Legionella strains

We analysed 496 draft genomes of Ab and 786 of Lp. The species pangenomes included 31,103

(Ab) and 11,932 (Lp) gene families. Ab genomes had on average 3,598 genes with a coefficient

of variation of 5.0%, whereas genomes of Lp had on average 3,091 genes with a coefficient of

variation of 3.3%. We used the gene families present in more than 95% of the genomes (persis-

tent gene families: 2,325 in Lp and 2,629 in Ab) to build 2 types of recombination-aware phylo-

genetic trees for each species by maximum likelihood (see Methods, S1 Data). The

phylogenetic reconstructions and most analyses in this study were done on 3 pairs of phyloge-

netic trees (ignoring recombination, using random positioning of genes, and using the most

likely organization). The qualitative results of all major analyses were similar in all the cases.

Hence, only the recombination-aware method using the consensus genome organization is

presented in the text. The phylogenetic trees of the 2 species have approximately similar aver-

age root-to-tip distances (Ab: 0.031 subst-1; Lp: 0.047 subst-1), but the Lp tree has many more

small terminal branches than Ab. Altogether, the Ab data set is more variable in terms of gene

repertoires, but the species are of comparable age (distance to the species’ last common

ancestor).
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We used a luminescence-based assay to quantify the ability of each strain to acquire DNA

by natural transformation (see Methods). Bacteria are provided with a linear transforming

DNA consisting of the Nluc gene flanked by sequences homologous to the chromosome. Inte-

gration by natural transformation results in Nluc expression which is detected following addi-

tion of furimazine. Transformation assays were performed multiple times and revealed good

concordance (S7 Data). Strains known to be non-transformable (Ab ΔcomEC, Lp Lens) were

used to define the minimal detection limit of the method (S2 Data and S2 Fig), which is of the

same magnitude in the 2 species: 300 for Lp and 400 for Ab. The distributions of the average

values of transformation extend below the detection limit of transformation and have a long

tail of higher values spanning several orders of magnitude (Fig 1B). As a result, 52% of the

strains were deemed transformable in Lp and 64% in Ab. The range of transformation rates is

higher in Ab (6 orders of magnitude) than in Lp (4). This might be due to the more diversified

set of strains Ab collection, notably encompassing environmental strains (absent in the Lp

data set). Accordingly, Ab environmental strains were associated with greater transformation

rates than the clinical ones (phyloglm T2, p = 1.08 × 10−4).

Variations in transformation rates could be caused by differences between the focal strains

and the template sequence used to produce linear transforming DNA (reference Ab A118 and

Lp Paris strains). Instead, we found that transformation rates are highly variable across the

phylogenetic trees (Fig 1A). The rooted recombination-free phylogeny of Lp is divided into 2

large phylogroups. One of them composed of 78 strains was more often associated with non-

transformability than the other strains of Lp (χ2 = 41.22, p = 1.36 × 10−10). This phylogroup is

considered to belong to the subspecies raphaeli [27]. In Ab, the variations in transformation

rates did not correlate with the strains’ phylogenetic distance (Ab: Spearman correlation ρ =

0.0034, p = 0.22) even between closely related strains at a patristic distance of less than 0.02

nucleotide substitutions per site (Ab: ρ = 0.029, p = 0.18) (S3 Fig). In Lp, the correlation was

significant but its effect size as measured by the coefficient of association was extremely low in

both cases (all patristic distances: ρ = −0.046, p< 2.2 × 10−16; patristic distance less than 0.02

nucleotide substitutions/site: ρ = −0.034, p< 2.2 × 10−16) (S3 Fig). The phylogenetic distance

between the focal and reference strains are not correlated to the differences in transformation

rates for the most distant strains (patristic distances larger than 0.04 nucleotide substitutions

per site) (Ab: ρ = −0.011, p = 0.81; Lp: ρ = 0.029, p = 0.80, S4 Fig). When focusing on the actual

homology arms, all strains presented homology arms with more than 99.9% identity with the

donor plasmid in Ab and in Lp. In Ab, transformation rate was not correlated with the diver-

gence observed on the homology arms (S5 Fig, ρ = −0.026, p = 0.54). In Lp, there was a signifi-

cant correlation between transformation rate and divergence at the homology arms (S5 Fig, ρ
= 0.50, p< 2.2 × 10−16) even when focusing on the closest strains to the plasmid donor strain

(ρ = 0.48, p< 2.2 × 10−16). This effect size is not negligible but the important variance we

observed in the transformation rates for any percentage of identity of homology arms pre-

vented us from finding a form of normalization that would correct for this association. How-

ever, transformation rates are known to be robust to sequence divergence of 1% to 5% [28,29]

which is much higher than what we observed here (>99.9%), suggesting that the correlation

observed in Lp between sequence divergence and transformation rates might be indirect. In

conclusion, transformation rates exhibit high variability across the species which is not

explained by the phylogenetic distance between the donor and the recipient bacteria. The

sequence divergence between the recipient chromosome and the homology arms of their

transforming plasmid is not affecting the patterns of transformation rates in Ab but could

explain a part of the variation in Lp.
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Fig 1. Distribution of the transformation phenotype. (A) Distribution of the log10-transformed average transformation rates and of the binary trait across

the recombination-free rooted phylogenetic trees of A. baumannii (left) and L. pneumophila (right). sncRNA rocRp presence (dark pink) distribution is also

represented across L. pneumophila phylogenetic tree. The dashed line in the log10-transformed average transformation rates distribution corresponds to the

transformation rate threshold that separates transformable from non-transformable strains. Tree scale is in substitution per site. (B) Distribution of the

log10-transformed average transformation rates in A. baumannii (left) and L. pneumophila (right). The red vertical line stands for the threshold between

transformable and non-transformable strains. ΔcomEC Ab strain and Lp Lens strain are known non-transformable strains. AB5075 Ab strain and Lp Paris

strain are among the most transformable known strains. The data underlying this figure can be found in S8 Data.

https://doi.org/10.1371/journal.pbio.3002814.g001
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Transformation rates evolve according to a jump process

The analysis of transformation frequencies in the light of the phylogeny of the species revealed

high variability. We wished to study this variability and how it unfolds in time to understand

the evolutionary processes at play. The simplest model of evolution is when the trait follows a

Brownian motion(BM)-like process, i.e., when it endures incremental changes drawn from a

random distribution with zero mean and finite constant variance. We used the classical Pagel’s

λ and Blomberg’s K indices to assess this model [30–32], but they provided inconsistent results

(S3 Data). According to Pagel’s λ, the trait might evolve according to a Brownian motion

model (S6 Fig), but Blomberg’s K could not rule out the hypothesis that the trait was randomly

distributed across the phylogeny. To understand these contradictory results, we used the Fritz

and Purvis’s D statistic to model the binary trait and quantify the strength of the phylogenetic

signal on it [33]. This statistic indicated that closely related strains had a less similar phenotype

than expected under a Brownian model but more than if it was random (Lp: D = 0.52; Ab:

D = 0.58). This means that the Brownian model alone is not sufficient to explain the evolution-

ary dynamics of natural transformation.

The wide variation of the transformation trait across the phylogenetic trees led us to con-

sider complex models that extend the classical Brownian motion model by accounting for

jump processes, i.e., that account for evolutionary processes where the trait may occasionally

change abruptly [34]. We assessed how 9 models with diverse evolutionary dynamics fitted the

evolution of the transformation rates (log transformed, S4 Data). Six of them use Lévy pro-

cesses with 2 components: a Brownian motion and a pure jump process (S6 Fig). In a jump

process, the trait has abrupt changes that are punctual or occur over a short period of time. As

expected, the Brownian motion model did not fit the data very well (Ab: AICc = 3,521; Lp:

AICc = 2,198). The best fitting models in both species were all jump processes (Jump Node,

Variance Gamma, Brownian Model + Normal Inverse Gaussian, and Brownian Model + Vari-

ance Gamma, S4 Data), which had all approximately similar fit with the data (similar AICc)

because they only differ in the type of random distribution defining the frequency and the

amplitude of the jump (S6 Fig). The good fit of these models suggests that natural transforma-

tion evolves as the result of 2 processes. First, a gradual process of divergence that is captured

by the Brownian model and could result from mutations of small effect on the trait, e.g., point

mutations with effect on gene expression of the machinery of transformation. Second, the

Brownian process is complemented by frequent sudden changes that separate periods of rela-

tive stability and which are better captured by the jump process. Such sudden changes could

be explained by the acquisition or loss of genetic determinants of transformation, i.e., they are

compatible with the well-known impact of horizontal gene transfer in bacterial evolution

which can lead to large sudden phenotypic changes [35].

Loss of transformation is counter-selected

The previous results suggest sudden transition between transformability and non-transform-

ability. If transitions result from intragenomic conflicts, the latter must result from the delete-

rious impact of the loss of transformation for bacterial fitness. To test this hypothesis, we

inferred the ancestral states of transformation in the phylogenetic tree and searched for recent

transitions, i.e., those occurring in terminal branches. More than a fifth of the terminal

branches had a phenotype transition (Lp: 20%; Ab: 20%), and there was a very large excess of

transitions to non-transformability relative to those towards transformability (Lp: 79% of all

events, χ2, p< 2.2 × 10−16; Ab: 81%, χ2, p< 2.2 × 10−16). If the process was at equilibrium,

there should be an equal number of transitions in both directions. Excess of transitions

towards one of the states is usually a sign of purifying selection, i.e., a process where genetic
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changes enrich populations in a state (here, non-transformability) that is deleterious and

therefore gradually purged by natural selection [36].

If the loss of transformation is deleterious for bacteria, then it should impact the evolution-

ary trajectories of bacterial lineages. Notably, if lineages of non-transformable strains are less

fit then they are expected to be shorter on average than the others because the lineage is more

rapidly lost by natural selection (or reverts to the other phenotype). We took all terminal

branches where there is no change in the phenotype and analysed their lengths. This revealed

much shorter branches in non-transformable strains in Ab (90× shorter, Wilcoxon,

p = 1.14 × 10−09) but slightly longer ones in Lp (0.4× shorter, Wilcoxon, p = 0.03). Again, this

suggests that non-transformable strains, at least in Ab, tend to be removed from the population

by natural selection. It should be noted here that the reasons for the counter-selection of non-

transformable strains can be varied and depend on the reason of existence of natural transfor-

mation. If transformation is adaptive mostly because it removes MGEs from genomes, then

the cost of its loss is the accumulation of costly MGEs in lineages (as shown below).

Transformation impacts recombination rates and genetic linkage

Some of the proposed causes of selection for transformability, e.g., DNA as a source of nutrient

or for repair, cannot be tested with our data. But the hypothesis that natural transformation

facilitates adaptation by favoring allelic exchanges can be tested. We identified recombination

tracts in the terminal branches of the species trees which covered 2,628 persistent gene families

in Ab and 2,325 in Lp (see Methods). When considering the phylogeny, transformable strains

exhibited a higher recombination rate than the non-transformable ones (phyloglm T17, Lp:

p = 1.29 × 10−15; Ab: p = 1.36 × 10−3). Hence, we can identify the expected association between

recombination rates and transformation. To better understand the relation between recombi-

nation and transformation, we analysed strains whose transformation phenotype changed

recently. We also observed greater cumulated lengths of recombination tracts when the strain

became transformable in the extant branch than when it became non-transformable, but the

result was significant only in Ab (Fig 2A and S5 Data). This suggests that the gain of transfor-

mation is responsible for an increase in recombination rates but only in Ab.

Since transformation favors allelic exchanges, it could have an important impact in break-

ing genetic linkage. This hypothesis can be tested by analyzing the patterns of linkage disequi-

librium. We calculated the squared correlation (r2) between bi-allelic values at 2 loci in

windows of 500 nt along the genome of transformable and non-transformable strains. The dif-

ference between the 2 (Δr2) was significant (Lp: average 0.018, Wilcoxon, p< 2.2 × 10−16, Ab:

average 0.0092, Wilcoxon, p< 2.2 × 10−16) (Figs 2B and S4), indicating higher correlation,

hence higher linkage disequilibrium, in non-transformable strains. This agrees with the above

hypothesis and suggests that transformation may break deleterious allele combinations or cre-

ate novel adaptive ones.

Transformation rate variations rarely depend on its molecular pathway

To understand the causes of the loss of transformation, we focused initially on the most obvi-

ous candidate genes: the ones directly involved in the molecular process (Fig 3). They are the

most susceptible to influence the transformation phenotype. We made a survey of the litera-

ture to list genes associated with transformation and searched for their presence in every

genome (S11 and S12 Data). Very few of these genes are ever missing in Lp, suggesting that

inactivation of the transformation genes is rarely the cause of variations in this species. The

notable exception is the gene gspH/fimT which was missing in some Lp strains, most often in

the non-transformable ones. It was previously shown that this gene is dispensable for
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transformation in Lp [37], which is consistent with the observation that it is lacking in some

transformable strains. Our results suggest that its loss may be associated with lower frequency

of transformation (on average 0.8-fold less transformable) that in some cases drops below the

detection level. The gene pilQ was interrupted by a phage in 1 Ab strain and pseudogenized in

3 Lp (all 4 strains are non-transformable). In Ab some genes for minor pilins could not be

identified in a few genomes of both transformable and non-transformable strains (PilEVX).

Knock-out of minor pilins was enough to block transformation in Ab W068 [38]. Their

absence in transformable strains may be explained by the minor pilins having a more diverging

sequence than our search constraints would allow. Pilins evolve quickly by point mutation,

HGT and duplication processes, complicating their detection in draft genomes. More

B. Difference in genetic linkage between non-transformable and transformable strains along the genome
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Fig 2. Association of the transformation phenotype on recombination. (A) Distribution of CLRTs (Log10-transformed) in TBs. The CLRT was normalized

by the length of the terminal branches in relation to the inference of changes in the phenotype for these groups to be comparable. Wilcoxon test, *: p< 0.05, **:
p< 0.01, ***: p< 0.001, ****: p< 0.0001. (B) Distribution of Δr2 values in the [−0.1;0.1] interval computed in 500 nt screened windows where r2 was not null

in both T and NT populations. The full span of the distributions is presented in S7 Fig. Δr2 was calculated as r2
mean(NT)-r2

mean(T). The data underlying Fig 2A

can be found in S9 Data and Fig 2B in S10 Data. CLRT, cumulated length of recombination tract; TB, terminal branch.

https://doi.org/10.1371/journal.pbio.3002814.g002
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importantly, the gene comM, encoding a helicase involved in the homologous recombination

of transforming DNA into the chromosome, was often pseudogenized. This was significantly

more frequent in non-transformable than in transformable strains (phyloglm T20,

p = 9.45 × 10−9) (Fig 3) and in clinical strains relative to environmental ones (phyloglm T21,

p = 6.47 × 10−8). The inactivation of this gene was most often caused by its interruption in the

MgCh domain by the integration of MGEs. This has been described in clinical strains, where

AbaR and AbGRI resistance islands integrate in this region. But contrary to previous analyses

our data set has only a small number of clinical strains. Our detailed analysis of this locus

revealed AbaR islands in more than half of comM inactivations. In the other cases, we found in

these regions MGEs with a plethora of insertion sequences, integrons, and defense systems

(S8 Fig). For example, the gene was interrupted by a locus encoding CBASS (40% of the times)

and Zorya (6%). The latter interruption was only observed in environmental strains. This is

consistent with the existence of genetic conflicts between MGEs and the host regarding natural

transformation beyond the selection for the spread of antibiotic resistance genes in clinical

strains.

Interrupted transformation genes might be recovered by recombination and allow re-

acquisition of the transformation phenotype. To test this possibility, we analysed the patterns

of recombination on the locus in the 386 genomes of Ab with a complete comM. We found

that comM was covered by a recent recombination tract in 35 samples. This raises the possibil-

ity that inactivated comM genes may become functional again by recombination with homolo-

gous DNA arriving from other strains. This process is easier to achieve for genes like comM
whose inactivation does not completely block recombination. Yet, recombination salvaging

Fig 3. Presence of genes involved in natural transformation in A. baumannii (left) and L. pneumophila (right). The genes were divided regarding their

function: DNA uptake, recombination, and regulation (Rg) of transformation. The data underlying this figure can be found in S12 Data.

https://doi.org/10.1371/journal.pbio.3002814.g003
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comM does not happen more often than expected by chance (χ2, p = 0.72). With the exception

of comM in Ab, variations in transformation rates were rarely explained by the inactivation of

transformation-related genes.

Ab can be capsulated (unlike Lp) and it has been recently suggested that its capsule may

affect transformation rates [39]. We searched for capsule loci in all Ab strains using Kaptive
[40]. All genomes presented one presumably complete locus suggesting that capsule inactiva-

tion was not causing the emergence of transformable strains. Future work will be needed to

test if changes in the expression of the capsule could contribute to the variation in transforma-

tion rates in Ab.

MGEs shape transformation rate variations

To identify the genetic determinants responsible for shifts between transformability and non-

transformability, we performed a unitig-based Genome-Wide Association Study (GWASU) on

the binary transformation phenotype (GWASbinU ). We used a linear mixed model (LMM) to

correct for population structure using the recombination-aware phylogenetic trees. We

applied a Benjamini–Hochberg adjustment for multiple tests at 0.05 (S9 Fig), because Bonfer-

roni corrections are known to be excessively conservative [41]. Indeed the latter led to loss of

hits that were experimentally verified to affect transformation rates (ComM, see Methods).

The relevant genetic variants were mapped to the gene families. In Lp, 378 gene families

including 1 sncRNA gene were associated with the inhibition of transformation and 271 were

associated with increased transformability (Fig 4A and S6 Data). In Ab, 836 gene families were

associated with the inhibition of transformation and 426 with increased transformability (Fig

4A and S6 Data). In both species, it is thus less than 5% of the pangenome that could explain

the non-transformable phenotype. Given the linkage between genes, this proportion might be

overestimated. These gene families did not include any capsule loci genes. Among the genes

directly involved in natural transformation only unitigs mapping comEA, rnr, recQ in Lp and

pilP, pilT in Ab were associated with non-transformability. Since these genes are part of the

persistent genome, this suggests that some variants may lower transformation rates. Only the

unitigs mapping comM were positively associated with transformability, a consequence of the

abovementioned frequent inactivation of this gene. This confirms the impact of comM inacti-

vations on transformation and suggests that natural sequence variants of the other genes may

affect transformation rates. Overall, the genes directly implicated in the pathway of natural

transformation are a very small fraction of all genes identified by the GWASbinU .

In both species, recognizable MGEs are important genetic determinants of transformation

inhibition. We classed them in ICEs, plasmids, phages, and transposable elements (Fig 4B).

Beyond the genes that were individually significantly associated with low transformation,

many of the other MGE genes were collectively negatively associated with the loss of transfor-

mation, even when each individual effect was not significant (Fig 4B). For example, many

Insertion Sequences, sometimes part of larger elements like plasmids and ICEs, are among

transformation-inhibiting candidates in both Ab and Lp (Fig 4B).

Several prophage genes are negatively associated with transformation in Ab. Some of these

functions can also be found in other elements, but others are very specific to phages as revealed

by the analysis of their viral quotients (see Methods). Out of the 836 Ab transformation-inhib-

iting gene families from GWASbinU , 24 matched proteins with very high viral quotient (higher

than 0.9, see Methods). Among them, the most significantly transformation-inhibiting gene

seems to be part of a prophage anti-defense system. We predicted its protein structure with

AlphaFold and aligned it against a large data set of protein structures using Foldseek. This

analysis revealed structural homology to DarA, a protein that is involved in capsid
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morphogenesis and is a component of an anti-restriction system (found in A. baumannii
ACICU, S10 Fig) [42]. However, the homology is restricted to the N-terminal domain and this

gene stands alone in the GWAS (the Dar system being composed of many proteins). Further

work will be necessary to disentangle the function of this protein. In brief, the abundance of

prophage genes in the GWAS suggests these elements have an important role in the inhibition

of transformation in Ab.

We could not identify intact prophages in the Lp strains. Instead, the transformation-inhib-

iting candidates in this species were often associated with functions found on plasmids, includ-

ing conjugation and the plasmid-encoded sncRNA RocRp (Fig 4). A little more than 15% of

the Lp transformation-inhibiting genes identified in GWASbinU (62/378) were carried by plas-

mids. It was previously shown that RocRp is plasmid-encoded and inhibits transformation

[21]. Our results show that similar plasmids lacking RocRp do exist (S11 Fig). Importantly,

Fig 4. Volcano plots showing average effect sizes and significance of the association of the gene families with the

transformation phenotype according to GWASbinU in A. baumannii and L. pneumophila. Each circle stands for a

gene family. The size of the circle depends on the number of unitigs that mapped the gene in all the samples. The value

on the x-axis corresponds to the average effect size of all the unitigs mapping the gene. The y-axis indicates how

significant this effect can be by representing the maximal -log10-transformed p-value adjusted for population structure

(lrt-pvalue) of all the unitigs of this gene. The BH threshold (dark red line) of 0.05 is set at the lrt-pvalue that once

corrected by BH is equal to 0.05. Significantly associated gene families are above the Benjamini–Hochberg (BH)

threshold (red dashed line). The lower graphs (B) are similar to the ones on top (A), but gene families were colored in

respect to their MGE. Only gene families whose annotation was known and that had either a strong effect size or were

very significant were labeled for readability. The whole set of gene families, their p-values, effect size, and frequency is

listed in S6 Data. The data underlying this figure can be found in S6 Data. GWAS, genome-wide association study;

MGE, mobile genetic element.

https://doi.org/10.1371/journal.pbio.3002814.g004
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none of the RocRp copies could be identified in the chromosomal contigs. RocRp plasmids

also lacked serine/tyrosine recombinases as well as dif sites or XerL homologs that could

lead to Xer-mediated integration in the chromosome. To confirm that contig assignment

was not affecting our results, we searched 113 complete Lp genomes from RefSeq where all

5 occurrences of RocRp were also in plasmids that had high similarity in gene repertoires

(S11 Fig). Of note, some plasmids lacking RocRp had moderately high wGRR (>0.6) with

the RocRp plasmids. Overall, 32% of the non-transformable strains encoded RocRp plas-

mids. This raised the following question: Are the plasmid-associated genes in the GWASbinU
found because of their genetic linkage with rocRp or because they are independently associ-

ated with the inhibition of transformation? To answer this question, we built an LMM

where the presence of rocRp in the strain is a covariate of GWASbinU (GWASbinU -cov). This

model retained some significant associations between plasmid-associated genes and trans-

formation in Lp (BH adjusted p-value <0.05, S12 Fig), but the overall p-values of these

genes were much smaller. In fact, most of these genes were conjugation genes that also exist

in ICEs suggesting their association might be retained because of some other transforma-

tion determinants that ICEs carry. Hence, the negative association between plasmids and

transformation is largely driven by genetic linkage with the transformation-inhibiting

sncRNA rocRp, albeit some other genes present in certain ICEs may be good candidates for

secondary modulators of transformation rates.

Given the importance of MGEs in shaping transformation rates, anti-MGE defense systems

could directly lower transformation rates by targeting incoming DNA [43] or indirectly

increase transformation rates by preventing the acquisition of MGEs encoding transforma-

tion-inhibiting genes. We separated innate (e.g., restriction-modification systems) from adap-

tive (CRISPR-Cas) defense systems because the former may block MGEs and bacterial DNA

arriving by transformation, whereas the latter are only expected to block MGEs (since they

provide a specific defense). We detected a negative association between the number of puta-

tively innate defense systems of a strain and its transformability in Lp and in Ab (phyloglm

T12, Lp: p = 1.03 × 10−13; Ab: p = 3.61 × 10−9) and more specifically when the defense system

was a restriction-modification system (phyloglm T13, Lp: p = 4.34 × 10−8; Ab: p = 1.30 × 10−6).

Of note, these unitigs did not map the R-M systems found in Vesel and colleagues [43], show-

ing that other R-M systems also contribute to diminish transformation rates. In contrast, there

was a positive association between the number of CRISPR-Cas systems carried by a strain and

its transformability in both species (phyloglm T14, Lp: p = 7.81 × 10−9; Ab: p = 0.018). These

results suggest that defense systems impact transformation rates in ways depending on their

ability to specifically target MGEs.

Since both MGEs and innate defense systems, especially restriction-modification systems,

are associated with lower transformation rates, we quantified how much variation in transfor-

mation rates could be explained by each of them. We performed a phylogenetic logistic regres-

sion expressing the binary transformation phenotype as a function of the number of mobile

genetic elements inhibiting transformation (phages in Ab and conjugative systems in Lp) and

of the number of restriction-modification system a strain carries. As expected, both were sig-

nificatively and negatively associated with transformation, but phages in Ab (phyloglm T22,

effect = −0.97 [−1.038; −0.905], p = 4.3 × 10−3) and conjugative systems in Lp (phyloglm T22,

effect = −0.76 [−0.779; −0.735], p = 1.4 × 10−4) had a stronger inhibitory effect than restriction

modification systems (phyloglm T22, Ab: effect = −0.61 [−0.634; −0.590], p = 3.55 × 10−8; Lp:

effect = −0.41 [−0.441; −0.398], p = 1.09 × 10−9). This suggests that variations in transforma-

tion rates are more impacted by MGEs inhibitory effects than by the action of restriction-mod-

ification systems.
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Transformation is associated with the loss of MGEs

The chromosome curing model suggests that genetic conflict between MGEs and the host

arise because transformation cleans the bacterial chromosome from its MGEs. One would

thus expect to find fewer MGEs in transformable strains than in the others. We analyzed the

frequency of MGEs in relation to the transformation phenotype and the phylogenetic structure

using a phylogenetic logistic regression [44]. Even though some prophages are negatively asso-

ciated with transformation (see above), the number of prophages in Ab does not depend on

the strain transformation phenotype (p> 0.05; no prophages in Lp). When compared to the

others, the chromosomes of transformable strains carry fewer Insertion Sequences (Fig 5; phy-

loglm T19, Lp: p = 5.97 × 10−5; Ab: p = 0.0016) and fewer conjugative systems (phyloglm T7,

Lp: p< 2.2 × 10−16; Ab: p = 1.21 × 10−7). Of note, conjugative plasmids were significantly rarer

in transformable strains in both species (phyloglm T9, Lp: p< 2.2 × 10−16; Ab:

p = 1.38 × 10−8). Hence, many types of MGEs are less abundant in transformable strains.

If recombination cures the chromosome from MGEs, one expects to find an excess of

homologous recombination targeting persistent genes that flank MGEs. For each persistent

gene, we used the number of times it was covered by a recombination tract in our collection as

a proxy for its recombination rate. Based on the MGE flanking persistent genes previously

identified in the whole collection, we were able to evaluate for each persistent gene if it had a

MGE in its direct neighborhood in at least 1 genome. We observed that among persistent

genes, those in the direct neighborhood of an MGE had higher recombination rates in Ab:

conjugative systems (Ab: Wilcoxon, p< 2.2 × 10−16), and insertion sequences (Ab: Wilcoxon,

p< 2.2 × 10−16), but not for phages (Ab: Wilcoxon, p = 0.08). In Lp the association was signifi-

cant when the MGE was an insertion sequence (Lp: Wilcoxon, p = 1.7 × 10−5). Interestingly,

recombination also targets at high frequency the persistent genes neighboring defense systems

(Ab: Wilcoxon, p< 2.2 × 10−16), which fits previous observations that these systems evolve

rapidly and are often within MGEs [45]. In conclusion, core genes flanking MGEs show an

excess of recombination tracts, as expected if transformation removes neighboring MGEs by

Fig 5. Distribution of the number of Insertion Sequences in the bacterial chromosome per isolate in transformable and non-transformable strains in A.

baumannii (left) and L. pneumophila (right). The data underlying this figure can be found in S14 Data.

https://doi.org/10.1371/journal.pbio.3002814.g005
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recombination. It is worth noting that such events of recombination may also occur by incom-

ing DNA arising directly from the action of MGEs, e.g., by HFR-like conjugation [46] or lateral

transduction [47]. These removals may become fixed in the population when they increase

bacterial fitness.

Discussion

Ab and Lp are 2 bacterial species with very different lifestyles. Notably, Lp is intracellular when

Ab is not. Lp collection included only clinical isolates and is thus much less diverse than the

Ab collection which included mainly environmental strains in addition to some clinical iso-

lates. This was visible on the phylogenetic trees but also in their gene repertoires which were

broader in Ab compared to Lp. Both presented important variations in their transformation

rates across the phylogenetic tree but only Lp showed some association between the transfor-

mation rates and its population structure. This might find its root in the division of the collec-

tion in 2 clades with 1 corresponding to the raphaeli subspecies of Lp. This could also result

from higher transformation rates between more similar recombination arms. However, such

an association was previously shown not to operate when sequence similarity is very high

[28,29]. Its constancy in the range 0% to 5% divergence is the basis of many previous studies

[48–50]. The data set of Ab has a mixture of clinical and environmental strains and this

allowed us to discover that environmental strains were more transformable than the clinical

ones. This could explain the greater amplitude in transformation rates we observed in Ab col-

lection compared to the fully clinical Lp collection. Ab exhibited a specific and frequent mech-

anism of inhibition of natural transformation. Indeed, comM was frequently inactivated in

non-transformable Ab strains. The inactivation of comM that is responsible for a reduction in

the transformation rates does not exist in Lp, possibly because the latter lacks the Tn7-like ele-

ment that targets the comM gene in Ab. However, the absence of Tn7-like elements does not

fully explain why comM interruption is observed in Ab and not in Lp since some comM inter-

ruptions in Ab are not caused by Tn7-like elements. In addition to AbaR, comM is also inter-

rupted by other IS and defense systems notably in environmental strains. One possible

explanation might lie in the intracellular lifestyle of Lp where recombination with distantly

related lineages might be lower than for Ab, which would render the ComM function less criti-

cal for solving heterologous recombination and complete natural transformation.

We found wide within-species variations in transformation rates under similar growth con-

ditions, with 64% of Ab and 52% of Lp being transformable beyond the detection limit of the

method. Variations in transformation rates were previously shown in smaller samples of other

species. In A. actinomycetemcomitans, only 26% of strains are competent for transformation

[51], and in S. pneumoniae and H. influenzae [17,19] around two thirds of the strains are trans-

formable. The ranges of variation in transformation observed in this study (4 orders of magni-

tude in Lp and 6 in Ab) are close to the ones of H. influenzae (6) and S. pneumoniae (4). They

are probably underestimates because transformation rates may vary between environments

(for which there is no data available). We found very little association between transformation

rates and population structure, as previously observed in S. pneumoniae [17], but contrary to

observations in P. stutzeri [51]. Instead of transformation rates following species phylogroups

they are associated with the patterns of distribution of MGEs.

Allelic recombination decreases genetic linkage thereby rendering natural selection more

efficient. Recombination tends to facilitate the fixation of adaptive mutations and alleviates the

cost of deleterious ones [52], especially if it is fitness-associated [53]. It could thus be one of the

key advantages of transformation if this process is frequent when bacterial populations are

diverse, i.e., there are polymorphisms in the population (otherwise recombination does not
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break genetic linkage). We found that transformable strains have slightly higher recombination

rates than non-transformable ones. This effect is relatively weak suggesting that recombination

rates are poor proxies for transformation rates. This could further suggest that selection for alle-

lic exchanges is not a major driver of natural transformation. The low association between

transformation and recombination rates may also be caused by the confounding effect of

recombination mediated by the transfer of DNA by MGEs, e.g., conjugation or transduction, or

by technical difficulties in identifying all recombination tracts. Strains with few MGEs could

tend to recombine by natural transformation, whereas those with many MGEs might tend to

transform at low rates but still recombine as the result of conjugation or transduction. While

natural transformation is expected to result in the recombination of persistent genes across the

entire chromosome, MGEs will favor recombination of genes close to the regions where they

integrate in the genome [47,54]. This could explain why there is a weak positive association

between transformation and recombination rates, but a clearer loss of genetic linkage associated

with transformation: for similar rates of recombination, transformation provides DNA covering

the core genome more uniformly thereby decreasing genetic linkage more efficiently than

MGE-driven recombination that tends to favor the transfer of core genes close to the MGE inte-

gration site. To test this hypothesis, it will be necessary to disentangle in the future the contribu-

tion of different mechanisms of HGT to homologous recombination.

Even if we cannot rule out that differential expression of transformation-related genes may

be responsible for the existence of many non-transformable strains, the simplest mechanistic

explanation for their existence is the inactivation of these transformation-related genes by

MGEs [13]. One key gene (comM) in one of the species (Ab) was often inactivated (22% of the

strains) because of AbaR islands in clinical strains and many other diverse MGEs in the others.

The extensive collection of Ab environmental strains we have used shows that comM is tar-

geted by a much broader range of elements often encoding defense systems. ComM inactiva-

tion was also previously described in A. actinomycetemcomitans [55] and several

Pasteurellaceae [56], raising an interesting question: Why would ComM be specifically tar-

geted for inactivation? The function of this protein was recently clarified. It is a helicase that

facilitates homologous recombination between heterologous DNA [7]. Its loss reduces trans-

formation by 2 orders of magnitude for the type of DNA tested in our assay (non-homologous

segment flanked by homologous regions) [7]. In V. cholerae its absence has a very minor role

in transformation with identical DNA [57]. This may explain why strains lacking ComM still

have measurable rates of natural transformation. The lower recombination with heterologous

DNA in comM mutants may have a small impact on the host fitness, since DNA uptake and

recombination between homologous DNA may still take place. Yet, it may diminish the ability

of the bacterium to remove MGEs from the genome (because distant strains with heterologous

DNA are more likely to lack the MGE and lead to its deletion from the genome by transforma-

tion). Beyond comM in Ab, inactivation of competence genes rarely explains the observed vari-

ations in transformation rates, possibly because most of these genes also contribute to other

important processes, such as DNA repair (recombination), adhesion, and virulence (type IV

pilus) [58]. Hence, their inactivation would decrease the host and the MGE fitness.

What explains the high variation in transformation rates across the strains and especially

the observed frequent non-transformability? It has been suggested that the persistence of

transformable and non-transformable strains is the result of the frequent loss of competence

occurring in transformable strains [56]. Non-competent lineages could get a short-term

advantage before being selected against in the long term. Many of our results are compatible

with the idea that intragenomic conflicts between MGEs and the bacterial host could be

responsible for the birth of such non-transformable lineages. We confirmed the negative asso-

ciation between transformation rates and the presence of RocRp-encoding plasmids in Lp [21]
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and comM-inactivating MGEs in Ab (known for AbaR) [59]. We showed that transformation

rates vary following a jump process. Both observations are consistent with a negative impact of

MGEs on transformation rates since these elements are frequently gained and lost [60].

Accordingly, we found that MGEs such as ISs, ICEs, plasmids, and phage (depending on the

species) are systematically associated with low rates of transformation. It is hard to disentangle

which of the MGEs or the low transformation rates is actually the cause or the effect for each

MGE: some MGEs may infect the cell and thus block transformation and because transforma-

tion is blocked, further MGEs may accumulate in the genome because curing by recombina-

tion is stopped. Finally, intragenomic conflicts explain our seemingly contradictory

observations that transformation rates are often below the detection limit even though such

strains are counter-selected. MGEs often carry traits adaptive in certain ecological contexts

and can compensate for a period of time the fitness cost of losing the transformation pheno-

type. Transformation itself may be costly under certain circumstances and in the short-term

non-transformable bacteria might be favored. But in the long term, the inability of these non-

transformable bacteria to have the benefits of transformation may result in their counter-selec-

tion and the purge of these lineages.

The intragenomic conflict between integrative MGEs and bacterial transformation is a key

prediction of the chromosome curing hypothesis [13]. In this model, bacteria use transforma-

tion to delete costly MGEs from chromosomes by recombination at flanking persistent genes

and the latter strive to counteract this mechanism. This is consistent with most of our observa-

tions described above, notably the accumulation of MGEs in non-transformable strains and

counter-selection of the latter. It is also consistent with our observation of higher rates of

recombination on core genes flanking MGEs. However, this does not explain why conjugative

plasmids in Lp are repressing transformation via RocRp. Plasmids cannot be deleted from the

chromosome because they are extra-chromosomal. They also usually lack persistent genes and

transformation is not expected to delete them. In other bacterial species RocRp can be found

in chromosomal islands and in ICEs [61]. Yet, in Lp this gene is exclusively confined to a clus-

ter of closely related, but not identical, plasmids where it has a very strong negative effect on

natural transformation. This suggests that intragenomic conflicts between MGEs and bacteria

regarding transformation extend to extra-chromosomal elements. We speculate that plasmids

might block transformation to prevent the acquisition of incompatible plasmids, exploitative

MGEs, or anti-plasmid defense systems. By blocking transformation, RocRp could also con-

tribute to the preservation of chromosomal MGEs in positive epistatic interaction with the

plasmid. In addition, plasmids could encode RocRp to avoid recombination with DNA enter-

ing by transformation from other partly homologous plasmids that could lead to deletion of

non-homologous regions and/or create plasmid instability. In any case, these results strongly

suggest that intragenomic conflicts between MGEs and natural transformation are not

restricted to the effect of chromosome curing.

The interplay between anti-MGE systems and transformation is complex in the presence of

MGE-driven intragenomic conflicts. Defense systems may decrease transformation rates by

blocking the entry of exogenous DNA or they may increase them by blocking the acquisition

of transformation-inhibiting MGEs. When we excluded the known adaptive defense systems

(CRISPR-Cas) we found a negative association between defense systems and transformation

rates. Many of these are restriction modification systems, by far the most abundant defense

systems of bacteria [62]. Restriction systems were shown to reduce transformation efficiency

in specific strains of P. stutzeri [63], H. pylori [64], Neisseria meningitidis [8], C. jejuni [65,66],

S. pyogenes [67], and Ab [43]. CRISPR-Cas are adaptive immune systems and their presence is

positively correlated with transformation in both species. The opposed associations of

CRISPR-Cas and restriction-modification systems can be explained by the way they work.
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CRISPR-Cas systems cannot efficiently protect from transformation because, contrary to R-M,

they cannot block generic heterologous DNA but only elements carrying the sequences match-

ing their spacers. Hence, they have probably very little if any role in preventing the acquisition

of homologous DNA by transformation. Since they protect the bacterium from the acquisition

of MGEs that might block transformation, they have a net positive effect on transformation

rates. This means that the impact of defense systems on the variation of transformation rates

depends crucially on the specificity and adaptability of their mechanisms of action.

In spite of the differences enumerated above between Ab and Lp, we found striking parallels

between these species with different lifestyles and gene repertoires. Both have widely variable

transformation rates evolving according to a jump process and decreasing genetic linkage.

Non-transformability is scattered across the species trees, seems to be counter-selected, and is

associated with the presence of MGEs. This suggests common reasons for the variability of

transformation rates. Intragenomic conflicts driven by MGE are compatible with most of the

data, suggesting that bacteria–MGE interactions are key drivers of the evolution of natural

transformation rates. If intragenomic conflicts seem to have a key role in the evolution of

transformation rates, their underlying causes, e.g., chromosome curing of MGEs, are not nec-

essarily the only reasons for the selection for natural transformation. Other putative advan-

tages of transformation, gene transfer, nutrient acquisition, or DNA repair, are lost if the

mechanism is inhibited by MGEs. These advantages have the potential to further increase the

intragenomic conflict between the bacterium, which benefits from natural transformation,

and the MGEs that benefit from blocking it.

Materials and methods

Bacterial strains, origin and typing

We analyzed draft assemblies of 830 Lp clinical strains from the Centre National de Référence

pour Legionella (CNRL) collection and of 510 Ab environmental and clinical strains. We

sequence typed Ab collection with mlst v.2.19.0 (https://github.com/tseemann/mlst). The Lp

collection was assembled from clinical isolates collected in France from 2018 to 2020 and was

sequence typed by the CNRL. This publication made use of the PubMLST website (https://

pubmlst.org/) developed by Keith Jolley [68] at the University of Oxford. We also typed Ab

capsules with Kaptive v.2.0.3 [40,69]. The search for antimicrobial resistance genes was done

with ABRicate (https://github.com/tseemann/abricate) which used the following databases

ARG-ANNOT [70], CARD [71], MEGARes [72], and VFDB [73].

Plasmid constructions

Plasmid pJET.Lp-pilMNOPQ::nLuc was constructed by cloning the nanoluc gene (Nluc) along

with flanking arms of 2,000 bp from the pilMNOPQ locus obtained from the genomic DNA of

Legionella pneumophila strain Paris. Plasmid pJET.Ab-pilMNOPQ::nLuc was constructed by

cloning the nanoluc gene along with flanking arms of 2,000 bp from the pilMNOPQ locus

obtained from the genomic DNA of Acinetobacter baumannii strain A118. The gene NLuc is

expressed from a synthetic promoter, Ptac. This promoter is normally repressed by lacI, but

since both tested species lack the lac operon, the promoter is strong and constitutive.

Plasmids are used uncut because they cannot replicate in the tested species, thus transfor-

mants can only be obtained through recombination with the chromosome. The initial step of

transformation is fragmentation of the transforming DNA, this has higher chance to occur

outside of the cassette when cloned on a plasmid, lowering the chance of cleavage happening

within the NLuc gene or within the homology arms.

PLOS BIOLOGY Intragenomic conflicts with mobile genetic elements drive natural transformation evolution within species

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002814 October 14, 2024 17 / 38

https://github.com/tseemann/mlst
https://pubmlst.org/
https://pubmlst.org/
https://github.com/tseemann/abricate
https://doi.org/10.1371/journal.pbio.3002814


Natural transformability assay for L. pneumophila
L. pneumophila strains from frozen stock cultures were thawed, 5 μl of the cells were spotted

onto CYE solid medium plates and incubated for 3 days at 37˚C. Cells from the plates were

subsequently resuspended into 100 μl liquid AYE medium in 96-well plates using a 96-well

Scienceware replicator and allowed to grow for 3 days at 37˚C in a shaking incubator. Next,

2 μl of this culture was transferred to 100 μl of fresh AYE medium in 96-well plates containing

20 ng/μl of pJET.Lp-pilMNOPQ::nLuc plasmid DNA and allowed to grow for 3 days at 30˚C in

a shaking incubator. As this plasmid is non-replicative in L. pneumophila, DNA molecules

which are internalized undergo a double recombination event allowing the insertion of nano-
luc gene in the pilMNOPQ locus and subsequent expression of the NanoLuc Luciferase

enzyme. Subsequently, 80 μl of cells were mixed with 20 μl of the Nano-Glo Luciferase Assay

Substrate and Nano-Glo Luciferase Assay Buffer followed by incubation at room temperature

for 10 min. The expressed NanoLuc Luciferase enzyme was reported as luminescence units

(LUs) on a Promega GloMax Navigator plate reader. The optical density of the cell suspension

at 600 nm was detected on a Tecan plate reader. Relative luminescence units (RLUs) were cal-

culated by dividing the luminescence values by the optical density values. RLU values were

used as a proxy for transformability of the strains. The assay was repeated independently for

each strain in the collection between 3 to 6 times. In Lp, competence occurs at the transition

between exponential and stationary [61]. It is possible that some strains display different

kinetic of expression. To limit this effect, transformation experiments were conducted with

transforming DNA present during the entire growth experiment.

Natural transformability assay for A. baumannii
Natural transformation in A. baumannii requires induction by agarose. Agarose soluble

extract media (ASEM) was prepared by adding 2 g of Agarose D3 (Euromedex) to a 5 g/L solu-

tion of Tryptone media (Bacto). This suspension was vortexed for 5 min and subsequently cen-

trifuged to sediment the insoluble agarose particles. The supernatant was collected and filtered

using a 0.22 μm filter. A. baumannii strains from frozen stock cultures were thawed, subse-

quently 2 μl of cells were transferred to LB medium (Lennox formulation) and incubated over-

night at 37˚C. The following day, 2 μl of cells were transferred to ASEM containing 2 ng/μl of

pJET.Ab-pilMNOPQ::nLuc plasmid DNA using a 96-well Scienceware replicator and allowed

to grow overnight at 37˚C. As this plasmid is non-replicative in A. baumannii, DNA molecules

which are internalized undergo a double recombination event allowing the insertion of nano-
luc gene in the pilMNOPQ locus and subsequent expression of the NanoLuc Luciferase

enzyme. Subsequently, RLU values were calculated similarly as described above for L. pneumo-
phila. The assay was repeated independently for each strain in the collection between 4 to 6

times. In A. baumannii, competence is expressed in exponential phase [74]. It is possible that

some strains display different kinetic of expression. To limit this effect, transformation experi-

ments were conducted with transforming DNA present during the entire growth experiment.

Recently, an R-M system was discovered that restricts transformation of replicating plas-

mids but has a lesser effect on transformation of DNA recombining with the chromosome

(which is what is tested in our assay) [43]. It should be noted that the transforming DNA used

in our assay is extracted from an E. coli strain whose methylation system (dam) protects from

this A. baumannii R-M.

Validation of the natural transformability assay

We, first, verified that the number of transformants had a linear relationship with the measured

luminescence. To do so, we measured the luminescence values of serial dilutions of transformed

PLOS BIOLOGY Intragenomic conflicts with mobile genetic elements drive natural transformation evolution within species

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002814 October 14, 2024 18 / 38

https://doi.org/10.1371/journal.pbio.3002814


bacteria. We isolated 3 transformants of the A. nosocomialisM2 strain. They were grown to obtain

cultures whose titers were determined (colony-forming unit, CFU, per 100 μl). Then, 10-fold

serial dilutions were made and the luminescence of 100 μl suspension was determined. This

results in a plot (S13 Fig) in which we can see a linear relationship between CFU count (equivalent

to the number of transformants) and luminescence (adjusted r2 = 0.99, p< 2.2 × 10−16). This is

true down to 2 × 102 CFU, which means that we can detect 20 transformants in a well.

We, then, benchmarked our assay by comparing the transformation frequencies deter-

mined by selection with a genetic marker and by luminescence values. A. nosocomialis M2

strain was transformed with varying amounts of the transforming plasmid, which conveniently

carries Nluc but also a genetic marker, kanamycin. After transformation, the culture was used

to determine the transformation frequencies, defined here as the ratio of the determined CFU

count of transformants (on selective plates with kanamycin) and the total CFU count (non-

selective plate). The luminescence of the same culture was measured. Luminescence measure-

ments and transformation frequencies had a good fit using linear regression (adjusted r2 =

0.95, p = 1.25 × 10−4, S14 Fig).

To ensure the variations in luminescence were not simply the results of variations in expres-

sion of the luciferase marker, we transformed a random set of 60 isolates with the nanoluc marker

(which also confers resistance to kanamycin). Because not all isolates are kanamycin-sensitive, we

ended up with 15 transformed isolates. We cultured them and measured the luminescence level.

These strains show 100-fold variations in transformation frequencies determined by nanoluc, yet

quantification of the amount of Nanoluc they produce shows only a 3-fold difference between the

minimum and maximum values (S11 Data). Thus, variations in transformation frequencies could

not be attributed to variations in expression of nanoluc between strains.

To further validate our assay, we tested it with well-documented strains, including mutants

whose transformation defects were well known. All these strains and their RLU measurements

are to be found in S15 Fig. These results confirm that our system is able to recapitulate pub-

lished data. Notably, that comM inactivation decreases transformation by more than one order

of magnitude and that comEC inactivation decreases RLU levels to below the threshold we

used to class strains as non-transformable. Finally, it shows clear differences between the trans-

formable and non-transformable wild-type strains in terms of RLU.

Assessment of the transformability phenotype

Since the number of Ab or Lp transformants is linearly correlated with the luminescence signal

(S13 Fig), each strain transformation rate was then calculated as the average of the log10-trans-

formed OD-corrected luminescence value on all the replicates. We used the average on all rep-

licates because the assay gave reproducible results between replicates: Spearman correlation

coefficients were on average 0.72 in Lp and 0.90 in Ab (S7 Data and S16 Fig). The log10-trans-

formation of the OD-corrected raw luminescence values reduced the skewness of the different

replicates and allowed us to compare them. The threshold between transformable and non-

transformable strains (Lp: LumR/OD = 300, Ab: LumR/OD = 400) was set based on the maxi-

mum of the transformation rates of a non-transformable strain: the Lens strain for Lp (120

replicates) and an engineered ΔcomEC strain for Ab (28 replicates). We chose to use the maxi-

mum as a threshold to ensure that any strain we classified as transformable with a transforma-

tion rate beyond this threshold could not actually be non-transformable.

Construction of pangenomes

We removed poor quality draft assemblies with PanACoTA v.1.2.0 [75] keeping drafts with

less than 100 contigs when the sum of the 100 largest contigs was at least 90% of the genome

PLOS BIOLOGY Intragenomic conflicts with mobile genetic elements drive natural transformation evolution within species

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002814 October 14, 2024 19 / 38

https://doi.org/10.1371/journal.pbio.3002814


(L90� 100). We excluded strains that were too similar to already included strains or too dis-

tant from the other strains in terms of mash distance to be part of the species (Lp = [10−6;0.1],

Ab = [10−6; 0.06]). After filtering, we were left with 786 Lp isolates and 496 Ab isolates, all

listed in S8 Data.

We annotated the draft assemblies (prokka from PanACoTA v.1.2.0 completed with eggnog-
mapper 2.1.9) and built the pangenome of each collection using single-linkage clustering to

form families of proteins with at least 80% identity (using mmseqs2 v.12-113e3 within PanA-
CoTA v.1.2.0). We defined the persistent genomes of each species. A pangenome family was

considered persistent if at least 95% of the genomes had a unique member of this family (Lp:

11,932 pangenome families and 2,326 strict-persistent pangenome families, Ab: 31,103 pan-

genome families and 2,629 strict-persistent pangenome families).

Competence genes presence/pseudogenization

We gathered from the literature a list of competence genes and genetic elements (protein cod-

ing genes, sncRNA) involved in the transformation process (S13 Data). We checked in all our

strains for the presence of these elements. We retrieved their protein sequences from Paris and

Philadelphia strains for Lp and from A. pittii PHEA-2 and A. baumannii D1279779 for Ab,

respectively. We searched for homologous regions to proteins involved in transformation

using tblastn v.2.12.0 (-evalue 0.001, -seg no) in the genomes in our collection [76]. We

deemed a gene present if the alignment given by tblastn had more than 80% identity with the

query protein and covered more than 80% of it. sncRNA genes were searched with blastn
v.2.12.0 (-evalue 1e-10). A sncRNA gene was present if the alignment with the query gene had

100% identity and covered more than 90% of it.

When the protein coding gene was not present, we searched for pseudogenes. We consid-

ered that we identified a pseudogene of a competence gene when we identified a gene/pseudo-

gene more than 80% identical to the query protein and with an alignment covering between

20% and 80% of the protein (using the output of tblastn as described above). Some genes may

look like disrupted simply because they are at the border of a contig. To account for contig

borders, we considered that if in addition the alignment was located at less than 50 nucleotides

from the end of the contig, we could not classify it as present, missing or pseudogene and

called them unascertainable. Some genes marked as pseudogenes are split on 2 different con-

tigs. They may be interrupted or not in the actual genome. If both alignments are at the border

of the contigs (less than 50 nucleotides from the end of the contig), this is consistent with the 2

hypotheses, and we marked them as unascertainable. If they are not both at the border, we

marked them as pseudogenes.

Pseudogenes with large nucleotide insertions were further characterized to assess if the dis-

ruption was due to MGE and/or AMR genes. A supplementary step to assess the nature of the

interruption was necessary when these pseudogenes were split on 2 contigs. We took the 2

alignments of the gene (one in each contig) and ordered them in relation to the known full

gene sequence. This allowed to identify the sequence interrupting the gene. This was only the

case for ComM protein, which has 3 domains organized in the following order: chlI

(PF13541.9), Mgch (PF01078.24), and MgchC (PF13335.9). We relied on the coordinates and

order of the domains in our alignments to identify the correct region of interruption in which

we would search for MGEs and AMR genes. To specifically identify if an AbaR was interrupt-

ing comM, we searched for the conserved sequences any AbaR contain in its terminal region:

the left-end conserved sequence (CSL) and the right-end conserved sequence (CSR) that corre-

sponds to tniC and tniA presence and orf4 presence, respectively [77]. To do so, we searched

for homologous regions to TniC (WP_000736404.1), TniA (WP_000573062.1), and Orf4
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(WP_001144958.1) using tblastn (blast+/2.10.1) in comM region of interruption. Each gene

was deemed present if the alignment had more than 80% identity with the query protein and

covered more than 80% of it. We deemed an AbaR being present in the genome when at least

1 conserved sequence out of CSL and CSR was identified. We did not observe any interruption

of comM in Lp. We nevertheless searched for the Tn7-like AbaR backbone (CSL and CSR) in

Lp genomes with the same method but relaxed the filtering constraints (-evalue 1e-03). No

Tn7-like elements were found in Lp.

In Acinetobacter baumannii, we had to devise a specific method to search for pilA

because of the high variability of its sequence across the species [78]. We searched the most

conserved region of pilA, the pilin domain (PF00114) in the representative sequence of each

gene family with hmmsearch (hmmer/3.3.2). We considered that the pilin was present when

the sequence score of the alignment was above the gathering threshold score cutoff (—

cut_ga). Every gene family (34) presenting this domain was considered encoding PilA and

every strain having this gene family was deemed having pilA. We checked if the strains lack-

ing these gene families could actually have an even more diverging sequence for pilA. We

searched for homologous regions of 4 PilA proteins (QNT88830.1, WP_000993715.1,

WP_031953428.1, WP_000993729.1) previously studied in A. baumannii [78] using tblastn
v.2.12.0 (-evalue 0.001, -seg no) in the genomes of those strains. We relaxed the constraints

compared to other genes and considered the gene present if the alignment with the query

had more than 40% identity, 20% coverage, and a total length between 100 and 200 amino

acids.

We also searched for the presence of the rocRp gene in the complete genomes of Lp from

RefSeq downloaded on May 2023 using blastn v.2.12.0. We deemed it present when the same

criteria as above were met (100% identity, 90% coverage). To check that chromosomes do lack

rocRp, we made a complementary analysis using a lower threshold of identity (90%). This

analysis also failed to reveal chromosomal versions of the gene.

Variant calling and estimation of genetic linkage

We identified single-nucleotide polymorphisms (SNPs) and small insertions and deletion

(indels) in our strains using as a reference genome the Paris strain for Lp and the AB5075

strain for Ab. The identification was done using snippy v.4.6.0 (https://github.com/tseemann/

snippy). We annotated them and predicted their functional effects with snpEff v.4.3 [79].

From the previous variant calling, we only kept biallelic SNPs that were polymorphic in

transformable strains and in non-transformable ones. We defined nonoverlapping windows of

500 bp that scanned the whole genome. We considered pairs of SNPs (A, B). In each pair, we

calculated pr the frequency of the reference allele of SNP A (Aref) and qr the frequency of the

reference allele of SNP B (Bref). We also calculated xrr the allelic frequencies of each pair of

SNPs (Aref, Bref). We were then able to compute the D measure of linkage disequilibrium, its

normalized value D’ and the r2, the square of the correlation coefficient of each pair of SNPs as

follows [80].

D ¼ xrr � prqr

D0 ¼

( xrr � prqr
Dmax

if D > 0

xrr � prqr
Dmin

if D < 0

r2 ¼
D2

prð1 � prÞqrð1 � qrÞ
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with

Dmax ¼ minðprð1 � qrÞ; ð1 � prÞqrÞ

Dmin ¼ maxð� prqr; � ð1 � prÞð1 � qrÞÞ

We compared the distribution of r2 in each genomic window between transformable and non-

transformable populations. To assess if there was any difference in genetic linkage along the

genome between transformable and non-transformable strains, we computed an average r2 for

each window in both populations and tested with a Wilcoxon rank-sum test if the difference

between the two, Δr2, was positive, i.e., if we rejected the null hypothesis H0, Δr2�0.

Dr2 ¼ r2

meanðNTÞ � r2

meanðTÞ

Phylogenetic inference and analysis of recombination

We took the gene families that were regarded as persistent in Ab and Lp. In each species, we

aligned each gene family with mafft v.7.467 [81] within PanACoTA v.1.2.0 (default parameters)

[75] at the protein level. We back translated protein alignments to nucleotide ones (i.e., we

replaced each amino acid by its original codon) because the latter provide more signal when

one studies polymorphisms at the species level. Alignments at nucleotide level were

concatenated to make 2 matrices of alignments of 2,629 strict-persistent genes in Ab and 2,325

strict-persistent genes in Lp ordered according to the persistent genes order and orientation of

a complete genome of the collection (Lp: Paris strain; Ab: AB5075 strain). If a persistent gene

was missing from the complete genome, its position and orientation was inferred from the

most often frequent position and orientation it had in the collection. These matrices were then

used as an input to IQTree v.1.6.12 modelfinder [82–84] to build the phylogenetic tree of each

species.

We made a subsequent step of phylogenetic inference to account for the presence of recom-

bination. We took the previous tree and used it as a starting point for Gubbins v.2.4.1 [85].

Gubbins v.2.4.1 allowed us to mask the regions in the alignment whose polymorphism was due

to recombination. We finally built the phylogenetic trees based on the recombination region-

free alignment with IQTree v.1.6.12 modelfinder according to which the best-fit model based

on BIC was TVM+F+I+G4. To ensure of the branch robustness, we performed a 1,000 ultrafast

bootstrap.

Trees were rooted based on outgroups: L. longbeachae for L. pneumophila and A. baylyi
ADP1 for A. baumannii. We added each outgroup to their respective collection. We built their

pangenomes, defined their strict-persistent genomes, and aligned them in the same manner

we did for the initial collections and with the same parameters. We finally built the phyloge-

netic tree based on this alignment with IQTree v.1.6.12 modelfinder (best-fit model: TVM+F+I

+G4; 1,000 ultrafast bootstraps) so as to determine the position of the root in the recombina-

tion-free phylogenetic tree. All trees are listed in S1 Data.

We compared the changes in topology and branch lengths between the recombination-

unaware and the recombination-free phylogenetic tree by measuring their weighted Robin-

son–Fould (wRF) metric (phangorn R package: wRF.dist function). This metric counts the

minimum number of branch rearrangements needed to transform one tree into another and

weights each branch by its length.

The average root-to-tip distance of the phylogenetic tree was calculated by averaging the

distance to the root of each tip (adephylo R package: distRoot function).

Of note, Gubbins was initially intended to be used for the analysis of very closely related

strains to identify recent events of recombination [85]. In this study, we used it mostly to
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characterize recent events of recombination. FastGear is a software specifically developed to

identify ancient events of recombination [86]. Its publication study shows that for recent

events of recombination there is no significant advantage in using FastGear or Gubbins. Since

FastGear is not adapted to the study of such large-scale genome data, we used Gubbins

throughout our work. To assess the robustness of our key findings we compared our results

when using the recombination-corrected phylogeny (the standard approach used everywhere

except when explicitly stated across the main text), the tree without correction for recombina-

tion, and a third analysis where recombination was inferred with Gubbins from randomly

ordered multiple alignments (in Ab). These different methods seem to have relatively little

impact on the results (S17 Fig).

We also used the information on recombination tracts covering the persistent genes to

assess the likelihood that neighboring non-persistent genes arose or were affected by

recombination.

Phylogenetic signal

We looked for phylogenetic inertia of the transformation trait in the rooted recombination-

free phylogenetic trees. We calculated the phylogenetic signal on the log10-transformed trans-

formation rates with Pagel’s λ and Blomberg’s K (phytools R package: phylosig function with

test = TRUE to conduct a hypothesis test of K or λ) [87] and on the binary transformation phe-

notype with Fritz and Purvis’ D statistic (caper R package: phylo.d function and its default

parameters) [33].

Model of evolution for the trait

We assessed the models of the quantitative evolution of the trait. For this we used the log10--

transformed transformation rates across the rooted recombination-free phylogenetic trees. We

tested all the models mentioned in S4 Data for the trait evolution with fitContinuous function

from geiger R package [88] and with fit_reml_levy function from pulsR R package [34]. We

used the AICc as the selective criterion for the quality of model fit.

Ancestral reconstruction of the transformation trait

We reconstructed the ancestral states of the binary transformation trait along the recombina-

tion-free rooted phylogenetic tree using the MAP prediction method and the F81 evolutionary

model of PastML v.1.9.34 [89]. We only kept nodes for which one of the possible reconstructed

states had a marginal posterior probability superior to 0.6. We then assigned to the node the

transformation state with the highest marginal posterior probability.

Plasmid identification in draft assemblies

We classified contigs as plasmid by calculating the weighted gene repertoire relatedness

(wGRR) of each contig against each RefSeq plasmid genome. We first searched for sequence

similarity between all of their proteins using blastp (blast+ v.2.12.0). For each pair of contig/

plasmid, the wGRR takes into account their number of bidirectional best hits and their

sequence identities and gives an assessment of their gene repertoires similarity with the follow-

ing formula:

wGRR ¼
X

i

idðAi;BiÞ

minðA;BÞ

For a pair of elements A and B, id(Ai, Bi) is the sequence identity of the i-th pair of homologous
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proteins. Min(A,B) is the number of proteins in the smaller element. The wGRR of 2 elements

is thus defined as the sum of the identity for all pairs of homologous proteins normalized to

the number of proteins found in the smallest element.

Contigs with a wGRR superior to 0.9 were kept and preliminarily assigned to the corre-

sponding plasmid. These contigs could either be from a plasmid or be a part of the chromo-

some carrying a MGE similar to the plasmid. Contigs respecting the wGRR criterion, shorter

than 500 kb (the maximum size of Ab and Lp RefSeq plasmids being around 300 kb) and car-

rying less than 50% of persistent genes were deemed part of a plasmid (S18 Fig). In Lp (Ab),

97.4% (43.3%) of the plasmids had no persistent gene at all. If the total length of the contigs

assigned to the plasmid in a sample was longer than 40% of the actual plasmid length, we took

this as indication of the presence of the whole plasmid in the sample. Contigs longer than 500

kb and with at least twice the number of proteins than the plasmid it was assigned to were

deemed to be part of the bacterial chromosome.

We encountered in Ab 2 plasmids, Ab TG29392 plasmid pTG29392_1 from Ab TG29392

strain and plasmid pVB2107_2 from Ab VB2107 strain, which were completely integrated into

chromosomal contigs (hits covering more than 50% of the plasmid). pTG29392_1 was inte-

grated in one contig in 14% of the samples and pVB2107_2 in one contig in 3% of the samples.

We classed these contigs as chromosomal contigs.

Identification of MGEs and defense systems

We characterized the different types of mobile genetic elements. Conjugative elements were

searched using Macsyfinder 20221213.dev [90,91] and the CONJScan/Chromosome model

(https://github.com/macsy-models). We detected conjugative systems (CONJ) which are com-

plete conjugative systems formed by a T4SS, a type IV coupling protein (t4cp) and a relaxase,

mobilizable systems (MOB) which are systems that have a relaxase that is either alone or co-

localizing with a CONJ component but not enough of the latter to make a functional conjuga-

tive system. We checked if 2 contigs of a sample presented complementary incomplete CONJ

on their extremities. If so, we included them with the other conjugative systems.

Available methods cannot precisely delimit the ICEs. Hence, we defined them as regions at

a distance of less than 10 kb from a conjugative system on the contigs that we did not identify

as plasmid-like (cf. Plasmid identification in draft assemblies). This is a conservative estimate,

given the average size of ICEs of Proteobacteria: 58 kb for MPFT, 84 kb for MPFG, and 87kb

for MPFF [92].

Insertion sequences were searched using ISEScan v.1.7.2.3 [93]. We used the option—

remove-ShortIS to remove incomplete IS elements that is to say IS elements of length inferior

to 400 bp or single copy IS element without perfect terminal inverted repeat.

Putative prophages were initially searched using VirSorter v.2.2.3 (docker://jiarong/virsor-

ter:latest) [94]. We further analyzed the resulting elements with CheckV v.0.7.0 [95] and kept

the ones deemed of high and medium quality. These putative viral regions were then anno-

tated using PHROG v.4 [96]. We built the hmm profiles of each PHROG based on their multi-

ple alignments with hmmbuild (hmmer/3.3.2 default parameters). We searched for those

profiles in the previous viral regions with hmmsearch (hmmer/3.3.2 default parameters). We

also calculated a viral quotient for each PHROG annotation with the following formula:

VQ ¼
PHROG hits in phages ðall RefSeqÞ

PHROG hits in phages ðall RefSeqÞ þ PHROG hits in bacterial chromosome without prophages ðall RefSeqÞ

Gene families with a viral quotient superior to 0.9 were specific to phages and were as such

labeled as phage-specific genes. The final list of prophages was obtained from the preliminary
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list by including information on the core genes (that should not be within prophages) and on

the PHROG hits (which should be in prophages). Each putative prophage comprised between

2 persistent genes in a putative prophage containing at least 5 genes among which one had a

PHROG annotation and whose average viral quotient is more than 0.5 was deemed to be a

prophage.

Integrons were searched for using IntegronFinder v.2.0.2 [97–100].

We also characterized defense systems. CRISPR-Cas systems were searched using CRISPR-
CasFinder v. 4.2.20 [90,91,101,102]. We retained the ones verifying the following criteria: the

presence of a Cas gene in the corresponding genome, the presence of more than 2 spacers in

the array, and imposing a mean size for spacers of at least 15 bp. We identified the targets of

these spacers by running blastn and its task option of blastn-short (blast+ v.2.12.0) on our col-

lection of genomes, available RefSeq plasmids and GenBank phages setting the same parame-

ters as CRISPRTarget (CRISPRSuite) [103]. We searched for other potential defense systems

with the DefenseFinder models v.0.0.3 [62] using Macsyfinder 20221213.dev [91]. This version

searched for 109 defense systems.

A summary of the amount of MGEs each strain carries can be found in S14 Data.

Presence of MGEs in recombination regions

The analysis of Gubbins to detect recombination was made on the persistent genes (present in

most genomes, see above). To know if recombined regions potentially encompass MGEs

(which are never persistent genes), we had to devise a different method. First, we counted for

each persistent gene how many times it was part of a recombination tract, thus obtaining a

measure of their recombination rate. In parallel, we identified the closest upstream and down-

stream persistent genes for every characterized MGE. Of note, we could not determine the

flanking persistent genes of 39.1% (30.0%) of the MGEs because none was present in one of

the directions in the contig. Among these, 9.5% (24.2%) were on contigs classified as plasmids

in Ab (Lp). These elements were excluded from the analyses of genomic neighborhood. We

then separated the persistent genes flanking MGEs from the others. Finally, we compared the

frequency of recombination of persistent genes of these 2 groups using a Wilcoxon test. We

classed the loci of MGE integration into several categories: conjugative systems, phages, ISs,

and defense systems hotspots.

Genome-wide association study

We performed a genome-wide association study (GWAS) to identify genetic determinants of

transformation. We used a unitig-based approach (GWASU). A unitig is an unambiguous

combination of k-mers that represents the sequences without branch in the assembly graph.

This approach allows to encompass information: on SNPs and large and small indels. We can

thus test all these different levels of genetic variants all at once in the GWASU. This was done

on the binary transformation phenotype (TFbin) using respectively 786 L. pneumophila
genomes and 496 A. baumannii genomes with pyseer v.1.3.9 [104]. The unitigs were called on

our collection of draft assemblies with unitig-caller (from conda installation of pyseer). The

association between the unitig or the gene presence/absence and the transformation pheno-

type was assessed with a LMM. The recombination-free phylogenetic tree allowed us to gener-

ate a distance and a kinship matrix using the scripts coming with pyseer, which were used in

the LMM to control for population structure. We generated the QQ-plots of this analysis (S9

Fig) with qq_plot.py script provided by pyseer to verify if it was properly corrected notably for

population structure. To address the problem of multiple comparisons in our analysis, we

applied a Benjamini–Hochberg adjustment on the p-value of association already adjusted for
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population structure [105]. We deemed the association between the presence of a unitig (or a

gene) and the transformation phenotype significant when the adjusted p-value was inferior to

0.05. As a matter of comparison, we also computed the Bonferroni threshold of significancy

with scripts provided by pyseer. This Bonferroni correction is made with the number of unique

variant patterns as the number of multiple tests. The use of Bonferroni correction with the

number of unique variant patterns (Lp: 406151; Ab: 357728) gave very stringent significancy

thresholds (Lp: 1.23 × 10−7, Ab: 1.4 × 10−7). With this correction only 1 gene family associa-

tion, which was negative, remained significant in Ab (and not ComM which was shown to

modulate transformation rates experimentally and is correctly identified by the FDR analysis)

while in Lp 65 negative and 6 positive associations stayed significant.

To study the functions of genes with unitigs that were deemed significantly associated with

changes in transformation rates, we first identified the genes having the unitigs with the anno-
tate_hits_pyseer.py script provided by pyseer. To get a clearer picture of the associations, we

summarized the characteristics of each gene association over all the unitigs mapping the gene,

notably its statistical significance and its positive or negative effect on the phenotype. We only

consider genes that are mapped by at least 1 significant unitig. These genes can be mapped by

unitigs with significant effect of different signs (positively and negatively associated with trans-

formation), in which case we exclude them from the main analysis and study them separately

(see below). We are then left with genes mapped by unitigs (often many) for which those sig-

nificantly associated with transformation are all of the same sign.

Following pyseer summarize_annotations.py, we summarized the positive or negative asso-

ciation between these gene families containing the unitigs and the phenotype, its effect size (by

averaging it over all the unitigs of the significant effect sign that mapped the gene), its signifi-

cance (by assigning the p-value of the most-significantly associated unitig with the gene), its

minimum allele frequency and the number of unitigs mapping them. We added on top of the

functional annotation the information on the presence of the gene family in an MGE or a

secretion system (as defined above). In the case of Lp, we also studied the unitigs in the light of

the presence of sncRNA.

For the unitigs that were annotated as carrying a RM system in Ab and significantly associ-

ated with the transformation phenotype, we additionally verified if this was the system

described by Vesel and colleagues [43] in A118 strain. To do so, we extracted the unitigs that

mapped to the restriction modification systems. We then performed a nucleotidic alignment

of these unitigs to the coding sequences composing this specific RM system, that is to say

H0N27 10820 (methylase), H0N27 10825 (helix-turn helix transcriptional regulator), and

H0N27 10830 (restriction endonuclease), with blastn (—task blastn, blast+/2.10.1). There was

no identity between these unitigs and the previously listed components. This lack of identity

suggests that we are not looking at the same RM-systems. However, we cannot exclude that

the RM systems pointed out by the unitigs may have a similar mode of action of this RM sys-

tem. Indeed, the mode of action of Vesel and colleagues’ RM system does not rely on the meth-

ylation marks of the non-self DNA but rather consists in adding a methylation mark to the

self-DNA and protect it from the endonuclease action while the non-self DNA without the

mark can be degraded.

Detection of genes with variants of opposite effect on transformation

Some gene families were associated in an ambiguous way with the transformation phenotype.

In Ab (Lp) 12% (43%) of the genes with 1 unitig significantly associated with variation in

transformation rates also had unitigs whose effect was significant and of opposite sign. We

treated those genes separately. Indeed, such a situation could be explained by unitigs carrying
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variants of the same gene (or same type of MGE) differently associated with the phenotype. So,

averaging the effect size as we did before over all the unitigs of the gene would give misleading

information on the association (e.g., if 2 unitigs have effects of symmetrical amplitude the aver-

age effect is zero, like for genes lacking unitigs altogether). We mapped the unitigs on the

genes and called the variants with snippy v.4.6.0 (https://github.com/tseemann/snippy). We

reduced the regions of interest to the regions that overlapped between unitigs of opposite asso-

ciation when this was possible. We summarized the positive or negative association to the phe-

notype, the effect size, the significance, the minimum allele frequency, and the number of

unitigs mapping to each variant. This procedure identified 52% (out of the 12%) of the genes

in Ab and 66% (out of the 43%) in Lp. These genes with overlapping unitigs of opposite sense

will be candidates for future analyses. Given their abundance, we further enquired on the

regions with such unitigs in Lp. In Lp, half of them were in gene families of ICEs.

Strains specificities affecting/affected by transformation rates

To characterize the association between traits across the tree, we need to take into account the

phylogenetic structure of the bacterial population. We used phylogenetic logistic regression

(phyloglm function from phylolm R package) [44] to estimate the effect diverse factors from

our data could have on the transformation phenotype. For the phylogenetic correlations to

take into account the phylogeny, we provided the recombination-free rooted phylogenetic tree

and fitted our data using the “logistic_MPLE” method with the following parameters: btol = 10

and boot = 100. Confidence intervals (alpha = 0.05) were computed from the estimates of the

stderr obtained given by phyloglm. All the test results can be found in S15 Data.

Search for serine and tyrosine recombinase in RocRp-carrying plasmids

We searched for tyrosine (PF00589) and serine recombinases (presence of both PF00239 and

PF07508) with hmmsearch (hmmer/3.3.2 —cut_ga). No tyrosine recombinase nor serine

recombinase were found.

Search for Xer-mediated recombination in RocRp-carrying plasmids

We searched for homologous regions to the 29-nucleotide conserved sequence of the Lp dif
site [106] in rocRp-carrying plasmids using blastn (—task blastn-short, blast+/2.10.1). We

found no hits with more than 80% identity and more than 80% coverage of the queried

sequence). We also searched for XerL orthologs in rocRp-carrying plasmids. We searched for

the XerL sequence from Lp strain Lp02 [106] in the plasmid genomes using tblastn (blast
+/2.10.1 -evalue 1e-03). We found no hits to this sequence in the RocRp-carrying plasmids.

Structural prediction of hypothetical proteins of interest

To get insights into the functional role of proteins of unknown function, we characterized

their protein domains. We first predicted their protein structure with ColabFold v.1.5. [107].

The output protein structure was then given to Foldseek server [108] which compared it to a

large collection of protein structures (6 databases: AlphaFold/Proteome, AlphaFold/Swiss-

Prot, AlphaFold/UniProt50, GMGCL, MGnify-ESM30, PDB100) in 3Di/AA mode.

Graphical representation of GWAS output

All the graphs were done with R v.4.1.0.
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accurate protein structure search [Internet]. bioRxiv; 2022 [cited 2023 Mar 20]. p. 2022.02.07.479398.

Available from: https://www.biorxiv.org/content/10.1101/2022.02.07.479398v4.
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