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1  |  INTRODUC TION

The study of correlated evolution between biological traits illus-
trates the tight interdependence between processes in evolutionary 
biology. The constant development of new tools (Table S1) to under-
stand these dependencies allows to predict residues in contact in 3D 

structures of proteins (Morcos et al., 2011) or to identify protein– 
protein interactions (Barker & Pagel, 2005). Nevertheless, the mea-
surement of these correlations is complicated by the phylogenetic 
relations (i.e. phylogenetic non- independence) between living enti-
ties, typically represented by a phylogenetic tree. As such, species 
belonging to the same taxon may share several residues or biological 
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Abstract
1. Correlated evolution describes how multiple biological traits evolve together. 

Recently developed methods provide increasingly detailed results of correlated 
evolution, sometimes at elevated computational costs.

2. Here, we present evo- scope, a fast and fully automated pipeline with minimal 
input requirements to compute correlation between discrete traits evolving on 
a phylogenetic tree. Notably, we improve two of our previously developed tools 
that efficiently compute statistics of correlated evolution to characterize the na-
ture, such as synergy or antagonism, and the strength of the interdependence 
between the traits.

3. Furthermore, we improved the running time and implemented several additional 
features, such as genetic mapping, Bayesian Markov Chain Monte Carlo estima-
tion, consideration of missing data and phylogenetic uncertainty.

4. As an application, we scan a publicly available penicillin resistance data set of 
Streptococcus pneumoniae and characterize genetic mutations that correlate with 
antibiotic resistance.

5. The pipeline is accessible both as a self- contained Github repository (https://
github.com/Maxim e5G/EvoScope) and through a graphical galaxy interface 
(https://galaxy.paste ur.fr/u/maxim eg/w/evoscope).
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traits by vertical inheritance, a process which one usually wants to 
disentangle from convergence due to other processes, such as nat-
ural selection (Achaz & Dutheil, 2021). Therefore, the measurement 
of correlation between traits must either correct, or explicitly ac-
count for phylogenetic structure.

A typical application of the study of correlated evolution is the 
measure of the correlation between genetic factors and a given 
phenotype, that is, genetic mapping, generally performed through 
genome- wide association studies (GWAS). Multiple tools have been 
devoted to measure such correlation and use different methods 
to account for phylogenetic relationships (Table S1). While most 
methods add a correction term to account for the phylogeny, few 
explicitly rely on the topology of the phylogenetic tree (e.g. treeWAS 
Collins & Didelot, 2018). Particularly in bacteria, tree- aware GWAS 
has been critical to detect genetic variants involved in the evolu-
tion of antibiotic resistance (Farhat et al., 2019), virulence (Galardini 
et al., 2020) or niche adaptation (Gori et al., 2020).

We have previously developed two methods to measure cor-
related evolution on phylogenetic trees. First, epics is a heuristic 
method that calculates all possible orderings of mutational events 
affecting two traits occurring on a phylogenetic tree, and efficiently 
computes the probability to observe a number of co- counts equal 
or larger than the observed repartition (Behdenna et al., 2016). 
This method is closely related to the concentrated changes test 
(Maddison, 1990). The second tool, epocs, computes an estimate of 
the influence of the mutation of a first trait on the mutation rate of a 
second one by maximum likelihood (Behdenna et al., 2022). Notably, 
epocs assesses different possible interactions between the traits, 
such as induction or inhibition.

Here, we describe a novel software, evo- scope (EVOlutionary 
Study of Correlations of Occurrences on a Phylogeny), combining 
epics and epocs, to facilitate the detection of correlated evolution on 
phylogenetic trees for discrete traits. We further detail new features 
that we have added in the evo- scope implementation. Notable im-
provements include accelerated run- times (e.g. using sparse matri-
ces in epics), consideration of missing data in species traits, analysis 
of a single trait (i.e. GWAS), the analysis of forests of trees and a 
Bayesian Markov Chain Monte Carlo (MCMC) estimation.

2  |  DESCRIPTION OF THE E VO - SCOPE 
PIPELINE

The details of the epics and epocs models are described in Behdenna 
et al. (2016, 2022). Evo- scope provides new versions of these tools 
with additional features. The evo- scope pipeline consists of five 
steps: ancestral character reconstruction (ACR), parsing and for-
matting, running epics, running epocs and summarizing the results 
(Figure 1).

2.1  |  Ancestral character reconstruction

As initial input, a user provides a rooted phylogenetic tree and a 
file with the values of discrete traits at the tips. Pastml reconstructs 
the trait states on the internal branches of the tree using the JOINT 
model (Ishikawa et al., 2019; Pupko et al., 2000). Any other ACR tool 
or algorithm (e.g. Maximum A Posteriori in pastml) can be used as 

F I G U R E  1  Schematic representation of the evo- scope pipeline (see Methods). The user supplies a rooted phylogenetic tree with the 
values of n discrete traits at the tips. Pastml reconstructs the evolution of each trait (trait 1 “t1” and trait 2 “t2”) along the tree and an R script 
formats the reconstruction to display the mutations on the branches. The operation is repeated for n pairs of traits. Epics is then run as a 
pre- filter to identify significantly associated pairs of evolutionary processes (m) among the initial n. Next, epocs maximizes the likelihoods of 
four evolutionary models, one of independence and three of dependence, on the filtered pairs. An R script then summarizes the results and 
outputs the best model explaining the repartition of events on the tree. Finally, a figure can be generated for any pair considered to describe 
the gains of likelihood between nested models.
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long as one single state (defined or undefined) is provided on each 
branch.

2.2  |  ACR parsing and tree reformatting

Evo- scope then reconstructs the minimum set of mutational events 
compatible with the joint ML reconstruction of node states on the 
tree. A mutational event is defined as any change of a trait value 
between two consecutive nodes of the tree. At most one mutation 
per branch per trait is allowed: either a change occurred between 
the parent and daughter node or none.

2.3  |  Epics as a pre- filter

Evo- scope then runs epics to discover (by default) pairs of traits 
that co- occur frequently on the branches of the trees (Behdenna 
et al., 2016). Epics calculates all possible orderings of mutational 
events affecting two traits occurring on a phylogenetic tree, and 
computes efficiently the exact probability to observe a number 
of co- counts equal or larger than the observed repartition. Other 
scenarios for the pairs of traits placement are available, such as 
genealogically ordered pairs. Of particular importance is that the 
calculation of the p- value depends on the reconstruction of the 
ancestral traits. At this step, epics is used as a pre- filter as it runs 
very fast and it only detects statistical association between the mu-
tational events on the tree. Importantly, epics does not allow to pre-
dict an evolutionary scenario. As such, additional in- depth analysis 
is required to better describe the interactions between the muta-
tional events. However, for very large datasets, epics might be the 
only option available as running time increase substantially for the 
maximum likelihood- based tool epocs. The output of this step is the 
list of every event pairs that are significantly associated on the tree 
for a selected p- value threshold.

2.4  |  Epocs for the model discovery

For all significantly associated traits, epocs maximizes the likeli-
hood of multiple scenarios of induction to determine which of 
the trait influenced the occurrence of the other one. The multiple 
scenarios can contain from two to eight parameters and describe 
the interrelationship between the occurrence of two events on 
the tree. The parameters are divided into natural occurrence rates 
(�{i,j}, �{i,j}) and excited occurrence rates (�∗

{i,j}
, �∗

{i,j}
) for each of the 

trait (Figure 3a). The ratio between the excited occurrence rates 
and the natural occurrence rates defines the induction (hereafter 
termed “lambda”).

In the current version, the model exploration is restricted to 
three models of correlation compared to a model of independence. 
The three models of correlation describe either an induction of the 

first trait on the second one, vice- versa or a co- induction of both 
events. Scenarios of co- induction are modelled as independent of a 
third variable.

2.5  |  Summarizing the results

Finally, evo- scope extracts the likelihoods and parameter values 
inferred for each of the models. To select the best model for each 
pair, the program performs likelihood ratio tests (LRT) between 
nested models (Behdenna et al., 2022). Next, it compares the cal-
culated LRT value to a χ2 distribution whose degrees of freedom 
is the difference in the number of parameters between models. 
Finally, based on significant LRTs, evo- scope selects the “best” 
model by a trade- off measure which maximizes the LRT value and 
minimizes the number of model parameters. Evo- scope then al-
lows the user to select a pair and plot the likelihood gains between 
nested models.

3  |  ADDITIONAL NOVEL FE ATURES TO 
EPIC S  AND EP OC S

3.1  |  Analysis on multiple independent trees

The user can provide a list of independent trees (non- overlapping 
taxa), to either epics or epocs, with the same type of events. This 
feature is particularly useful whenever the same character can 
be analysed across unrelated clades. In particular, epics and 
epocs will collect the information of all the trees and generate 
a global result by integrating the information across all trees. To 
do so, epics computes an aggregated p- value convoluted across 
all trees, while epocs transmits the likelihood calculation across 
all trees.

3.2  |  Forest of trees

To account for phylogenetic uncertainty, the user can provide a 
forest of trees, such as generated by BEAST or MrBayes (Ronquist 
et al., 2012; Suchard et al., 2018), to either epics or epocs, and the re-
sults are ranked to extract the mode and 95% credibility intervals. In 
epics, the p- values are ranked by the tree likelihoods, while in epocs 
the results are ranked by the product of the epocs likelihood and the 
tree likelihood.

3.3  |  MCMC exploration of likelihood surface

In the standard epocs, the likelihood is maximized considering all 
possible arrangements, with some restrictions on the number of co- 
occurrences due to computational complexity. In the MCMC case, 
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the program is allowed to explore freely any possible arrangement 
of the co- occurrences. This feature is implemented in a third exe-
cutable epocs_mcmc. In this module, the user supplies a tree with 
events to analyse and a standard Metropolis- Hastings algorithm 
will explore the parameter distribution across the number of repli-
cates selected by the user (Hastings, 1970). Notable behaviours of 
the MCMC chain determine the relevancy of each parameter in the 
model. For example, a flat uniform distribution of the posterior is 
likely to reflect that this parameter is not pertinent in the model. In 
addition, the algorithm explores the order in the co- occurrences of 
the traits. Epocs_mcmc outputs a tab- delimited file compatible with 
Tracer (Rambaut et al., 2018).

3.4  |  Missing data

The presence of uncharacterized traits at the tips can be taken into 
account in each of the tools above. For epics, the branches where 
traits are unknown are masked, whereas for epocs and epocs_mcmc, 
branches containing an unknown trait value and those below are ex-
cluded in the likelihood calculation.

3.5  |  GWAS- like procedure

Epics and epocs have now the possibility of selecting either one char-
acter or two to test in the procedures. Whenever the user selects 
only one character, the analysis is similar to a GWAS, where any 
other character is tested against the one selected.

4  |  ANALYSIS OF AN ANTIBIOTIC 
RESISTANCE DATA SET

As test data, we retrieved 603 genomes of Streptococcus pneumo-
niae (Chewapreecha et al., 2014; Croucher et al., 2013, 2015; Lees 
et al., 2018). In this dataset, the resistance to penicillin is known and 
encoded as a binary variable (R for resistant strains, S for suscepti-
ble strains). Also, 198,248 single- nucleotide polymorphisms (SNPs) 
have been called in the genomes. For the post- hoc MCMC analy-
sis, we retrieved a significant association from evo- scope and ran 
epocs_mcmc with a chain length of 107 steps and sampling every 50 
steps on this pair.

5  |  RESULTS

To illustrate the applicability of the present pipeline, we evalu-
ated evo- scope by performing a GWAS- like analysis to a dataset 
of 603 genomes of S. pneumoniae (Chewapreecha et al., 2014; 
Croucher et al., 2013, 2015; Lees et al., 2018). As a positive 

control, evo- scope detected genetic variants correlated to penicil-
lin resistance (following Chewapreecha et al., 2014). In addition, 
evo- scope inferred the induction values for the significant asso-
ciations to determine the strength and the direction of the cor-
relation between the occurrence of antibiotic resistance and the 
SNPs. Of the 82,829 SNPs present in at least eight genomes, we 
report a total of 1629 SNPs (1.97%) associated with the resist-
ance by epics (Figure 2a)— of which 543 (33.3% of the significant 
SNPs) were further inferred to be correlated with the resistance 
by epocs, with a p- value <10−4 (Figure 2b,c). In the end, evo- scope 
found that nearly half of the correlated SNPs (n = 255, 47%) are 
located in only three genes, penA, pbpX and pbp1A, in accord-
ance with previous results, as mutations in these three genes 
are the major drivers of penicillin resistance in S. pneumoniae 
(Chewapreecha et al., 2014; Figure 2b,c). In addition, we detected 
45 significant SNPs in mraY, a gene involved in cell wall biogen-
esis (Chewapreecha et al., 2014), and 44 SNPs in clpL, reported 
to be related to penicillin susceptibility and compensation of the 
antibiotic resistance fitness cost (Hakenbeck et al., 2012; Tran 
et al., 2011). In our study, most of the inferred inductions revealed 
that the resistance phenotype occurred first in the tree, with the 
genetic mutations occurring very quickly afterward (i.e. induction 
values >100— Figure 2c).

Additionally, we include a post- hoc MCMC analysis with epocs_
mcmc to demonstrate the usefulness of this addition in the evo- scope 
toolbox. For this purpose, we tested it on a significant association 
from evo- scope, which indicated an induction resistance - > mutation 
(Table 1 and Figure 3b).

Parameter naming follows the convention from (Behdenna 
et al., 2022). Non- starred rates represent natural occurrence 
rates, whereas starred rates represent excited occurrence rates 
(see also Figure 3a for a summary graph). ML estimates are the 
values of each parameter selected with the free- for- all model 
in epocs (model “8”, see Behdenna et al., 2022). Mean of the 
Bayesian estimates and mode of the posterior distribution are, 
respectively, the mean and mode values calculated by MCMC 
chain. The last column shows the 95% credible intervals of the 
posterior distribution.

After running epocs_mcmc, we see that μ1 is clearly defined, with 
a narrow distribution (Figure 3c). Interestingly, even though the pre-
ferred model by ML is the induction Resistance - > Mutation, μ1* 
(demonstrating an induction mutation - > resistance) is still some-
what relevant to the model, but the confidence interval is quite 
wide (Figure 3e). Importantly, μ2 is close to zero and μ2* is clearly 
defined with a narrow distribution (Figure 3d,f). We conclude from 
these observations that the selected mutation in pbpX mostly occurs 
after the resistance, therefore indicating an induction resistance - > 
mutation. In addition, the order of the co- occurrences is inferred in 
the same direction when estimated by ML and furthermore, the υ 
parameter posterior distributions are centred around the parameter 
values inferred by ML (Figure S1). It is important to mention that 
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even though the induction seem to indicate the occurrence of resis-
tance first, correlation does not mean causation, and further inves-
tigation should be carried to determine the causal relationships. In 

our previous papers, we extensively described the outcome of the 
algorithms using real- world examples and simulations (Behdenna 
et al., 2016, 2022).

F I G U R E  2  Application of evo- scope to a dataset of Streptococcus pneumoniae. (a) Manhattan plot of the p- values inferred by epics. In 
colour are shown genes of interest with multiple SNPs of low p- values. Notably, the three highest peaks correspond to pbpX, pbp1A and 
penA. (b) Barplot showing the p- value inferred by epocs, grouped by gene IDs. (c) Barplots showing the inductions inferred by epocs (i.e. the 
lambda in Behdenna et al., 2022). Top row represents the inductions resistance - > mutation, bottom row represents the other way round. 
For each statistical association between the resistance and one of the 543 significant single- nucleotide polymorphism, we retrieved the 
best model using likelihood ratio tests. Most notably, the three genes of interest pbpX, penA and pbp1A display low p- values and strong 
inductions.

(a)

(b)
(c)

Mutation -> Resistance

Resistance -> Mutation

Parameter
ML 
estimates

Mean of the 
Bayesian 
estimates

Mode of the 
posterior 
distribution

95% credible 
interval

μ1 46.263 41.03 38.81 [25.39– 57.51]

μ1* 292.22 543.25 503.8 [214.42– 934.32]

μ2 6.8197 14.66 12.79 [4.41– 25.73]

μ2* 377.08 338.24 317.8 [148.78– 543.70]

υ1 41.474 46.23 41.76 [20.36– 73.91]

υ1* ? 475.22 68.12 [0.33– 37.86]

υ2 0 4.67 0.5724 [1.4E- 5– 13.94]

υ2* 0 294.33 41.59 [3.6E- 5– 41.23]

TA B L E  1  Parameter estimates of the 
Markov Chain Monte Carlo run for the 
selected pair.
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6  |  DISCUSSION

Inferring correlations between evolutionary events has multiple 
useful applications. However, fast and easily interpretable tools are 
still lacking. Here, we provide a self- contained and fully automated 
pipeline to detect correlated evolution, with minimal input required 
from the user. Evo- scope takes as input any number of discrete traits 
and a rooted phylogenetic tree, and outputs a model of correlated 
evolution best explaining the repartition of the events on the tree. 
The flexibility of evo- scope allows to perform different types of anal-
yses, such as GWAS as exemplified in this paper. Here, we applied 
evo- scope on a well- described dataset of antibiotic resistance and 
SNPs in S. pneumoniae to (1) test the accuracy of the pipeline and (2) 
to add on the literature possible inductions either from the muta-
tions to the resistance or in the other way round. We showed that 
evo- scope is able to retrieve consistent results with the literature in 
a timely manner.

The induction values inferred on the significantly associated 
pairs revealed that most of the mutations associated with the re-
sistance occurred after the resistance phenotype. Two effects may 
contribute to explain this result. Methodologically, the ACR step 
might introduce biases regarding the real occurrence timing of both 
mutations and resistance as the algorithm tries to minimize the num-
ber of steps to reconstruct a trait, where antibiotic resistance and 
resistance- conferring mutations are known to be subject to homo-
plasies (see for example Coolen et al., 2021).

In bacteria, genomic changes that are necessary to evolve antibi-
otic resistance are often a burden for the bacteria, imposing a fitness 
cost (Andersson & Hughes, 2010). However, mechanisms exist that 
compensate the cost of such antibiotic resistance, for example the 
evolution of a secondary mutation in the genome. For S. pneumo-
niae, bacteria possessing multiple mutations in the penicillin binding 
proteins exhibit a phenotype of resistance and compensation (Orio 
et al., 2011). Using evo- scope, we showed that many significantly 

F I G U R E  3  Likelihood ratios and 
output from an epocs_mcmc run on 
one significant association between 
the resistance phenotype and a SNP in 
pbpX. (a) Summary graph of parameter 
models and transitions upon evolutionary 
events on a mock tree, adapted from 
Behdenna et al. (2022). Non- starred rates 
are natural rates of occurrence, starred 
rates are excited rates of occurrence. 
An occurrence of the first event in the 
pair activates the excited rates of the 
second event in the pair. Once the second 
event occurs, the excitation is consumed. 
(b) Likelihood ratios between the four 
models tested by evo- scope, following the 
convention from (Behdenna et al., 2022). 
Lines connect nested models. The 
comparison providing the best likelihood 
gain while minimizing the number of 
parameters is the comparison between 
the model of independence and the model 
of induction E1- >E2 (i.e. Resistance - > 
Mutation). (C– F) Histograms of parameter 
values taken from the Markov Chain 
Monte Carlo chain. Scales are parameter- 
based in order to best display the shape of 
the parameter distribution.
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associated pairs of mutations concur with these observations. 
Furthermore, the patterns of mutation acquisitions and inductions 
could shed light on evolutionary trajectories of the acquisition of an-
tibiotic resistance in S. pneumoniae.

In conclusion, we developed a fully automated pipeline, with 
minimal input required from the user. Our approach, by considering 
explicitly the phylogenetic component, allows to detect correlated 
evolution between discrete traits of any species by explicitly taking 
into account the underlying structure. We show that our pipeline 
can also be applied to tree- aware GWAS analyses in bacteria, ex-
panding previous results in the field linking genetic variants to peni-
cillin resistance in S. pneumoniae.
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Figure S1. Likelihood ratios and output from epocs_mcmc, with 
the state- dependent parameters, on one significant association 
between the resistance phenotype and a SNP in pbpX. (A) Summary 
graph of parameter models and transitions upon evolutionary 
events on a mock tree, adapted from Behdenna et al. (2022). 
Non- starred rates are natural rates of occurrence, starred rates 
are excited rates of occurrence. An occurrence of the first event 
in the pair activates the excited rates of the second event in the 
pair. Once the second event occurs, the excitation is consumed. (B) 
Likelihood ratios between the eight models tested by scoop. Lines 
connect nested models, where plain lines show significant LRT and 
dotted lines show non- significant LRT. The black square shows 
the LRTs for models without state- dependence and the light grey 
square shows the LRTs for the models with state- dependence. The 
comparison providing the best likelihood gain while minimizing the 
number of parameters is the comparison between the model of 
independence and the model of induction E1- >E2 (i.e. Resistance 
- > Mutation) with state- dependence, (C– F) histogram of parameter 
values taken from the MCMC chain for the state- dependence 
parameters, (G) order of mutations in the co- occurrences in the 
branches of the tree. We observed that the MCMC algorithm 
selected preferentially the direction E1 - > E2 (i.e. Resistance - > 
Mutation) between 65.5% (co- occurrence 15) and 70.8% (co- 
occurrence 7) of the time.
Table S1. List of bioinformatics tools performing Genome- Wide 
Association Studies.
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