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Abstract 19 

Phylodynamics is central to understanding infectious disease dynamics through the integration of genomic 20 
and epidemiological data. Despite advancements, including the application of deep learning to overcome 21 
computational limitations, significant challenges persist due to data inadequacies and statistical 22 
unidentifiability of key parameters. These issues are particularly pronounced in poorly resolved phylogenies, 23 
commonly observed in outbreaks such as SARS-CoV-2. In this study, we conducted a thorough evaluation of  24 
PhyloDeep, a deep learning inference tool for phylodynamics, assessing its performance on poorly resolved 25 
phylogenies. Our findings reveal the limited predictive accuracy of PhyloDeep (and other state-of-the-art 26 
approaches) in these scenarios. However, models trained on poorly resolved, realistically simulated trees 27 
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demonstrate improved predictive power, despite not being infallible, especially in scenarios with 1 
superspreading dynamics, whose parameters are challenging to capture accurately. Notably, we observe 2 
markedly improved performance through the integration of minimal contact tracing data, which refines 3 
poorly resolved trees. Applying this approach to a sample of SARS-CoV-2 sequences partially matched to 4 
contact tracing from Hong Kong yields informative estimates of superspreading potential, extending beyond 5 
the scope of contact tracing data alone. Our findings demonstrate the potential for enhancing phylodynamic 6 
analysis through complementary data integration, ultimately increasing the precision of epidemiological 7 
predictions crucial for public health decision making and outbreak control. 8 
 9 
Introduction 10 

Phylogenetic analysis of genomic sequence data offers a powerful toolkit for understanding the emergence, 11 
spread, and evolution of infectious diseases. As an interdisciplinary field, phylodynamics aims to integrate 12 
genomic and epidemiological data in a unified framework to extract detailed insights into epidemic history 13 
(Drummond et al., 2005; Stadler et al., 2013; Volz et al., 2009), population dynamics (Stadler & Bonhoeffer, 14 
2013; Volz et al., 2009), and disease emergence (Pekar et al., 2022; Worobey et al., 2014). Its key 15 
advantage lies in providing independent information regarding epidemic history, complementing traditional 16 
epidemiological surveillance data (Vaughan et al., 2024; Voznica et al., 2022). This makes it invaluable for 17 
validating and substantiating findings from epidemiological modelling, particularly in contexts where 18 
conventional surveillance data are scarce and genomic sampling is randomized.  19 

However, many conventional phylodynamic models based on likelihood approaches (e.g. maximum 20 
likelihood estimation and Bayesian approaches) are computationally intensive and  can become practically 21 
unfeasible as the number of taxa increases (Hohna & Drummond, 2012). Addressing this issue sometimes 22 
involves likelihood-free methods such as approximate Bayesian computation (ABC) (Saulnier et al., 2017), 23 
which sidestep the need for direct likelihood calculations. More recently, deep learning methods such as 24 
PhyloDeep (Voznica et al., 2022) have emerged as another potential solution, enabling rapid estimation of 25 
epidemiological parameters from large phylogenetic trees in a matter of seconds. To achieve this, PhyloDeep 26 
utilizes deep neural network models trained against phylogenies simulated under well-established birth-27 
death models: the basic birth-death model (BD) (Leventhal et al., 2014; Stadler et al., 2012), the birth-death 28 
model with exposed and infectious classes (BDEI) (Kuhnert et al., 2016; Stadler et al., 2013), and the birth-29 
death model with superspreading (BDSS) (Stadler et al., 2013). PhyloDeep has also been validated for 30 
diversification analyses (Lambert et al., 2023) and viral phylogeography (Thompson et al., 2024). 31 

Despite these methodological advancements, critical challenges remain concerning the adequacy of datasets 32 
and the statistical identifiability of the parameters of interest from sequence data. This issue is particularly 33 
pronounced for viral sequences arising from epidemics and outbreaks, which frequently yield many identical 34 
sequences, resulting in poorly resolved phylogenies with numerous polytomies. Examples include SARS-CoV-35 
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2, Mpox (monkeypox) virus (Paredes et al., 2024), and Respiratory syncytial virus (RSV) (Eden et al., 2022). 1 
These poorly resolved trees typically do not align with the “idealistic”, well-resolved trees posited by 2 
phylodynamic models like birth-death models, where branching events are assumed to correspond to 3 
transmission events. Such misalignment could introduce biases, compromising the accuracy and reliability of 4 
inference methods and potentially leading to incorrect interpretations of epidemic dynamics and disease 5 
transmission. 6 

To address these concerns, this study utilizes the PhyloDeep framework to assess the impact of potential 7 
biases introduced by poorly resolved phylogenies, using the SARS-CoV-2 as an example of a virus outbreak 8 
characterized by the BDSS model, which splits population into normal and superspreaders while tracking 9 
superspreading potential (Fig. 1). Our analysis reveals that neural network models in PhyloDeep (and other 10 
state-of-the-art approaches) struggle to precisely predict epidemiological parameters when applied to 11 
poorly resolved phylogenetic trees, but performance does improve when models are trained on poorly 12 
resolved, realistically simulated phylogenies rather than on “idealistic” trees from birth-death models, as 13 
previously done in PhyloDeep. However, capturing superspreading dynamics remains a challenge. Notably, 14 
integrating contact tracing data substantially enhances predictive accuracy by constraining tree space and 15 
aligning them more closely with “idealistic” trees. Additionally, this integration also proves beneficial in the 16 
Bayesian inference framework implemented in BEAST2 (Bouckaert et al., 2014). We illustrate these findings 17 
using real SARS-CoV-2 data collected during the third and fourth waves of the epidemic in Hong Kong. 18 

 19 

Results 20 

Building on the PhyloDeep approach, we simulated phylogenetic trees (idealistic) using the BDSS model, 21 
covering a broad range of epidemiological parameter values associated with the SARS-CoV-2 virus (Fig. 22 
1). These simulated trees were transformed into six additional forms, ranging from idealized simulations to 23 
those reflecting the complexities of real-world sequences and trees (Figs. 1 and 2). Neural networks trained 24 
with summary statistics (SSs) were applied to each tree type to perform regression tasks, estimating 25 
epidemiological parameters and evaluating the performance of these models comprehensively. 26 

 27 
Simulations of phylogenetic trees  28 

Initially, we simulated 200,000 time-scaled trees using the BDSS model (Fig. 2, baseline tree). These trees 29 
serve as our reference “idealistic” trees and capture transmission events at internal nodes consistent with the 30 
PhyloDeep framework. To emulate SARS-CoV-2 phylogenetic trees, all baseline trees were transformed into 31 
genetic distance trees (Fig. 2, genetic baseline tree).This transformation relied on a binomial distribution of 32 
mutation counts given a mean substitution rate of 8×10-4 per site per year, resulting in approximately 24 33 
mutations observed annually for a sequence length of 29903 bases (see methods for details). Branches with 34 
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lengths representing zero mutation were collapsed, resulting in trees with polytomies (Fig. 2, genetic 1 
polytomous tree), which were then randomly resolved using a coalescent approach, yielding binary trees 2 
(Fig. 2, genetic resolved tree). The number and size of polytomies in our simulated trees varied from 1 to 3 
170 and 3 to 934, respectively, with a total tip range of 200 to 1000, encompassing those observed in 4 
SARS-CoV-2 trees in Hong Kong (Supplementary Figure S1). Lastly, each of the three transformed genetic 5 
distance trees were dated using LSD2 (To et al., 2016) (Fig. 2, dated baseline tree, dated polytomous tree, 6 
dated resolved tree). Genetic Polytomous Trees, Genetic Resolved Trees, Dated Polytomous Trees, and 7 
Dated Resolved Trees, represent entirely altered topologies and are deemed poorly resolved, realistic trees. 8 
They are analogous to trees inferred from sequencing data using established software such as RAxML-NG 9 
(Kozlov et al., 2019), IQ-TREE (Nguyen et al., 2015), PhyML (Guindon et al., 2010), FastTree (Price et al., 10 
2010) or TreeTime (Sagulenko et al., 2018). In contrast, the remaining three types, namely Baseline Trees, 11 
Genetic Baseline Trees, and Dated Baseline Trees, retain a known correct topology that cannot be derived 12 
from sequence data alone (Fig. 2). 13 

 14 
Performance comparison of neural network models for each type of phylogenetic tree 15 

We utilized a dataset totalling 199,000 trees to train the neural network models, reserving 1,000 trees for 16 
validation purposes. Ensuring consistency across the models, we utilized the same 99 summary statistics (SSs) 17 
representation and feed-forward neural networks (FFNNs) architectures for each tree type, as used in 18 
PhyloDeep (Fig. 1). Specifically, for the three types of genetic distance trees, namely Genetic Baseline Trees, 19 
Genetic Polytomous Trees and Genetic Resolved Trees, we adapted the 99 SSs designed for time-scaled 20 
trees to 90 SSs for genetic distance trees (refer to the Methods section). Consequently, we trained seven 21 
neural network models: Baseline-Model, Dated Baseline-Model, Dated Resolved-Model, Dated Polytomous-22 
Model, Genetic Baseline-Model, Genetic Resolved-Model, and Genetic Polytomous-Model. 23 

Our results show that models trained and tested on trees with unchanged topologies (i.e. Baseline-Model, 24 
Dated Baseline-Model, and Genetic Baseline-Model) did well in predicting all parameters. Estimates for R0 25 

and 1/ tended to exhibit greater accuracy compared to superspreading parameters (Xss and fss) (Fig. 3A 26 

and Supplementary Table S2), which is consistent with the findings from PhyloDeep (Voznica et al., 2022). 27 
As expected, the Baseline-Model exhibited the best performance, achieving mean relative errors of 0.095 28 

for R0, 0.092 in 1/, 0.215 for Xss and 0.167 for fss. Conversely, models trained and tested on trees with 29 

altered topologies (Dated Resolved-Model, Dated Polytomous-Model, Genetic Polytomous-Model and 30 
Genetic Resolved-Model) encountered challenges in accurately predicting superspreading parameters. This 31 
suggests that phylogenetic trees with polytomies lack sufficient phylogenetic resolution to accurately recover 32 
parameters related to superspreading. Models trained and tested on dated trees generally outperformed 33 
those trained and tested on the equivalent genetic distance trees in most scenarios, demonstrating the value 34 
of tip dates for informing model learning and estimating parameters. 35 
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 1 
Impact of poorly resolved phylogenetic trees on models trained with “idealistic” trees  2 

To evaluate the impact of using poorly resolved realistic phylogenetic trees as input on neural network 3 
models trained with “idealistic” trees, we tested the Baseline-Model and Dated Baseline-Model with 1,000 4 
Dated Resolved Trees and the Genetic Baseline-Model with 1,000 Genetic Resolved Trees (Fig. 3 and 5 
Supplementary Table S2). The results revealed that the relative error for each parameter was 6 
approximately twice as high or more compared to when using “idealistic” test trees (Fig. 3B). Notably, the 7 
relative errors for the superspreading parameters (Xss and fss) were around or exceeded 0.5 (50%). This 8 
demonstrates that models trained on “idealistic” trees struggled to predict accurately epidemiological 9 
parameters from poorly resolved, realistic phylogenetic trees. Conversely, models trained on poorly resolved 10 
trees (such as Genetic Polytomous, Genetic Resolved, Dated Polytomous, and Dated Resolved) performed 11 
better, underscoring the importance of training on data that mirrors real-world complexity (Fig. 3A). 12 
However, despite improvements, the higher predictive errors specific to superspreading parameters relative 13 
to other epidemiological parameters seemed to persist (Fig. 3), highlighting the inherent challenge in 14 
estimating superspreading potential from such poorly resolved trees. Additionally, despite repeatedly 15 
generating different Genetic Resolved and Dated Resolved trees from the polytomous trees as input, the 16 
predicted parameters tended to converge towards similar estimates, which differed substantially from the 17 
actual parameters originally input, thus indicating a form of bias in the estimations. 18 
 19 
Improving predictions by integrating contact tracing data  20 

To improve model accuracy, a reasonable approach involves correcting the observed topology of input trees 21 
so that they closely resemble the equivalent "idealistic" trees. In this context, we investigated the potential 22 
of leveraging contact tracing data (including cluster information and infection times) to aid in refining the 23 
topology of Genetic Polytomous trees, for example, to match Baseline or Dated Baseline trees to varying 24 
extents (Supplementary Figure S2). We derived contact tracing information from the simulated Baseline 25 
trees, treating all descendants of each internal node as a cluster, with the dates of internal nodes considered 26 
as infection times of each cluster’s index case (Supplementary Figure S3). With this addition of cluster 27 
information and assuming perfect observation, the topology of Genetic Polytomous trees can be fully 28 
corrected (matching the genetic baseline trees), with external nodes subsequently dated to produce Dated 29 
Baseline trees (Supplementary Figure S2). Furthermore, if the infection times of clusters are known, time 30 
constraints can also be applied to internal nodes, effectively recovering equivalent Baseline trees from the 31 
Genetic Polytomous trees. In real-world scenarios, however, the extent of case observation is often limited 32 
and imperfect, and the accuracy of any available contact tracing data is uncertain and subject to additional 33 
biases. 34 
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Therefore, to assess how the quantity of contact tracing data influences our predictions within the context of 1 
phylogenetic trees, we simulated scenarios where 0%, 25%, 50%, 75%, and 100% of internal nodes were 2 
randomly selected to provide cluster information and infection times. We then evaluated the performance 3 
of the Baseline-Model and Dated Baseline-Model (Fig. 4A and Supplementary Table S3). The former 4 
requires cluster information to resolve polytomies and infection times, with a time constraint margin of 1 day, 5 
to estimate the lengths of newly created internal branches from Genetic Polytomous Trees (Supplementary 6 
Figure S2G), while the latter relies solely on cluster information (Supplementary Figure S2F). For any 7 
remaining nodes lacking contact tracing data, we resolved them randomly as before. Our results indicated 8 

that even with just 25% of contact tracing data incorporated, the mean relative errors for R0 and 1/ could 9 

be reduced to below 0.2, representing an improvement of 48% to 66% (Supplementary Table S3). As the 10 
availability of contact tracing data increased, model performance consistently improved, particularly in 11 
predicting superspreading parameters as could be expected. Incorporating 50% or more of contact tracing 12 
data yielded estimates of superspreading parameters, with mean relative errors around or below 30%, 13 
achieving an improvement of at least 22% (Supplementary Table S3). Notably, the Dated Baseline-Model 14 
generally outperformed the Baseline-Model except when contact tracing was 100% complete and a harsh 15 
time constraint margin of 0.1 day (Supplementary Table S3). Furthermore, the Dated Baseline-Model only 16 
required cluster information to refine the input trees, suggesting its greater relevance to real-world scenarios. 17 

We compared the Dated Baseline-Model and Baseline-Model to the gold standard likelihood-based 18 
Bayesian tool BEAST2 (Bouckaert et al., 2014) across varying levels of contact tracing data. BEAST2’s 19 
performance improved with increased proportions of contact tracing data, which includes cluster information 20 
and infection times (Fig. 4B and Supplementary Table S4). However, BEAST2 consistently underperformed 21 
compared to our Baseline-Model, except when no contact tracing data was incorporated. Even in this 22 
scenario, it still performed worse than models trained on poorly resolved phylogenies (Fig. 3A and 23 
Supplementary Tables S2 and S4). Additionally, BEAST2 struggled to accurately infer superspreading 24 
parameters, even with 100% contact tracing data, which aligns with the findings of PhyloDeep (Voznica et 25 
al., 2022). Further, providing only cluster information, which modifies the tree topology without correcting 26 
the time of internal nodes, did not substantially enhance BEAST2’s performance (Fig. 4C and Supplementary 27 
Table S4), likely due to the loss of this crucial temporal information. 28 
 29 
Case study of SARS-CoV-2 waves in Hong Kong 30 

By 2022, Hong Kong had effectively controlled the local spread of SARS-CoV-2, experiencing four 31 
significant waves during which extensive sequence sampling and epidemiological surveillance were 32 
conducted, as detailed in our previous study (Gu et al., 2022). To demonstrate our method of integrating 33 
contact tracing data to improve model prediction, we used real-world SARS-CoV-2 data from the third and 34 
fourth waves in Hong Kong, analysed from May 13 to August 1, 2020 (460 sequences and 1,930 local 35 
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cases), and from September 30 to December 8, 2020 (243 sequences and 1,577 local cases). Utilizing all 1 
available SARS-CoV-2 sequences from these periods along with partial contact tracing data (only cluster 2 
information available), covering 16.56 % for the third wave and 9.50% for the fourth wave (see Methods), 3 
we evaluate the differences in prediction outcomes when using the Dated Baseline-Model, with input trees 4 
refined by contact tracing data (Dated Resolved-Cluster) and without it (Dated Resolved, random resolution 5 
of polytomies). 6 

Initially, we verified the suitability of the input trees generated by RAxML-NG (Kozlov et al., 2019) using 7 
the GTR+G4+FO substitution model with random resolution of polytomies, through principal component 8 
analysis (PCA) and by comparing the range of each simulated SS to ensure the models and scenarios were 9 
predictive. All trees from Hong Kong passed this PCA check, but seven SSs related to transmission chain 10 
features for the Dated Resolved tree of wave 4 were outside the [min, max] range of the simulated values 11 
(Supplementary Figure S4 and Table S5). After integrating the available contact tracing data (9.50%, as 12 
detailed in the Methods), only one SS remained outside the simulated range, albeit very close to the lower 13 
boundary (Supplementary Table S5). 14 

The prediction results indicated a notable change when contact tracing data was used to refine tree 15 
topology, especially for wave 4 (Table 1). With the Dated Resolved-Cluster tree, we estimated an R0 of 16 

1.59 and 1.52, infection-to-sampling periods (infectious periods, 1/) of 4.6 and 8.6 days, XSS of 8.1 and 17 

16.4, fss of 0.091 and 0.078 for waves 3 and 4, respectively. Given XSS and fss, we can calculate the 18 
dispersion value k (see Methods), which is commonly used as a measure of superspreading potential. For 19 
waves 3 and 4 we calculated k = 0.47 and 0.25 respectively, where lower values of k represent increasing 20 
superspreading potential. Conversely, using the Dated Resolved tree, we estimated an R0 of 1.70 and 2.06, 21 
infection-to-sampling periods of 5.7 and 20.1 days, Xss of 7.6 and 7.2, fss of 0.090 and 0.076, and k of 22 
0.49 and 0.66 for waves 3 and 4, respectively. The unusually long infection-to-sampling periods of 20.1 23 
days observed in wave 4 may be attributed to the seven SSs that exceeded the expected range, which 24 
likely influenced these skewed predictions (Supplementary Figure S4 and Table S5). Further, based solely 25 
on epidemiological records, we estimated an R0 of 1.69 and 1.93, and k of 0.45 and 0.26 for waves 3 and 26 
4, separately (Table 1). The observed discrepancies highlight the critical need for integrating diverse data 27 
sources and analytical methods in estimating epidemiological parameters, thereby enabling a more 28 
comprehensive and systematic understanding of epidemic dynamics. 29 

Additionally, we conducted 200 random resolution of polytomies for these SARS-CoV-2 trees to measure 30 
the robustness of the predictions. The resulting standard deviation were notably small (Table 1), indicating 31 
that the predictions were not significantly affected by the random resolution of polytomies, suggesting our 32 
models could efficiently extract essential cluster information and guide robust predictions. The 95% 33 
confidence intervals (CIs) were generated by parametric bootstrap as per the methodology of PhyloDeep. 34 
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The substantial width of CIs for superspreading parameters again highlight the inherent difficulty in 1 
predicting these metrics. 2 

 3 

Table 1. Comparison of inference of epidemiological parameters based on waves 3 and 4 of SARS-CoV-2 4 
in Hong Kong. 5 

Waves Input tree R0  Infection-to-
sampling period 

(day) 

Xss  fss  Dispersion 

k  

3 Dated Resolved 1.699±0.096 

(1.460, 2.172) 

5.720±1.018 

 (4.427, 10.804) 

7.608±1.496 

 (4.141, 18.696) 

0.090±0.022 

(0.057, 0.163) 

0.488 

(0.441, 

0.543) 

 Dated Resolved-

Cluster 
1.588±0.077 

(1.330, 1.993) 

4.636±0.635  

(3.373, 8.238) 

8.078±1.709 

(3.911, 17.733) 

0.091±0.021 

(0.054, 0.167) 

0.467 

(0.418, 
0.517) 

 Epidemiological 
inference* 

1.693 

(1.649, 1.738) NA NA NA 

0.451 

(0.421, 

0.481) 

4 Dated Resolved 2.062±0.072 

(1.628, 3.220) 

20.071±1.663 

 (14.235, 32.668) 

 7.232±1.423 

(2.197, 23.198) 

0.076±0.009 

(0.050, 0.154) 

0.658 

(0.596, 

0.737) 

 Dated Resolved-
Cluster 

1.518±0.091 

(1.284, 2.055) 

8.629±0.881 

 (6.548, 14.929) 

16.388±2.692 

 (5.895, 33.409) 

0.078±0.007 

(0.050, 0.161) 

0.250 

(0.227, 

0.278) 

 Epidemiological 

inference* 

1.933 

(1.858, 2.012)  NA NA NA 

0.264 

(0.248, 
0.279) 

Note: Values predicted by neural network models are expressed as mean ± standard deviation generated by randomly 6 
resolving polytomies n = 200 times. Values in parentheses are the 95% CI. In the BDSS model, the term “infectious period” 7 
refers to the interval from the time of infection to the sampling date. To prevent confusion in epidemiological contexts, we 8 
have opted to use “infection-to-sampling period” in place of “infectious period”. * Epidemiological inference uses a 9 
combination of line-listed incidence data to estimate R0 and contact tracing data to estimate k. 10 
 11 
 12 
Discussion  13 

In this study, we assessed the performance of established neural network models (PhyloDeep) in predicting 14 
epidemiological parameters and the applicability of these models to real-world scenarios using SARS-CoV-15 
2 as a case study for both simulation and empirical analyses. Our findings demonstrate the relative 16 
performance limitations of utilizing neural network models trained on simulated phylogenetic trees 17 
(“idealistic” trees) when predicting parameters from poorly resolved trees (“realistic” trees), and show that 18 
models alternatively trained on simulated trees of similar resolution can improve the accuracy of predictions. 19 
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Beyond upstream improvements to model training, we show that by using contact tracing data to partially 1 
resolve the topology and node dates of input trees downstream, additional performance enhancements can 2 
be achieved. We apply this approach to SARS-CoV-2 genome sequences from Hong Kong matched to 3 
minimal contact tracing data, producing new phylodynamic estimates of both R0 (basic reproductive number) 4 
and k (dispersion measure of superspreading potential).  5 

Without the incorporation of contact tracing data, we found that our improved models trained on simulated 6 
poorly resolved trees still struggled to accurately estimate parameters related to superspreading, even when 7 
attempting to overfit neural network models on smaller subsets of trees (Supplementary Table S6). This issue 8 
is particularly pronounced when sequences are nearly identical, like for SARS-CoV-2, which results in 9 
potentially biased estimations likely to misinform public health decision makers. Traditional phylodynamic 10 
inference methods (e.g. maximum likelihood estimation and Bayesian approaches) with models that assume 11 
ideal binary trees and not representing sequence evolution, also struggle in parameter estimation under 12 
these conditions (Supplementary Table S4) (Lewis et al., 2005; Morel et al., 2021). Together this emphasizes 13 
the importance of incorporating even minimal contact tracing data as we have done in our study, but also 14 
utilizing more comprehensive summary statistics focused on clusters and polytomies that can effectively 15 
capture the complexity of the underlying transmission dynamic. One previous study (Tran-Kiem & Bedford, 16 
2024) has demonstrated a connection between the size distribution of identical sequence clusters and 17 
transmission dynamics, however, our attempts to incorporate similar information into our neural network 18 
models, trained on genetic distance trees, yielded limited improvements. As an ongoing area of research 19 
interest, future studies could evaluate the relative predictive performance of models that expand the 20 
potential range of summary statistics related to clusters and polytomies, and experiment with alternate 21 
architectures such as Graph Neural Networks (GNN) and Convolutional Neural Networks (CNN) 22 
incorporating a more complete representations of trees, such as Compact Bijective Ladderized Vectors 23 
(CBLV) (Voznica et al., 2022). 24 

Besides superspreading, the incubation period is another significant aspect of pathogen transmission 25 
dynamics. For example, estimates of the SARS-CoV-2 incubation period were used to justify the World 26 
Health Organization’s (WHO) recommendation of a 14-day quarantine period for contacts of infected cases 27 
(Wells et al., 2021). In our approach, we utilized a BDSS model, which does not account for the incubation 28 
period, but defines the infectious period as the interval from infection time to sampling date otherwise known 29 
as the delay interval. Employing the Dated Baseline-Model with the Dated Resolved-Cluster tree, we 30 
determined the infectious period/delay interval of waves 3 and 4 to be approximately one week, however 31 
the delay for wave 4 was longer than that for wave 3, suggesting case detection speed was somewhat 32 
challenged. The longer delay in wave 4 could be explained by the sudden rise in cases associated with the 33 
largest single SARS-CoV-2 superspreading event detected in Hong Kong prior to widespread vaccination, 34 
which also triggered the start of wave 4 (Adam et al., 2022; Gu et al., 2022). 35 
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10 

Remarkably, the estimation of R0 exhibited robust performance across our neural network models, with 1 
models trained on dated trees outperforming those based on genetic distance trees. This underscores the 2 
value of tip dates for R0 estimation, particularly as sequence variability decreases. This is in line with recent 3 
studies that highlight the increasing importance of sampling dates for phylodynamic inference when sequence 4 
variability is low (Featherstone et al., 2023). When poorly resolved trees were used as input, models like 5 
the Dated Resolved-Model and Dated Polytomous-Model showed excellent performance, suggesting their 6 

potential for effective and accurate R0 and 1/ predictions from sequence data. This offers a promising 7 

avenue for tracking epidemic dynamics using sequence data, which, when compared with epidemiological 8 
records, can provide deeper insights and mitigate potential sampling biases. Future investigations are 9 
needed to ascertain the extent to which sequence data can facilitate robust predictions and to evaluate the 10 
effects of progressively incorporating new sequence samples.  11 

Our study acknowledges certain limitations. Notably, the BDSS model does not account for the incubation 12 
period of the disease, introducing a significant source of uncertainty. The omission of the incubation period 13 
from our transmission models necessitates further exploration in future studies to mitigate these uncertainties. 14 
For example, an alternative approach could use a Susceptible-Exposed-Infected-Recovered (SEIR) model 15 
with a superspreading compartment, grounded in structured coalescent theory (Volz & Siveroni, 2018), which 16 
has been used to study superspreading and nonlinear incidence in SARS-CoV-2 studies (Geidelberg et al., 17 
2021; Miller et al., 2020; Moreno et al., 2020; Ragonnet-Cronin et al., 2021). Additionally, real-world 18 
contact tracing data may contain inherent biases and inaccuracies. In applying our model to the SARS-CoV-19 
2 dataset from Hong Kong, we presumed the accuracy of the contact tracing data. This assumption allowed 20 
us to collapse all associated children (see Methods), including those are not recorded within the cluster, 21 
potentially leading to an inaccurate refinement of the tree topology and biased predictions. Our primary 22 
epidemiological inference of R0 assumed a comparable SIR model of transmission and an exponentially 23 
distributed generation time like BDSS, though tended to be slightly higher than the mean R0 estimated from 24 
PhyloDeep (Table 1). This method, which links the initial growth rate of an epidemic to R0 (Wallinga & 25 
Lipsitch, 2007) is however known to exhibit a slight upward bias for smaller R0 values (R0 < 2). (Obadia et 26 
al., 2012). Further sensitivity analyses assuming gamma-distributed generation times, unlike BDSS, resulted 27 
in even higher values R0, partially validating the results from our Dated Baseline-Model with Dated Resolved-28 
Cluster tree (Supplementary Table S8).  29 

Importantly, making trees poorly resolved during training hinges on the specific sequence length and 30 
evolution rate of SARS-CoV-2, rendering the neural networks trained in this study inapplicable to other 31 
viruses. To extend their use to other pathogens, modifications are required to accommodate variations in 32 
sequence length and evolution rate, training pathogen-specific neural networks as we show for SARS-CoV-33 
2. This contrasts with PhyloDeep, which was designed for studying a diverse array of pathogens. 34 
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11 

Correspondingly, the choice of a specific birth-death model emerges as another crucial factor that must be 1 
carefully considered. 2 

Overall, this study highlights the challenges of relying solely on viral phylogenetic trees generated from 3 
sequences for estimating superspreading events. The integration of even minimal contact tracing data can 4 
significantly enhance model predictions, emphasizing the importance of such data in surveillance efforts for 5 
emerging infectious diseases, particularly when viral sequences lack variability. We hope our comprehensive 6 
evaluation will not only enhance deep learning applications but also extend beyond, enriching established 7 
methodologies within phylogenetics and phylodynamics. 8 

 9 

Methods 10 

Simulations 11 

In this study, SARS-CoV-2 served as the reference pathogen for evaluating the performance of the existing 12 
deep learning model PhyloDeep. Given the marked overdispersion in SARS-CoV-2 transmission dynamics, 13 
characterized by superspreading (Adam et al., 2020; Du et al., 2022; Guo et al., 2022), we used 14 
treesimulator (v0.1.7: (Zhukova & Gascuel, 2024)) to generate time-scaled phylogenetic trees (detailed in 15 
Supplementary Table S1). These trees were generated with a BDSS model, distinguishing cases into 16 
superspreaders (S) and normal spreaders (N), in addition to the conventional parameterization of the Birth-17 

Death model, i.e. R0 and 1/. Superspreaders constitute a small fraction of the total simulated population 18 

(denoted by 𝑓𝑆𝑆 =  𝛽𝑆𝑆 (𝛽𝑆𝑆 + 𝛽𝑆𝑁)⁄ ) but can transmit the virus at rates significantly higher than normal 19 

spreaders, where the superspreading transmission ratio is denoted as 𝑋𝑆𝑆 =  𝛽𝑆𝑆 𝛽𝑁𝑆 =⁄  𝛽𝑆𝑁 𝛽𝑁𝑁⁄ . Upon 20 

reviewing the 98 summary statistics (SS) (see details in Feature representation and neural network models 21 
section), it was noted that certain metrics associated with branch lengths and superspreading events based 22 
on the SARS-CoV-2 dataset from Hong Kong fell outside the [min, max] range of simulated values in 23 
PhyloDeep, characterized by a lower median/mean SS and increased variance SS (detailed in 24 
Supplementary Table S7). Consequently, to better capture the complexities of SARS-CoV-2 transmission 25 
dynamics, we expanded the range of epidemiological parameters for tree simulation in PhyloDeep, 26 
summarized in Supplementary Table S1. 27 

Simulated time-scaled trees are transformed into Genetic Baseline trees, with branch lengths determined by 28 
a binomial process, B (n=sequence length, p=evolutionary rate × branch length of time-scaled trees). For 29 
SARS-CoV-2, the sequence length is 29,903, and the evolutionary rate has a mean of 8×10-4 and a standard 30 
deviation of 4×10-4 substitutions per site per year, with a lognormal distribution (Hadfield et al., 2018; Jolly 31 
& Scaria, 2021). In Genetic Baseline trees, branches representing zero mutation are collapsed to form 32 
Genetic Polytomous Trees. Within these trees, polytomies are resolved by randomly coalescing two offspring 33 
until binary trees, termed Genetic Resolved Trees, are obtained. These genetic distances are then re-dated 34 
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12 

using LSD2 (To et al., 2016), assigning dates to the tips by adding the lengths from the tips to the root within 1 
the time-scaled trees to a dummy date designated as the root date. Additionally, a temporal constraint for 2 
the root is established by setting a range (dummy date - 1 day, dummy date + 1 day), ensuring the root's 3 
time is not excessively early. The clock rate used is the same as mentioned above, with a mean of 8×10-4 4 
and a standard deviation of 4×10-4 substitutions per site per year. 5 

Additional 100,000 trees were simulated, and the PhyloDeep methodology was applied to establish the 6 
95% CIs. 7 

 8 

Feature representation and neural network models 9 

We represent time-scaled phylogenetic trees using sampling probability and 98 SSs, as employed in 10 
PhyloDeep (Saulnier et al., 2017; Voznica et al., 2022). However, for genetic distance trees, certain concepts 11 
like transmission chains (14 SSs) associated with superspreading and lineage through time (LTT) (49 SSs) are 12 
not directly applicable. To address this, we designed 62 SSs to capture the distribution of nodes in the 13 
phylogenetic tree: 31 SSs for internal nodes (non-leaf nodes within the tree structure, corresponding to 14 
transmission events), and 31 SSs for external nodes (leaves of the tree, corresponding to sampling events), 15 
by counting the nodes that are n (0-30) mutations away from the tree root. Additionally, we included 10 16 
summary statistics related to the size distribution of clusters of identical sequences. These counts capture the 17 
number of clusters for each size from 1 to 9, with a combined count for clusters larger than 9, reflecting the 18 
underlying transmission dynamics and heterogeneity (Tran-Kiem & Bedford, 2024). Consequently, 90 SS are 19 
utilized to characterize the genetic distance tree. While time-scaled trees are rescaled so the average 20 
branch length equals 1 prior to representation (Voznica et al., 2022), genetic distance trees do not require 21 
this adjustment. 22 

Following the PhyloDeep methodology, we implemented our neural network model using Python 3.6, with 23 
the Tensorflow 1.5.0, Keras 2.2.4, and scikit-learn 0.19.1 libraries. We partitioned 200,000 simulated 24 
phylogenetic trees into 190,000 for training, 9,000 for validation, and 1,000 for testing. The network 25 
architecture includes an input layer with either 99 or 90 nodes, followed by four sequential hidden layers 26 
arranged in a funnel shape with 64, 32, 16, and 8 neurons, respectively, and an output layer that predicts 27 

the four parameters of the BDSS model (R0, 1/, Xss, and fss). We experimented with adding or removing 28 

hidden layers in the Baseline-Model, which did not improve accuracy. The neurons in the last hidden layer 29 
utilize linear activation, whereas the others employ exponential linear (ELU) activation. The model employs 30 
the Adam optimization algorithm and uses Mean Absolute Percentage Error (MAPE) as the loss function, with 31 
a batch size of 200 and a maximum of 1,000 epochs. Early stopping, with a patience value of 50, was used 32 
to prevent overfitting based on MAPE performance on the validation set. A dropout rate of 0.5 was applied 33 
in the hidden layers, and variations in dropout rates between 0.3 and 0.7 did not enhance the Baseline-34 
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13 

Model’s accuracy. The performance of our neural network models is assessed as the mean relative error 1 
(MRE) of the estimator: 2 

𝑀𝑅𝐸 =
1

𝑛
∑ (

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑡𝑎𝑟𝑔𝑒𝑡𝑖

𝑡𝑎𝑟𝑔𝑒𝑡𝑖

)

𝑛

𝑖=1

 3 

where n is the number of simulated trees used in the test set. 4 

To draw a parallel with epidemiological inference, Xss and fss can be transformed into the dispersion k. 5 
Utilizing the multi-type birth-death model process (Stadler & Bonhoeffer, 2013), it becomes possible to 6 
estimate the probability of an individual infecting “n” others over its lifespan, aligning with a geometric 7 
distribution. By synthesizing the probability with the cumulative number of infections, the offspring distribution 8 
was ascertained. The approach outlined in “Estimating R0 and k from epidemiological data only” section was 9 
employed to derive k from this offspring distribution. 10 

 11 

Integration of contact tracing data into phylogenetic trees 12 

In our simulations, we utilize time-scaled trees to derive contact tracing data, treating all descendants of 13 
each internal node as a single cluster, with the node's age representing the infection time (Supplementary 14 
Figure S3). Using such contact tracing data, we refine the phylogenetic trees by identifying the most recent 15 
common ancestor (MRCA) for each cluster. We then iterate through children of the MRCA and coalesce all 16 
associated children, encompassing both leaves and children of internal nodes within the cluster. This process 17 
enables us to resolve polytomies in Genetic Polytomous trees, facilitating their transformation back into 18 
Genetic Baseline trees (Supplementary Figure S2). 19 

Additionally, by applying the infection times as time constraints on the internal nodes, we can revert Genetic 20 
Baseline trees to their Baseline counterparts using LSD2 (To et al., 2016). We achieve this by setting a 21 
specific time range for the internal nodes, using a margin of (infection time - 1 day, infection time + 1 day). 22 
Narrowing this margin to 0.1 day brings the converted trees even closer to the Baseline trees, thereby 23 
yielding performance on the Baseline-Model that is nearly identical to that obtained when directly using 24 
Baseline trees for testing, as detailed in Supplementary Tables S2 and S3. 25 
 26 
SARS-CoV-2 dataset in Hong Kong 27 

We used sequences and epidemiological data from the third and fourth waves of SARS-CoV-2 in Hong 28 
Kong, as detailed in our prior study (Gu et al., 2022). These waves were characterized by single introduction 29 
events that sparked local transmissions, and they were notable for their relatively consistent sequence 30 
sampling and comprehensive surveillance data. In this study, we focused on the exponential stages of waves 31 
3 and 4, which spanned from May 13 to August 1, 2020, with 460 sequences and 1,930 local cases, and 32 
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from September 30 to December 8, 2020, with 243 sequences and 1,577 local cases, respectively. The 1 
sampling rates for waves 3 and 4 were 23.8% and 15.4%, respectively. During wave 3, 84.35% (388 out 2 
of 460) of sequences were linked to cluster information involving 191 clusters, among which 76 clusters 3 
comprised more than one sequence. This indicates that 16.56% (76 out of 459) of the data were supported 4 
by contact tracing. In wave 4, 90.53% (220 out of 243) of sequences were associated with 35 clusters, with 5 
23 clusters containing multiple sequences, amounting to 9.50% (23 out of 242) contact tracing data 6 
availability. 7 

For waves 3 and 4, we reconstructed Maximum Likelihood (ML) phylogenies using RAxML-NG (Kozlov et al., 8 
2019) with the GTR+G4+FO substitution model. We maintained consistency with simulated trees in terms of 9 
collapsing internal nodes and the random resolution of polytomies. Our findings revealed that the distribution 10 
of the number of offspring from collapsed internal nodes falls within the range observed in our simulations 11 
(Supplementary Figure S1). Subsequently, these trees were dated using LSD2 (To et al., 2016), following a 12 
strict molecular clock assumption of 8×10-4 substitutions per site per year (Hadfield et al., 2018; Jolly & 13 
Scaria, 2021), and applying time constraints for the root as inferred by (Gu et al., 2022). 14 

 15 
Estimating R0 and k from epidemiological data only 16 

We compared the results for R0 and k estimated using our deep learning models to those estimated from 17 
line-list data on SARS-CoV-2 available during the exponential periods of waves 3 and 4 in Hong Kong. 18 
Comparable estimates of R0 were estimated as per methods described in (Wallinga & Lipsitch, 2007) and 19 
implemented in the R package R0 (Obadia et al., 2012) which assumes an SIR model of transmission like 20 
BDSS. We used line-listed incidence data of SARS-CoV-2 symptom onset dates and an exponential 21 
generation time distribution also like BDSS (mean = 5.7, SD = 1.8 (Hu et al., 2021)) with results listed in 22 
Table 1. Additional sensitivity analyses were conducted assuming alternative parameterisations of the 23 
generation time (mean = 7.27, SD = 3.81 (Chen et al., 2022)), and/or a gamma-distributed generation 24 
time are summarized in Supplementary Table S8.  25 

Epidemiological estimates of k were generated by constructing empirical offspring distributions from contact 26 
tracing data on SARS-CoV-2 available from previous studies in Hong Kong (Adam et al., 2022). These 27 
distributions were generated from infector-infectee pairs, where the number of secondary cases is counted 28 
for each unique infector and includes chain-terminating infectees as zero. We subsetted the empirical 29 
offspring distributions to the same exponential periods for wave 3 and wave 4 as before, given the 30 
estimated infection date of each paired case as a deconvolution of the generation time, incubation period, 31 
and delay distributions given the onset date or report dates if asymptomatic between infector-infectee pairs. 32 
Importantly, offspring counts were not artificially right-censored, meaning the observed count of each infector 33 
case was included even if the estimated infection date of paired infectee(s) fell outside the exponential 34 
periods of each wave. Following the approach of Llyod-Smith et al (Lloyd-Smith et al., 2005), k is estimated 35 
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15 

directly from the finalised offspring distributions by maximum likelihood estimation, assuming a negative 1 
binomial model jointly parameterised by the mean and dispersion parameter k, with 95% intervals 2 
generated by non-parametric bootstrap estimation sampling 1000 replicates with replacement. 3 

 4 
Parameter inference comparison with BEAST2 5 

We assessed the predictive performance of the Dated Baseline-Model and Baseline-Model against the well-6 
established Bayesian structured birth-death model, implemented via the bdmm package (Scire et al., 2020) 7 
in BEAST2 (Bouckaert et al., 2014) (version 2.6.2). We applied the same priors as used in PhyloDeep 8 

(Voznica et al., 2022), maintaining the equality  𝛽𝑆𝑆 𝛽𝑁𝑆 =⁄  𝛽𝑆𝑁 𝛽𝑁𝑁⁄  and fixing the sampling proportion 9 

and tree topology during parameter estimation. Markov Chain Monte Carlo (MCMC) analysis was run for 10 
10 million steps, sampling every 1,000 steps with a 10% as burn-in, and Effective Sample Size (ESS) values 11 
were assessed using Tracer (Rambaut et al., 2018). The analysis was conducted on 100 simulated Genetic 12 
Polytomous Trees incorporating varying levels of contact tracing data (0%, 50%, and 100%) to facilitate 13 
transforming the input trees back into Baseline and Dated Baseline Trees, the latter using only cluster 14 
information. Additionally, we conducted the BEAST2 analysis on the Hong Kong datasets, which produced 15 
different estimations (Supplementary Table S9). However, the poor performance in our simulation analysis 16 
without contact tracing data, or when only incorporating cluster information, along with the limited cluster 17 
data available in the Hong Kong datasets, was insufficient to meaningfully improve predictions. 18 
 19 

Acknowledgments: We acknowledge the technical support provided by colleagues from the Centre for 20 
PanorOmic Sciences of the University of Hong Kong. We also acknowledge the Centre for Health Protection 21 
of the Department of Health for providing epidemiological data for the study. The computations were 22 
performed using research computing facilities offered by Information Technology Services, the University of 23 
Hong Kong. The funding bodies had no role in the design of the study and collection, analysis, and 24 
interpretation of data and writing of the manuscript. The work described in this paper was substantially 25 
supported by a fellowship award from the Research Grants Council of the Hong Kong Special Administrative 26 
Region, China (Project No. HKU PDFS2425-7S01). 27 

 28 

Funding:  29 

National Institutes of Health contract number 75N93021C00016 (VD) 30 

Research Grants Council of the Hong Kong SAR, China (Project No. [T11-705/21-N]) (VD) 31 

The Collaborative Research Scheme (Project No. C7123-20G) of the Research Grants Council of the Hong 32 
Kong Special Administrative Region, China (BC, DA) 33 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae232/7875898 by Institut Pasteur -  C
eR

IS user on 06 N
ovem

ber 2024



16 

Health and Medical Research Fund Seed Grant Scheme (Project No. 22211192) of the Hong Kong SAR 1 
(DA) 2 
HKU-Pasteur Research Pole Fellowship 2023 (S-AC23005-01) (RX) 3 

Research Grants Council of the Hong Kong SAR, China (Project No. [HKU PDFS2425-7S01]) (RX) 4 

PaRis AI Research InstitutE (PRAIRIE; ANR-19-P3IA-0001) (OG) 5 

 6 

Competing interests: Authors declare that they have no competing interests. 7 

 8 
Data and materials availability: All anonymized data, code, and analysis files are available in the 9 
GitHub repository (https://github.com/vjlab/dl-phylodynamics-ct).10 

Reference 11 

Adam, D., Gostic, K., Tsang, T., Wu, P., Lim, W. W., Yeung, A., . . . Chen, D. (2022). Time-varying 12 
transmission heterogeneity of SARS and COVID-19 in Hong Kong. Research Square.  13 

Adam, D. C., Wu, P., Wong, J. Y., Lau, E. H. Y., Tsang, T. K., Cauchemez, S., . . . Cowling, B. J. 14 
(2020). Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. 15 
Nat Med, 26(11), 1714-1719. https://doi.org/10.1038/s41591-020-1092-0  16 

Bouckaert, R., Heled, J., Kuhnert, D., Vaughan, T., Wu, C. H., Xie, D., . . . Drummond, A. J. (2014). 17 
BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol, 18 
10(4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537  19 

Chen, D., Lau, Y. C., Xu, X. K., Wang, L., Du, Z., Tsang, T. K., . . . Ali, S. T. (2022). Inferring time-20 
varying generation time, serial interval, and incubation period distributions for COVID-21 
19. Nat Commun, 13(1), 7727. https://doi.org/10.1038/s41467-022-35496-8  22 

Drummond, A. J., Rambaut, A., Shapiro, B., & Pybus, O. G. (2005). Bayesian coalescent inference 23 
of past population dynamics from molecular sequences. Mol Biol Evol, 22(5), 1185-1192. 24 
https://doi.org/10.1093/molbev/msi103  25 

Du, Z., Wang, C., Liu, C., Bai, Y., Pei, S., Adam, D. C., . . . Cowling, B. J. (2022). Systematic review 26 
and meta-analyses of superspreading of SARS-CoV-2 infections. Transbound Emerg Dis. 27 
https://doi.org/10.1111/tbed.14655  28 

Eden, J. S., Sikazwe, C., Xie, R., Deng, Y. M., Sullivan, S. G., Michie, A., . . . Australian, R. S. V. s. g. 29 
(2022). Off-season RSV epidemics in Australia after easing of COVID-19 restrictions. Nat 30 
Commun, 13(1), 2884. https://doi.org/10.1038/s41467-022-30485-3  31 

Featherstone, L. A., Duchene, S., & Vaughan, T. G. (2023). Decoding the Fundamental Drivers of 32 
Phylodynamic Inference. Mol Biol Evol, 40(6). https://doi.org/10.1093/molbev/msad132  33 

Geidelberg, L., Boyd, O., Jorgensen, D., Siveroni, I., Nascimento, F. F., Johnson, R., . . . Nie, Q. 34 
(2021). Genomic epidemiology of a densely sampled COVID-19 outbreak in China. Virus 35 
Evol, 7(1), veaa102. https://doi.org/10.1093/ve/veaa102  36 

Gu, H., Xie, R., Adam, D. C., Tsui, J. L., Chu, D. K., Chang, L. D. J., . . . Poon, L. L. M. (2022). 37 
Genomic epidemiology of SARS-CoV-2 under an elimination strategy in Hong Kong. Nat 38 
Commun, 13(1), 736. https://doi.org/10.1038/s41467-022-28420-7  39 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae232/7875898 by Institut Pasteur -  C
eR

IS user on 06 N
ovem

ber 2024



17 

Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New 1 
algorithms and methods to estimate maximum-likelihood phylogenies: assessing the 2 
performance of PhyML 3.0. Syst Biol, 59(3), 307-321. 3 
https://doi.org/10.1093/sysbio/syq010  4 

Guo, Z., Zhao, S., Lee, S. S., Mok, C. K. P., Wong, N. S., Wang, J., . . . Yeoh, E. K. (2022). 5 
Superspreading potential of COVID-19 outbreak seeded by Omicron variants of SARS-6 
CoV-2 in Hong Kong. J Travel Med. https://doi.org/10.1093/jtm/taac049  7 

Hadfield, J., Megill, C., Bell, S. M., Huddleston, J., Potter, B., Callender, C., . . . Neher, R. A. 8 
(2018). Nextstrain: real-time tracking of pathogen evolution. Bioinformatics, 34(23), 9 
4121-4123. https://doi.org/10.1093/bioinformatics/bty407  10 

Hohna, S., & Drummond, A. J. (2012). Guided tree topology proposals for Bayesian phylogenetic 11 
inference. Syst Biol, 61(1), 1-11. https://doi.org/10.1093/sysbio/syr074  12 

Hu, S., Wang, W., Wang, Y., Litvinova, M., Luo, K., Ren, L., . . . Yu, H. (2021). Infectivity, 13 
susceptibility, and risk factors associated with SARS-CoV-2 transmission under intensive 14 
contact tracing in Hunan, China. Nat Commun, 12(1), 1533. 15 
https://doi.org/10.1038/s41467-021-21710-6  16 

Jolly, B., & Scaria, V. (2021). Computational Analysis and Phylogenetic Clustering of SARS-CoV-2 17 
Genomes. Bio Protoc, 11(8), e3999. https://doi.org/10.21769/BioProtoc.3999  18 

Kozlov, A. M., Darriba, D., Flouri, T., Morel, B., & Stamatakis, A. (2019). RAxML-NG: a fast, 19 
scalable and user-friendly tool for maximum likelihood phylogenetic inference. 20 
Bioinformatics, 35(21), 4453-4455. https://doi.org/10.1093/bioinformatics/btz305  21 

Kuhnert, D., Stadler, T., Vaughan, T. G., & Drummond, A. J. (2016). Phylodynamics with 22 
Migration: A Computational Framework to Quantify Population Structure from Genomic 23 
Data. Mol Biol Evol, 33(8), 2102-2116. https://doi.org/10.1093/molbev/msw064  24 

Lambert, S., Voznica, J., & Morlon, H. (2023). Deep Learning from Phylogenies for Diversification 25 
Analyses. Syst Biol. https://doi.org/10.1093/sysbio/syad044  26 

Leventhal, G. E., Gunthard, H. F., Bonhoeffer, S., & Stadler, T. (2014). Using an epidemiological 27 
model for phylogenetic inference reveals density dependence in HIV transmission. Mol 28 
Biol Evol, 31(1), 6-17. https://doi.org/10.1093/molbev/mst172  29 

Lewis, P. O., Holder, M. T., & Holsinger, K. E. (2005). Polytomies and Bayesian phylogenetic 30 
inference. Syst Biol, 54(2), 241-253. https://doi.org/10.1080/10635150590924208  31 

Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E., & Getz, W. M. (2005). Superspreading and the 32 
effect of individual variation on disease emergence. Nature, 438(7066), 355-359. 33 
https://doi.org/10.1038/nature04153  34 

Miller, D., Martin, M. A., Harel, N., Tirosh, O., Kustin, T., Meir, M., . . . Stern, A. (2020). Full 35 
genome viral sequences inform patterns of SARS-CoV-2 spread into and within Israel. 36 
Nat Commun, 11(1), 5518. https://doi.org/10.1038/s41467-020-19248-0  37 

Morel, B., Barbera, P., Czech, L., Bettisworth, B., Hubner, L., Lutteropp, S., . . . Stamatakis, A. 38 
(2021). Phylogenetic Analysis of SARS-CoV-2 Data Is Difficult. Mol Biol Evol, 38(5), 1777-39 
1791. https://doi.org/10.1093/molbev/msaa314  40 

Moreno, G. K., Braun, K. M., Riemersma, K. K., Martin, M. A., Halfmann, P. J., Crooks, C. M., . . . 41 
Friedrich, T. C. (2020). Revealing fine-scale spatiotemporal differences in SARS-CoV-2 42 
introduction and spread. Nat Commun, 11(1), 5558. https://doi.org/10.1038/s41467-43 
020-19346-z  44 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae232/7875898 by Institut Pasteur -  C
eR

IS user on 06 N
ovem

ber 2024



18 

Nguyen, L. T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: a fast and 1 
effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol 2 
Evol, 32(1), 268-274. https://doi.org/10.1093/molbev/msu300  3 

Obadia, T., Haneef, R., & Boelle, P. Y. (2012). The R0 package: a toolbox to estimate 4 
reproduction numbers for epidemic outbreaks. BMC Med Inform Decis Mak, 12, 147. 5 
https://doi.org/10.1186/1472-6947-12-147  6 

Paredes, M. I., Ahmed, N., Figgins, M., Colizza, V., Lemey, P., McCrone, J. T., . . . Bedford, T. 7 
(2024). Underdetected dispersal and extensive local transmission drove the 2022 mpox 8 
epidemic. Cell. https://doi.org/10.1016/j.cell.2024.02.003  9 

Pekar, J. E., Magee, A., Parker, E., Moshiri, N., Izhikevich, K., Havens, J. L., . . . Wertheim, J. O. 10 
(2022). The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2. Science, 11 
377(6609), 960-966. https://doi.org/10.1126/science.abp8337  12 

Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2--approximately maximum-likelihood 13 
trees for large alignments. PLoS One, 5(3), e9490. 14 
https://doi.org/10.1371/journal.pone.0009490  15 

Ragonnet-Cronin, M., Boyd, O., Geidelberg, L., Jorgensen, D., Nascimento, F. F., Siveroni, I., . . . 16 
Volz, E. (2021). Genetic evidence for the association between COVID-19 epidemic 17 
severity and timing of non-pharmaceutical interventions. Nat Commun, 12(1), 2188. 18 
https://doi.org/10.1038/s41467-021-22366-y  19 

Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior 20 
Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst Biol, 67(5), 901-904. 21 
https://doi.org/10.1093/sysbio/syy032  22 

Sagulenko, P., Puller, V., & Neher, R. A. (2018). TreeTime: Maximum-likelihood phylodynamic 23 
analysis. Virus Evol, 4(1), vex042. https://doi.org/10.1093/ve/vex042  24 

Saulnier, E., Gascuel, O., & Alizon, S. (2017). Inferring epidemiological parameters from 25 
phylogenies using regression-ABC: A comparative study. PLoS Comput Biol, 13(3), 26 
e1005416. https://doi.org/10.1371/journal.pcbi.1005416  27 

Scire, J., Barido-Sottani, J., Kühnert, D., Vaughan, T. G., & Stadler, T. (2020). Improved multi -28 
type birth-death phylodynamic inference in BEAST 2. BioRxiv, 2020.2001. 2006.895532.  29 

Stadler, T., & Bonhoeffer, S. (2013). Uncovering epidemiological dynamics in heterogeneous 30 
host populations using phylogenetic methods. Philos Trans R Soc Lond B Biol Sci, 31 
368(1614), 20120198. https://doi.org/10.1098/rstb.2012.0198  32 

Stadler, T., Kouyos, R., von Wyl, V., Yerly, S., Boni, J., Burgisser, P., . . . Swiss, H. I. V. C. S. (2012). 33 
Estimating the basic reproductive number from viral sequence data. Mol Biol Evol, 29(1), 34 
347-357. https://doi.org/10.1093/molbev/msr217  35 

Stadler, T., Kuhnert, D., Bonhoeffer, S., & Drummond, A. J. (2013). Birth-death skyline plot 36 
reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc 37 
Natl Acad Sci U S A, 110(1), 228-233. https://doi.org/10.1073/pnas.1207965110  38 

Thompson, A., Liebeskind, B., Scully, E. J., & Landis, M. (2024). Deep learning and likelihood 39 
approaches for viral phylogeography converge on the same answers whether the 40 
inference model is right or wrong. Syst Biol. https://doi.org/10.1093/sysbio/syad074  41 

To, T. H., Jung, M., Lycett, S., & Gascuel, O. (2016). Fast Dating Using Least-Squares Criteria and 42 
Algorithms. Syst Biol, 65(1), 82-97. https://doi.org/10.1093/sysbio/syv068  43 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae232/7875898 by Institut Pasteur -  C
eR

IS user on 06 N
ovem

ber 2024



19 

Tran-Kiem, C., & Bedford, T. (2024). Estimating the reproduction number and transmission 1 
heterogeneity from the size distribution of clusters of identical pathogen sequences. 2 
Proc Natl Acad Sci U S A, 121(15), e2305299121. 3 
https://doi.org/10.1073/pnas.2305299121  4 

Vaughan, T. G., Scire, J., Nadeau, S. A., & Stadler, T. (2024). Estimates of early outbreak-specific 5 
SARS-CoV-2 epidemiological parameters from genomic data. Proc Natl Acad Sci U S A, 6 
121(2), e2308125121. https://doi.org/10.1073/pnas.2308125121  7 

Volz, E. M., Kosakovsky Pond, S. L., Ward, M. J., Leigh Brown, A. J., & Frost, S. D. (2009). 8 
Phylodynamics of infectious disease epidemics. Genetics, 183(4), 1421-1430. 9 
https://doi.org/10.1534/genetics.109.106021  10 

Volz, E. M., & Siveroni, I. (2018). Bayesian phylodynamic inference with complex models. PLoS 11 
Comput Biol, 14(11), e1006546. https://doi.org/10.1371/journal.pcbi.1006546  12 

Voznica, J., Zhukova, A., Boskova, V., Saulnier, E., Lemoine, F., Moslonka-Lefebvre, M., & 13 
Gascuel, O. (2022). Deep learning from phylogenies to uncover the epidemiological 14 
dynamics of outbreaks. Nat Commun, 13(1), 3896. https://doi.org/10.1038/s41467-022-15 
31511-0  16 

Wallinga, J., & Lipsitch, M. (2007). How generation intervals shape the relationship between 17 
growth rates and reproductive numbers. Proc Biol Sci, 274(1609), 599-604. 18 
https://doi.org/10.1098/rspb.2006.3754  19 

Wells, C. R., Townsend, J. P., Pandey, A., Moghadas, S. M., Krieger, G., Singer, B., . . . Galvani, A. 20 
P. (2021). Optimal COVID-19 quarantine and testing strategies. Nat Commun, 12(1), 356. 21 
https://doi.org/10.1038/s41467-020-20742-8  22 

Worobey, M., Han, G. Z., & Rambaut, A. (2014). Genesis and pathogenesis of the 1918 23 
pandemic H1N1 influenza A virus. Proc Natl Acad Sci U S A, 111(22), 8107-8112. 24 
https://doi.org/10.1073/pnas.1324197111  25 

Zhukova, A., & Gascuel, O. (2024). Accounting for partner notification in epidemiological birth-26 
death-models. medRxiv, 2024.2009. 2009.24313296.  27 

 28 
 29 
Figure Legend 30 

Fig. 1. An overview of training neural network models based on simulated phylogenetic trees. The BDSS model 31 
categorizes individuals as superspreaders (S) or normal spreaders (N), extending the traditional Birth -Death model 32 

parameters R0 (basic reproductive number) and 1/ (infectious period). fss indicates the fraction of superspreaders in 33 
the population, while Xss represents the ratio of the transmission rate of superspreaders to that of normal spreaders.  34 
Seven types of trees, Baseline, Dated Baseline, Dated Resolved, Dated Polytomous, Genetic Baseline, Genetic Resolved, 35 
Genetic Polytomous, are detailed in Fig. 2. 36 

Fig. 2. Examples of seven types of phylogenetic trees used in simulations. Internal nodes are marked as black dots, 37 
while tips are denoted by numerical labels. Among these, four trees represent poorly resolved, realistic phylogenetic 38 
structures that can be derived from sequence data and are highlighted with a grey background. To effectively highlight 39 
the differences between poorly resolved trees, which can be constructed from sequence data, and fully resolved 40 
idealistic trees, which cannot, tips have been color-coded into three distinct clusters. Each type of simulated tree used in 41 
this study has tip counts ranging from 200 to 1000 (Supplementary Table S1). 42 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae232/7875898 by Institut Pasteur -  C
eR

IS user on 06 N
ovem

ber 2024



20 

Fig. 3. Performance comparison of models. A) Performance comparison of models trained on seven types of 1 
phylogenetic trees. Each bar depicts the relative error observed when testing trees of the same type as those used in 2 
training. The red marked lines denote the median relative error when testing the Baseline-Model and Dated Baseline-3 
Model with Dated Resolved trees, as well as the Genetic Baseline-Model with Genetic Resolved trees. Models trained 4 
using poorly resolved phylogenetic trees (i.e., Dated Resolved, Dated Polytomous, Genetic Resolved and Genetic 5 
Polytomous) are highlighted in bold. B) Performance comparison of models tested using poorly resolved phylogenetic 6 
trees. "Baseline-Poor" represents the evaluation of the Baseline-Model tested using Dated Resolved Trees. "Dated 7 
Baseline-Poor" indicates the assessment of the Dated Baseline-Model with Dated Resolved Trees, while "Genetic 8 
Baseline-Poor" reflects the performance of the Genetic Baseline-Model when testing with Genetic Resolved trees. 9 

Fig. 4. Performance comparison by incorporating varying levels of contact tracing data based on Baseline-Model, 10 
Dated Baseline-Model and BEAST2. A) Comparison between the Baseline-Model and Dated Baseline-Model with 11 
varying levels of contact tracing data based on 1,000 simulated trees. The models are represented by grey (Baseline-12 
Model) and red (Dated Baseline-Model) bars, with the color intensity within each bar signaling the degree of contact 13 
tracing data integrated into the input trees. Darker shades denote a higher percentage of data incorporation. The term 14 
"Baseline_50" refers to the performance of the Baseline-Model with Genetic Polytomous trees refined using 50% 15 
contact tracing data, encompassing cluster information and infection times. "Dated Baseline_50" indicates the 16 
performance of the Dated Baseline-Model with Genetic Polytomous trees refined using 50% contact tracing data, 17 
including only cluster information. It’s notable that the input trees are refined by infection time, with a 1-day time 18 
constraint margin using LSD2 (To et al., 2016), and an additional refinement with a stricter margin of 0.1 day, as shown 19 
in Supplementary Table S3. B) Comparison between the Baseline-Model and BEAST2 (blue bar) with varying levels of 20 
contact tracing data (cluster information and infection times) based on 100 simulated trees. C) Comparison between 21 
Dated Baseline-Model and BEAST2 (blue bar) with varying levels of contact tracing data (cluster information only) 22 
based on 100 simulated trees. "BEAST2_50" indicates the performance of BEAST2 with Genetic Polytomous trees 23 
refined using 50% contact tracing data, incorporating both cluster information and infection times in panel B, and only 24 
cluster information in panel C. 25 
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