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Isolation methods determine
human neutrophil responses
after stimulation
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Friederike Jönsson1,3*† and Luc de Chaisemartin1,2,4*†

1Institut Pasteur, Université Paris-Cité, Institut national de la santé et de la recherche (INSERM) Unité
mixte de recherche (UMR)1222, Antibodies in Therapy and Pathology, Paris, France, 2Inflammation,
Microbiome and Immunosurveillance, INSERM, Université Paris-Saclay, Orsay, France, 3Centre
national de la recherche scientifique (CNRS), Paris, France, 4L'Assistance Publique - Hôpitaux de Paris
(APHP), Bichat Hospital, Immunology Department, Paris, France
Studying neutrophils is challenging due to their limited lifespan, inability to

proliferate, and resistance to genetic manipulation. Neutrophils can sense

various cues, making them susceptible to activation by blood collection

techniques, storage conditions, RBC lysis, and the isolation procedure itself.

Here we assessed the impact of the five most used methods for neutrophil

isolation on neutrophil yield, purity, activation status and responsiveness. We

monitored surface markers, reactive oxygen species production, and DNA

release as a surrogate for neutrophil extracellular trap (NET) formation. Our

results show that neutrophils isolated by negative immunomagnetic selection

and density gradient methods, without RBC lysis, resembled untouched

neutrophils in whole blood. They were also less activated and more responsive

to milder stimuli in functional assays compared to neutrophils obtained using

density gradients requiring RBC lysis. Our study highlights the importance of

selecting the appropriate method for studying neutrophils, and underscores the

need for standardizing isolation protocols to facilitate neutrophil subset

characterization and inter-study comparisons.
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Introduction

Neutrophils are the predominant leukocyte population in human blood and maintain

host immunity through a broad arsenal of antimicrobial activities. Consequently,

deficiencies in neutrophil counts or their dysfunction render individuals susceptible to

recurrent and overwhelming infections (1, 2).

Upon infection, neutrophils are recruited to sites of inflammation in a tightly regulated

process designed to prevent their inappropriate activation, which can lead to severe tissue

and organ damage. To eliminate invading pathogens, neutrophils possess a variety of

antimicrobial effector mechanisms, including phagocytosis, production of reactive oxygen
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species (ROS), release of preformed lytic enzymes, antimicrobial

peptides, cytokines, and neutrophil extracellular traps (NETs) (3–

5). While beneficial to the host in fighting infection, these same

effector mechanisms also enable neutrophils to contribute to

various inflammatory and autoimmune diseases (6, 7).

Understanding the fine equilibrium between the beneficial and

detrimental functions of neutrophils is critical to harnessing their

therapeutic potential (8).

Under steady-state conditions, 1011 mature neutrophils are

released daily from the bone marrow into the circulation (9, 10).

These cells do not divide and are short-lived (11), making them

notoriously difficult to study ex vivo and precluding genetic

manipulation. Although a few cell lines exhibit partial neutrophil

characteristics, none recapitulate their full cellular phenotype and

functions (12, 13). Consequently, the current gold standard for

studying human neutrophil function is their timely isolation from

fresh blood, followed by ex vivo stimulation. This approach assumes

that the isolationmaintains neutrophils in the same phenotypic state as

they are found inside the circulation. However, neutrophils are highly

sensitive to external cues and are easily activated by blood collection

methods, temperature changes (14), or the isolation process itself (15,

16). Even quiescent ex vivo neutrophils spontaneously activate, making

storage time prior to processing a critical parameter for neutrophil

isolation and investigation (16–18). These variables can distort the

neutrophil phenotype, leading to conflicting results on activation

processes and subpopulations, and an unclear picture of the human

neutrophil behavior in physiological and pathological states.

Various methods, including magnetic separation and density

gradients, allow neutrophil isolation from whole blood. While flow

cytometry and microfluidic techniques have emerged (19, 20),

technical hurdles limit their use. Given the importance of the

activation state of neutrophils for understanding their biology,

there is a critical need to thoroughly characterize the impact of

the isolation process on subsequent experiments to facilitate

neutrophil characterization, subset identification, and comparison

between studies.

In this study, we examined the five most common methods of

neutrophil isolation for their efficacy and impact on neutrophil

physiology: 1) dextran sedimentation followed by density gradient

centrifugation with Ficoll and hypertonic lysis of erythrocytes, 2)

density gradient centrifugation with Polymorphprep followed by

hypertonic lysis of erythrocytes, 3) density gradient centrifugation

with Histopaque-1119, followed by a second density gradient

centrifugation with Percoll, and two negative selection

immunomagnetic bead-based kits from different suppliers 4)

Miltenyi Biotec and 5) Stemcell Technologies (Supplementary

Figure S1).

Analyses of neutrophil yield, purity, activation and responsiveness

highlighted that immunomagnetic bead or density gradient separation

methods without RBC lysis yielded neutrophils phenotypically

resembling blood neutrophils. Moreover, immunomagnetically

isolated neutrophils displayed reduced baseline activation and

increased responsiveness to weak stimuli in ROS and lytic cell death

assays, in contrast to density gradient-isolated neutrophils. Our study

underscores the importance of selecting the appropriate neutrophil

isolation method for accurate ex vivo analysis.
Frontiers in Immunology 02
Materials and methods

Human samples

Human peripheral blood samples were collected from healthy

volunteers through the ICAReB platform (Clinical Investigation &

Access to Research Bioresources) from the Center for Translational

Science, Institut Pasteur (21). All participants received oral and

written information about the research and gave written informed

consent in the frame of the healthy volunteers CoSImmGEn cohort

(Clinical trials: NCT 03925272), after approval of the “CPP Ile-de-

France I” ethics committee).
Neutrophil isolation using
immunomagnetic beads

The EasySep Direct Human Neutrophil Isolation Kit (Stemcell

Technologies) was used according to the manufacturer’s instructions.

After negative selection in a magnetic field, the collected neutrophils

were washed with Hank’s balanced salt solution (HBSS) and adjusted

to an appropriate volume in HBSS (Ca2+/Mg2+) + 2% fetal calf

serum (FCS).

Neutrophils were separated by negative magnetic selection

(MACSxpress, Miltenyi Biotec, M) according to the manufacturer’s

instructions. Following negative selection, the neutrophil-enriched

suspension was collected, and residual erythrocytes were removed

using the MACSxpress Erythrocyte Depletion Kit (Miltenyi Biotec).

The resulting neutrophil suspension was washed with HBSS and

resuspended to an appropriate volume in HBSS (Ca2+/Mg2+) +

2% FCS.
Histopaque/Percoll purification

Isolation was performed as previously published (22). Briefly,

5 ml of EDTA-anticoagulated whole blood were carefully layered on

top of 5 ml 1.119 g ml-1 Histopaque (Sigma-Aldrich) and spun for

20 min at 800g without brake. The diffuse red phase of Histopaque-

1119 above the erythrocyte pellet was collected in a new tube,

washed, and loaded onto a 10 ml density gradient consisting of

successive layers of 65, 70, 75, 80, and 85% Percoll (GE Healthcare)

diluted 10:1. After centrifugation (20 min, 800g without brake), the

interface between the 75% and the 65% layer was collected, washed,

and the cell concentration was adjusted to an appropriate volume in

HBSS (Ca2+/Mg2+) + 2% FCS.
Polymorphprep purification followed by
RBC lysis

Whole blood was layered in a 1:1 volume ratio on top of 5 ml of

Polymorphprep (Alere Technologies AS) and spun for 45 min at

500g without brake. The neutrophil phase was collected according

to the manufacturer’s instructions and washed. Residual
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erythrocytes were removed by incubation with BD Pharm Lyse

buffer (BD Bioscience) for 2 min. Cells were washed and adjusted to

an appropriate volume in HBSS (Ca2+/Mg2+) + 2% FCS.
Dextran/Ficoll purification followed by
RBC lysis

The isolation was performed as previously published (23). 5 ml of

blood were carefully combined with 3.3 ml of 5% Dextran (Sigma-

Aldrich) and 5 ml Phosphate Buffered Saline (PBS) without Ca2+ and

Mg2+ in a 15 ml tube and left untouched for 30 min to separate

leukocytes from erythrocytes by sedimentation. Following separation

into two phases, the upper phase was collected and slowly placed on

top of 3.3 ml Ficoll-Paque Plus (GE Healthcare) into a new tube, to

separate polymorphonuclear from mononuclear cells and

erythrocytes. The gradient was centrifuged for 20 min at 600g

without brake. Contaminating erythrocytes were removed by

resuspending the cell pellet in 5 ml of BD Pharm Lyse buffer (BD

Bioscience) for 2 min. Cells were washed with HBSS and resuspended

an appropriate volume in HBSS (Ca2+/Mg2+) + 2% FCS.
Phenotypic analysis of neutrophils from
whole blood

Whole blood was carefully mixed in a 1:1 volume ratio with PBS

and centrifuged for 5 min at 500g. The supernatant was discarded

followed by the addition of 1 volume of PBS. 100 ml of this washed
whole blood was incubated with Live/Dead Fixable Blue Dead Cell

Stain Kit UV (Thermo Fisher Scientific) with either True Stain

Monocyte blocker (BioLegend) or FcR blocker (Human True Stain

FcX, BioLegend) for 15 min in the dark. Subsequently, antibody

mixes (Supplementary Table S1) were added for 20 min in the dark.

After washing, samples were resuspended in 1.8 ml 1-step fix/lyse

buffer (FACS Lysing solution, BD BioSciences) and incubated for

15 min. The cells were washed and resuspended in MACS buffer

(Miltenyi Biotec) and aquired on a MACSQuant 16 Analyzer

(Miltenyi Biotec), prior to analysis of data using FlowJo 10.6.2.
Analysis of purity, quantity and phenotype
of isolated neutrophils

2 x 104 isolated neutrophils were incubated with diluted Live/

Dead Fixable Blue Dead Cell Stain Kit UV (Thermo Fisher

Scientific) in combination with 1:100 True Stain Monocyte

blocker (BioLegend), and for FcRs panels with 1:100 FcR block

(Human True Stain FcX, BioLegend) for 15 min in the dark. Cells

were washed once with HBSS and stained with antibody mixes

(Supplementary Table S1) for 20 min in the dark. Cells were fixed

for 15 min (IC Fixation Buffer, BD BioSciences), washed and

resuspended with MACS buffer before acquisition. MFI was

acquired on a MACSQuant 16 Analyzer (Miltenyi Biotec), and
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analysis of data was done on FlowJo 10.6.2. Contaminating cells

were determined as the percentages of lymphocytes (CD3pos,

CD19pos, CD56pos), monocytes (CD14pos), eosinophils

(CD193posSSChigh) and basophils (CD193pos/SSClow). Experiments

that resulted in less than 70% pure neutrophils were considered

flawed and excluded from the analysis (2 donors for method Pol, 3

donors for method D/F). Neutrophil yield was calculated as the

obtained cell concentration divided by the initial whole blood

neutrophil input measured by flow cytometry.
Preparation of immobilized
immune complexes

Plate-bound immune complexes (ICs) were formed by using

human anti-TNP IgG1 monoclonal antibodies (mAbs, in house)

with homemade TNP32-BSA as described previously (24). Briefly, 30

mg ml-1 TNP32-BSA in 50 mM carbonate/bicarbonate buffer (pH 9.6)

was coated onto a 96-well ViewPlate (Perkin Elmer) for 1 hour at 37°C.

After two washes with media (HBSS + 2% FCS), 100 mg ml-1 of human

anti-TNP IgG1 diluted in the same media was incubated for 1 h at 37°

C. Finally, wells were washed twice with HBSS (Ca2+/Mg2+) + 2% FCS.
CD32A blocking

Neutrophils purified by magnetic isolation (Stemcell and Miltenyi

kit) were preincubated for 30 min at 37°C in HBSS (Ca2+/Mg2+) + 2%

FCS supplemented with 20 mg ml-1 of a human anti-CD32A mAb

(clone IV.3 expressed as a human IgG1 mutated in its Fc domain

(N297D) to abrogate Fc effector function, in house) or without as

control, prior exposure to plate-bound ICs. Intra- and extracellular

ROS production and cell death were measured over time as

described below.
Detection of intra- and extracellular ROS

ROS production was measured by chemiluminescence as

previously described (25). Briefly, 5 x 104 neutrophils in 200 ml were
incubated with or without stimuli (25 nM PMA (Sigma-Aldrich), 5

mM A23187 (Sigma-Aldrich), 50 mg ml-1 PGN (Sigma-Aldrich), 10

nM TNFa (Miltenyi Biotec), 10 mg ml-1 LPS (K. pneumoniae, Sigma-

Aldrich), or plate-bound ICs for 30 min at 37°C in the presence of 50

mM luminol (Sigma-Aldrich) in a 96-well ViewPlate (Perkin Elmer).

Chemiluminescence was measured every 130s using a Spark

microplate reader (Tecan), with timepoint1 being the first

measurement immediately after addition of stimuli, and a delta

luminescence was calculated for each sample tested in duplicates as:

Equation (1):

DLuminescence = Lum(stimuli condition)max

− Lum(buffer condition)timepoint1 −  Lum(buffer condition)max

(1)
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Lytic cell death measurement

Cell death was measured as loss of cellular integrity by increase

in Sytox Green fluorescence, a membrane-impermeable DNA

intercalator that stains extracellular DNA and DNA from cells

with compromised plasma membranes, as previously described

(26). Briefly, 5 x 104 neutrophils in 200 ml were incubated with or

without 25 nM PMA (Sigma-Aldrich), 5 mM A23187 (Sigma-

Aldrich), 10 mg ml-1 peptidoglycan (Sigma-Aldrich), 10 nM

TNFa (Miltenyi Biotec), 10 mg ml-1 LPS (K. pneumoniae, Sigma-

Aldrich), or plate-bound ICs in the presence of 5 μM of Sytox Green

(Thermo Fisher Scientific) in a 96-well ViewPlate (Perkin Elmer).

Fluorescence was measured every 15 min for 5 h on a microplate

reader (Spark, Tecan) with timepoint1 being the first measurement

immediately after addition of stimuli, and delta fluorescence was

calculated using Eq. (2) for each sample tested in duplicates:

Equation (2):

DFluorescence = Fluo(stimuli condition)max

−  Fluo(buffer condition)timepoint1 −  Fluo(buffer condition)max

(2)
Statistical analyses

The statistical analysis and data visualization were performed

using RStudio and GraphPad Prism V9. Normality of the data was

assessed using the Shapiro-Wilk test. The appropriate statistical test

was chosen based on the analysis conducted, as specified in the

figure legends and text. The P values were reported using standard

notation: ****P< 0.0001, ***P< 0.001, **P< 0.01, and *P< 0.05. All

outliers were included in the data and all data points are shown in

the figures.
Results

Neutrophil recovery, viability, and purity

We compared the performance and impact of the five most

commonly used methods for isolating human neutrophils from

blood: two negative selection immunomagnetic bead-based kits

from different suppliers, 1) Stemcell Technologies (termed “S”

hereafter) and 2) Miltenyi Biotec (“M”); 3) density gradient

centrifugation with Histopaque-1119, followed by a second

density gradient centrifugation with Percoll (“H/P”); 4) density

gradient centrifugation with Polymorphprep followed by RBC lysis

(“Pol”), and 5) dextran sedimentation followed by density gradient

centrifugation with Ficoll and RBC lysis (“D/F”) (Supplementary

Figure S1). These purification methods differ in the number of

processing steps, RBC lysis requirements, chemical compounds

used, price, and total time required (Supplementary Table S2).

We first investigated whether the different methods affected the

overall recovery of neutrophils fromwhole blood using flow cytometry

(Figure 1A). Our results indicate that the immunomagnetic methods S

and M consistently yielded the highest mean neutrophil recovery per
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ml of whole blood, whereas the density gradient methods Pol and D/F

performed with 1.95-fold (Pol) and 2.02-fold (D/F) less efficiency

(Figure 1B, Supplementary Table S2). All methods resulted in more

than 95% viable neutrophil fractions, with a non-significant trend for

the Pol and D/F methods to reduce viability compared to S, M and H/

P methods (Figure 1C).

We then evaluated the purity of the isolated neutrophil fraction

of each method by gating on SSC-Ahigh/singlets/CD45pos/CD15pos

cells and assessing contamination with lymphocytes, monocytes,

eosinophils, and basophils (Figure 1D). The immunomagnetic

methods S and M as well as the density gradient method H/P

showed significantly higher neutrophil purity [97.22% ± 1.77% (S),

97. 91% ± 1.06% (M), and 94.10% ± 3.61% (H/P)] than the two

density gradient methods with RBC lysis Pol and D/F [78.96% ±

6.68% (Pol), 85.12% ± 6.78% (D/F)]. The major contaminating cell

types in the neutrophil fractions obtained by the Pol and D/F

method were lymphocytes [7.40% ± 4.16% (Pol), 9.98% ± 8.29% (D/

F)] and eosinophils [4.28% ± 2.16% (Pol), 9.43% ± 8.04% (D/F)].

Overall, these results show that the immunomagnetic isolation

methods are significantly superior to the density gradient methods

in terms of yield and purity of the isolated fraction.
Phenotypic analysis of isolated neutrophils

We next examined whether the different isolation methods

altered the phenotype of purified neutrophils using multicolor

flow cytometry. Mature neutrophils were gated as SSC-Ahigh

single cells CD45posCD193neg expressing CD15 and excluding

contaminating cell types as described previously.

Morphological analysis (FSC-A/SSC-A) showed that

neutrophils isolated by the Pol and D/F density gradient

separation methods exhibited a wider range of size and

granularity compared to the three other methods or unprocessed

whole blood neutrophils (Figure 2A). Neutrophils isolated using Pol

and D/F methods also showed a shift toward a higher FSC-A and

lower SSC-A, indicating an activated state (27–29).

Subsequently, a phenotypic assessment of the neutrophils was

conducted to evaluate potential alterations in pertinent surface

proteins, focusing on activation and degranulation markers. In the

absence of a better reference, unprocessed whole blood (WB)

neutrophils were used as a reference point for the “in vivo” status of

neutrophils, using a method previously shown to have minimal

impact on neutrophil phenotype [(17), see Methods]. Neutrophils

isolated by density gradient methods with RBC lysis (Pol and D/F)

showed a significant upregulation of the classical activation and

degranulation markers CD11b, CD66b, and CD63 [2.2-, 2.6-, and

2.7-fold (Pol); 2.6-, 2.8-, and 2.8-fold (D/F)], and a downregulation of

CD62L [0.5-fold (Pol, D/F)] compared to unprocessed whole blood

neutrophils (Figures 2B–E). This phenotype is indicative of neutrophil

activation (30). The Miltenyi immunomagnetic method (M) also

resulted in a moderate increase in neutrophil CD11b, CD66b and

CD63 (1.8-, 1.8-, and 1.3-fold), whereas CD62L expression remained

similar to that of unprocessed whole blood neutrophils, indicating a

milder neutrophil activation (Figures 2B–E). Only neutrophils isolated

by the immunomagnetic method from stem cells (S) and the density
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gradient method Histopaque/Percoll (H/P) showed no significant

increase in CD66b, CD11b and CD63 or decrease in CD62L

compared to unprocessed blood neutrophils (Figures 2B–E).

In addition, all methods except H/P induced an increase in

CD15, with a 1.8-fold increase in the S and M methods and a 6.6-/

5.1-fold increase in the Pol and D/F methods (Figure 2F), which,

although not classically used, is also indicative of neutrophil

activation (31).

Taken together, our data show that isolation protocols are

widely different in their alteration of neutrophil phenotype, with

H/P having no effect, S and M having moderate effects, and Pol and

D/F having large effects on all activation markers analyzed.
Characterization of FcgRs on
isolated neutrophils

Three different IgG receptors (FcgR) are expressed on the

surface of neutrophils, CD64 (FcgRI), CD32A (FcgRIIA) and
Frontiers in Immunology 05
CD16B (FcgRIIIB), and contribute to their ability to become

activated and/or to phagocytose immune complexes or opsonized

cells (24, 32, 33). Following isolation, CD64 surface staining was

similarly increased (3.5-/4.6-fold) on neutrophils compared to

unprocessed whole blood neutrophils, regardless of the isolation

method used (Figure 3A). The same was observed for CD32A (1.3-

fold) for all methods except using the Stemcell kit (S) (Figure 3B).

Neutrophils isolated by the latter method showed a 0.3-fold reduced

CD32A expression compared to unprocessed whole blood

neutrophils. We confirmed these results using several other clones

of CD32A mAbs (Supplementary Figure S2). Finally, no significant

difference in CD16B expression was detected between neutrophils

purified by the different methods and unprocessed whole blood

neutrophils (Figure 3C).

To determine whether the reduction in CD32A levels caused by

the Stemcell kit alters the response of neutrophils to immune

complexes, we stimulated neutrophils - isolated using either the

Stemcell (S) or the Miltenyi (M) kit - with plate-bound human IgG1

immune complexes. Neutrophils obtained with both methods
A

B

D

C

FIGURE 1

Comparison of five methods for the purification of human peripheral blood neutrophils. (A) Flow cytometry gating strategy to assess the viability,
purity and quantity of whole blood neutrophils isolated by five different neutrophil isolation methods. Composition of isolated cell suspensions:
neutrophils (SSChigh/CD45pos/CD11bpos/CD15pos), eosinophils (CD193pos/SSChigh), basophils (CD193pos/SSClow), monocytes (CD14pos) and
lymphocytes [T cells (CD3pos), B cells (CD19pos) and NK cells (CD56pos)]. (B) Recovery of neutrophils per ml of blood according to the isolation
method used. (C) Percentages of viable neutrophils after each isolation method. (D) Percentages of cell types identified after each isolation
procedure. (B–D) Data are represented as boxplots; whiskers range from the minimum to maximum value and inside each box (25th to 75th
percentile) the median is represented; n = 6-9. (B, C) Individual donors are indicated with distinct symbols. Results obtained by the different isolation
methods were compared using one-way ANOVA with post-hoc Tukey’s multiple comparisons. P values are shown as *P < 0.05.
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showed similar and robust ROS release and lytic cell death

induction (Figures 3D, E). The responses to immune complexes

were mostly CD32A-dependent, as pre-incubation of neutrophils

with a CD32A-blocking antibody (mAb IV.3, 34) similarly reduced

ROS release and lytic cell death (Figures 3D, E), although failing to

reach significance for the ROS measurement in neutrophils isolated

with method S.

Thus, despite the low CD32A surface staining, neutrophils

isolated with the Stemcell kit retain their responsiveness to IgG

immune complexes.
Frontiers in Immunology 06
RBC lysis decreases ROS production
capacity of isolated neutrophils

To provide a general assessment of the functional consequences

associated with the five neutrophil isolation methods, we first

investigated the ability of purified neutrophils to generate ROS after

stimulation with a range of common triggers, including a protein

kinase C activator (PMA), ionophores (A23187, nigericin), bacterial

cell wall components (peptidoglycan (PGN), lipopolysaccharide (LPS)

or a pro-inflammatory cytokine (TNFa), using a conventional
A

B D

E F

C

FIGURE 2

Phenotype of isolated and unprocessed whole blood neutrophils. (A) Size and granularity (SSC-A/FSC-A) of neutrophils according to the indicated
isolation methods. (B–F) Surface expression of CD11b, CD66b, CD63, CD62L and CD15 on unprocessed whole blood (WB) neutrophils, or
neutrophils isolated by different isolation methods. Neutrophils were gated as SSC-Ahigh/singlets/CD45pos/CD15pos cells. Data are presented as mean
fluorescence intensity (MFI). Data are represented as boxplots; whiskers range from the minimum to maximum value and inside each box (25th to
75th percentile) the median is represented; n = 6-9. Individual donors are indicated with distinct symbols. Purification methods were compared with
unprocessed whole blood neutrophils using one-way ANOVA with post hoc Tukey’s multiple comparisons or Kruskal-Wallis test followed by Dunn’s
post test. P values are expressed as *P< 0.05, **P< 0.01, ***P< 0.001, and ****P< 0.0001.
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chemiluminescence-based assay (25). Basal ROS production (buffer

only) was near to the limit of detection for all the methods evaluated

(Figure 4A). Upon stimulation with the non-physiological compound

PMA and the ionophore A23187, neutrophils from all isolation

methods exhibited a robust release of ROS with no significant

differences among the isolation methods (Figures 4B, C,

Supplementary Figure S2B). As expected (35), nigericin did not

induce any ROS production (Figure 4D). The physiological stimuli

peptidoglycan induced a robust ROS release from neutrophils of all

five methods (Figure 4E). However, LPS and TNFa, elicited a robust

ROS release only from neutrophils isolated by the S, M, and H/P

methods and a marginal release from neutrophils isolated with the

methods Pol and D/F (Figures 4F, G).
Neutrophils isolated by methods without
RBC lysis undergo lytic cell death after
stimulation with biological stimuli

To evaluate the ability of isolated neutrophils to undergo lytic

cell death as an indicator of NETosis, neutrophils were exposed to

established NETosis stimuli and cellular breakdown was monitored

over a five-hour period using a fluorescence read-out (26).

Unstimulated neutrophils isolated with the D/F method displayed

higher basal fluorescence values compared to neutrophils isolated

with the negative selection kits (Figure 5A). PMA, A23187, and
Frontiers in Immunology 07
nigericin stimulation induced significantly higher levels compared

to untreated neutrophils regardless of the isolation method used

(Supplementary Figure S2C), indicating induction of lytic cell death

(Figures 5B–E). Peptidoglycan induced similar lytic cell death in S,

M and H/P neutrophils, but significantly less in D/F isolated

neutrophils (Figure 5E). Robust lytic cell death in response to

LPS- and TNFa was predominantly observed in neutrophils

isolated by the immunomagnetic methods S and M and the

density gradient method H/P (Figures 5F, G). Pol and D/F

density gradient purified neutrophils did not exhibit cell death in

response to LPS and TNFa in most donors.

Overall, and in analogy to the ROS production experiments,

neutrophils undergo lytic cell death suggestive of NETosis in

response to the chemical compound PMA and the calcium

ionophore A23187 irrespective of the isolation method used.

However, lytic cell death in response to biological stimuli was

only observed for neutrophils isolated by low-activating methods.
Discussion

Studying neutrophils ex vivo is challenging due to their short

lifespan and reactivity to external triggers. Given the importance of

the isolation process in neutrophil research, it is surprising that only

few studies have been published comparing different isolation

methods with regard to phenotypic and functional consequences
A B

D E

C

FIGURE 3

Characterization of FcgR on isolated neutrophils. (A–C) Surface expression level of CD64, CD32A, and CD16 on unprocessed whole blood
neutrophils, or neutrophils isolated with different isolation methods. (D, E) Neutrophils isolated with the Stemcell or Miltenyi kit were pre-treated
with anti-CD32A blocking mAb (IV.3) or not, and incubated with plate-bound human IgG1-ICs. (D) Delta luminescence values of intra-/extracellular
ROS assay. (E) Delta fluorescent values of Sytox green intensity as readout for lytic cell death. Data are represented as boxplots; whiskers range from
the minimum to maximum value and inside each box (25th to 75th percentile) the median is represented; n = 6-9. Individual donors are indicated
with distinct symbols. Purification methods were compared to untreated neutrophils from whole blood using a one-way ANOVA with post-hoc
Tukey multiple comparisons or Kruskal-Wallis test followed by Dunn post-test. Unblocked and blocked neutrophils were compared using Wilcoxon
signed-rank test. P values are represented as ****P< 0.0001, ***P< 0.001, **P< 0.01, and *P< 0.05.
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(16, 36). Moreover, a comprehensive comparison of several

available techniques and kits with unprocessed whole blood

neutrophils, is still lacking.

In this study, we performed a comparative analysis of

neutrophil purity, yield, viability, activation, and function of the

five most commonly employed neutrophil isolation methods

in parallel.

Our data show that all isolation procedures yielded comparably

viable neutrophils, but with significant differences in purity,
Frontiers in Immunology 08
recovery, and activation status, as well as time and cost

(Supplementary Table S2).

Significant disparities emerged when comparing density

gradient procedures with immunomagnetic isolation kits. The Pol

and D/F density gradient methods yielded purities of ~85% and

~78%, respectively, with lymphocytes and eosinophils as the major

contaminants. In contrast, the H/P method achieved ~94% purity,

whereas immunomagnetic kits from Stemcell and Miltenyi yielded

purities of ~97-98%. These outcomes align with prior studies (37,
A

B D

E F G

C

FIGURE 4

ROS production in isolated neutrophils. (A–G) Intra-/extracellular ROS was measured using a luminol-based chemiluminescence assay. ROS
production was monitored for 30 min at 37°C from neutrophils isolated by the indicated methods and stimulated with classical triggers. Values are
represented as delta luminescence. Data are represented as boxplots; whiskers range from the minimum to maximum value and inside each box
(25th to 75th percentile) the median is represented; n = 6-9. Individual donors are indicated with distinct symbols. Results were compared using a
one-way ANOVA with post-hoc Tukey’s multiple comparisons or Kruskal-Wallis test followed by Dunn’s post-test. P values are represented as *P<
0.05, **P< 0.01.
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38). Securing pure neutrophil isolates is critical for studying gene

expression and neutrophil-derived cytokines. Even low levels of

contamination can lead to false positives, as demonstrated in

previous studies (37, 38). Whereas around 95% purity is suitable

for many cases, some studies demand ultrapure neutrophils,

requiring alternative protocols (38). Another important difference

between immunomagnetic bead separation and density gradient

methods with further RBC lysis is the loss of neutrophils during the

isolation procedure, which is illustrated by the differences in the

absolute yield of neutrophils. Low-density neutrophils (LDNs) are
Frontiers in Immunology 09
known to be lost during density gradient purifications, which is not

the case with the immunomagnetic kits and the H/P method.

However, LDNs account for only 4% of circulating neutrophils

and can therefore only partially explain the cell loss. It can be

anticipated that the ammonium chloride-based RBC lysis and

additional washing steps may also contribute to the loss

of neutrophils.

Despite the higher performance in purity and quantity of the S,

M, and H/P methods, the isolation methods still induced a

significant change in neutrophil phenotype when compared to
A

B D

E F G

C

FIGURE 5

Lytic cell death induced in isolated neutrophils. (A–G) Extracellular DNA and DNA of cells with compromised plasma membrane were measured
using a plate reader assay. Lytic cell death was monitored for 5 hours at 37°C from neutrophils isolated by indicated methods and stimulated with
classical NETosis stimuli. Values are represented as delta fluorescence. Data are represented as boxplots; whiskers range from the minimum to
maximum value and inside each box (25th to 75th percentile) the median is represented; n = 6-9. Individual donors are indicated with distinct
symbols. Results were compared using a one-way ANOVA with post-hoc Tukey’s multiple comparisons or Kruskal-Wallis test followed by Dunn’s
post-test. P values are represented as *P< 0.05, **P< 0.01.
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unprocessed whole blood neutrophils, with elevation of surface

activation markers CD66b, CD11b, CD63, CD15 and CD64. This

activation was more pronounced for methods involving erythrocyte

lysis, resulting in CD62L shedding. These phenotypic differences,

alongside potential subpopulation depletion, may have implications

for downstream functional studies. While no differences were

observed with the non-physiological chemical compound PMA or

calcium ionophores, physiologically relevant pro-inflammatory

mediators (LPS and TNFa) induced more ROS and lytic cell

death in immunomagnetically isolated neutrophils and those

from the H/P method compared to other density gradient

methods. In fact, despite a higher spontaneous NET release

compared to immunomagnetic isolation-derived neutrophils, no

cell death could be detected after LPS and TNFa stimulation for

neutrophils isolated with methods using RBC lysis in most donors.

These data are in agreement with a report of Blanter et al, showing

that neutrophils isolated with the Stemcell kit responded to LPS and

TNFa, but not neutrophils isolated by dextran sedimentation (16).

The potential of LPS and TNFa to induce NETosis remains

debated with conflicting results reported in the literature (39–42).

Thus, we hypothesize that, among various other factors influencing the

outcomes, differences in the activation status of neutrophils at the

beginning of an experiment likely contribute to the described

inconsistencies regarding certain NETosis stimuli. The exact

mechanism by which different density gradient methods result in

more activated neutrophils remains unknown, but may involve

centrifugation shear stress, duration of the isolation process and thus

oxygen exposure (43), or osmotic changes. Indeed, a key difference

between protocols that resulted in more quiescent neutrophils was the

absence of RBC lysis. Beyond the stress induced by hypertonia, free

heme has been shown to induce neutrophil activation (44, 45).

Interestingly, whereas neutrophils isolated with a method

including RBC lysis were significantly more activated, they showed a

decreased response to “weaker” NETosis stimuli. Continuous

stimulation of neutrophils can lead to a phenomenon called

“neutrophil exhaustion”, which is characterized by a significant

reduction in granule content due to excessive release and an inability

to release NETs (46). The diminished response to activating stimuli is

attributed to the prior secretion of granules or NETs (47), and may

explain why neutrophils isolated through density gradients with

subsequent RBC lysis exhibited elevated degranulation markers and

failed to respond to more physiological stimuli such as LPS and TNFa.
In conclusion, our study advocates for immunomagnetic beads or

the H/P method due to higher purity, yield, and similarity to

unprocessed blood neutrophils in terms of phenotype, activation

state and functionality. Nevertheless, longer preparation time for

density gradient methods and the significantly higher costs (7-fold)

associated with immunomagnetic kits warrant consideration

(Supplementary Table S2). Caution should be taken when studying

surface CD32A expression or function, as at least one commercial kit

contained Fc blockers that interfered with its detection.

Our results prompt the endorsement of bead-based negative

selection kits or density gradient methods devoid of RBC lysis as the

new standard for neutrophil isolation from human blood, whereas

methods involving erythrocyte lysis should be abandoned.
Frontiers in Immunology 10
Additional studies are required to evaluate the performance of the

different isolation methods using bone marrow as a source, or blood

samples from patients with defects in neutrophil maturity and/or

granular content, such as leukemia, sepsis or auto-immune diseases.
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