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Review 

Insects and microbes: best friends from the nursery
Estelle Chabanol and Mathilde Gendrin

Insects host microbes and interact with them throughout their life 
cycle. This microbiota is an important, if not essential, partner 
participating in many aspects of insect physiology. Recent omics 
studies have contributed to considerable advances in the current 
understanding of the molecular implications of microbiota during 
insect development. In this review, we present an overview of the 
current knowledge about the mechanisms underlying interactions 
between developing insects and their microbial companions. The 
microbiota is implicated in nutrition, both via compensating for 
metabolic pathways lacking in the host and via regulating host 
metabolism. Furthermore, the microbiota plays a protective role, 
enhancing the insect’s tolerance to, or resistance against, various 
environmental stresses.
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Introduction
Like most animals, insects associate with some micro- 
organisms — bacteria, fungi, viruses, protists, and ar-
chaea [1]. The association with micro-organisms is es-
sential for the development and survival of several 
insects. Without any microbiota, Aedes aegypti, Anopheles 
gambiae, or Toxorhynchites amboinensis mosquito larvae 
cannot develop past the first instar [2,3], and without its 
symbiotic fungus Pichia anomala, the beetle Doubledaya 
bucculenta does not go beyond the second larval stage [4]. 
In both beetles and mosquitoes, growth is restored when 
introducing into the rearing environment the key sym-
biont or a nonspecific bacterium, respectively. The 

microbiota is nonessential for other insects, such as 
Periplaneta americana cockroaches or Apis mellifera hon-
eybees, but their germ-free larval development is not 
optimal. Rearing these insects in sterile conditions can 
delay development, reduce larval growth, alter mor-
phology, and affect female fecundity [5,6].

Micro-organisms colonize the cuticle and the digestive 
tract, and settle in different organs or even inside cells [1]. 
Microbial colonization generally starts when eggs hatch 
into larvae and interact with their environment, and 
sometimes already during embryogenesis. Symbionts can 
be vertically transmitted to offspring, either directly, 
through the ovaries during egg development, or indirectly, 
by microbes deposited on eggs that are later ingested by 
larvae [7]. Horizontal transmission between individuals also 
occurs via ingestion of conspecific feces, mouth-to-anus or 
mouth-to-mouth contacts, mating, or contamination of a 
shared environment [8,9]. Finally, insects can also acquire 
their microbiota from their environment, including water, 
soil, plants, and food substrates [10,11].

Recent advances in the role of the microbiota 
throughout the insect life cycle were facilitated thanks to 
the development of the omics approaches. Sequencing 
allowed metagenomic and metatranscriptomic studies, 
and analytical technologies, such as mass spectrometry, 
enabled precise proteomic and metabolomic investiga-
tions. Here, we review the importance of microbes 
during insect postembryonic development, focusing 
particularly on recent progress based on omics studies. 
The microbiota has been shown to contribute to larval 
nutrition, often complementing insect auxotrophies. It 
also protects insects against biotic and abiotic stresses, 
allowing larvae to develop in various ecological niches.

Main text
Nutrition
Micro-organisms sometimes simply serve as food for 
insects, providing nutritional value as a protein source. 
Heat-killed micro-organisms were shown to support the 
development of axenic Ae. aegypti mosquitoes [12] and to 
improve the lifespan of Drosophila melanogaster [13] in a 
quantity-dependent manner. Here, we will focus on the 
active roles that micro-organisms play in the digestion 
and transformation of nutrients essential for insect de-
velopment [14,15]. Particularly, micro-organisms parti-
cipate in the recovery and production of essential 
elements, activate different metabolic pathways, and 
send signals to promote larval development.
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In phytophagous and xylophagous insects, the micro-
biota is involved in the digestion of lignocellulose — the 
main component of plant wall and wood — composed of 
cellulose, hemicellulose, and lignin. Lignin is an aro-
matic polymer, while hemicellulose and cellulose are 
carbohydrate polymers. Lignocellulose is the principal 
source of carbon for plant-feeding insects — including 
some Diptera, Lepidoptera, Hymenoptera, and 
Coleoptera — that nonetheless lack the cellobiohy-
drolases and ligninases necessary to fully digest these 
materials and rely on their microbiota to do so [16]. In 
the wood-feeding beetle Odontotaenius disjunctus, depo-
lymerization of lignocellulose compounds and fermen-
tation of sugar monomers are supported by aerobic and 
anaerobic bacteria throughout the digestive tract [17]. 
This process allows adults to predigest wood, trans-
forming a low-nutrient diet into a high-nutrient, energy- 
rich food, containing acetate, formate, lactate, sugar 
monomers such as glucose and xylose, and aromatic 
monomers such as benzoate and phenylpropionate. 
Larvae then ingest the enriched frass, which provides 
the nutrients required for their survival and develop-
ment. Protaetia brevitarsis beetle larvae digest wood 
compounds thanks to their microbiota, mainly Firmi-
cutes and Bacteroidetes bacteria, that allow degradation 
and fermentation in the hindgut via producing cellu-
lases, hemicellulases, and ligninases [18].

In addition, a herbivorous diet is generally low in ni-
trogen, and the insect requirements usually exceed the 
available resources. Nitrogen is however an essential 
element required to biosynthesize nucleotides, amino 
acids, and other metabolites. Some symbionts can com-
pensate for this scarcity by fixing atmospheric dinitrogen 
or by recycling nitrogen-rich compounds, such as urea or 
uric acid. This type of microbiota is an important partner 
for the growth of arboreal ant colonies, including Azteca 
alfari, Azteca constructor, and Azteca xanthochroa. The 
queens scrape their host plant parenchyma, creating a 
pile of waste where bacteria and fungi grow, and lay their 
eggs nearby, allowing larvae to feed on it and develop 
[19]. These waste patches contain diverse bacteria pre-
dicted to be diazotroph, that is, bacteria with various 
genes encoding dinitrogenase reductases, that transform 
dinitrogen into ammonia [20]. Cephalotes turtle ants 
source nitrogen from other animal wastes [21]. Bacteria, 
notably Enterobacterales, possess all genes necessary for 
a complete uricolytic pathway required to transform 
purines, such as adenine, guanine, xanthine, and hy-
poxanthine, into uric acid and to recycle uric acid into 
urea and then ammonia [22]. Ammonia can be assimi-
lated into the reactions for essential and nonessential 
amino acid biosynthesis.

Beyond nitrogen provision, micro-organisms are also in-
volved in other mechanisms to supply amino acids to 
insects, whether via protein digestion or de novo amino 

acid biosynthesis. In the absence of a microbiota, pep-
tidase genes are downregulated in Ae. aegypti mosquito 
larvae [23] (Figure 1) and peptidase activities, mainly 
trypsin, drop in Hermetia illucens black soldier fly larvae 
[24]. Similarly, in D. melanogaster, larvae fed on a low- 
nutrient diet, a mono-association with Lactobacillus 
plantarum bacterium is sufficient to enhance host pro-
tease expression, allowing a better digestion of proteins 
and a higher level of free amino acids throughout de-
velopment, and therefore promoting growth [25]. Lacto-
bacillus plantarum together with Acetobacter pomorum also 
plays an important role in complementing fly auxo-
trophies by synthesizing several amino acids [26]. In the 
stinkbug Megacopta punctatissima, the bacterium Ishika-
waella compensates for the phloem sap deficiencies by 
converting nonessential amino acids, mainly glutamine, 
into essential and aromatic ones, notably tyrosine that is 
needed for nymph cuticle melanization [27]. Microbiota 
is also required for host amino acid provision in nu-
merous other insects [28–31] (Figure 1). Finally, tran-
scriptomic data in Ae. aegypti larvae suggest that the 
microbiota induces the production of hexamerins, that is, 
large proteins serving as amino acid reserve for meta-
morphosis [32] (Figure 1).

In addition to proteins and amino acids, the microbiota 
can also contribute to the synthesis of other essential 
nutrients, such as vitamins. In Ae. aegypti larvae, the mi-
crobiota contributes to B vitamin supply, in particular 
thiamine (B1), riboflavin (B2), pyridoxine (B6), biotin 
(B7), and folate (B9) [28,32,33] (Figure 1). As several B 
vitamins (particularly B2) quickly degrade when exposed 
to light, their steady provisioning by the microbiota is 
important for larval development [28]. Likewise, the 
Wolbachia endosymbiont of the Cimex lectularius bedbug 
larvae possesses a complete pathway for B7 biosynthesis 
— likely acquired through horizontal gene transfer from 
unrelated bacteria — as well as a complete pathway for B2 
biosynthesis and partial pathways for B1, B6, and B9 
biosynthesis [34]. Without its symbiont (and associated B 
vitamin production), bedbug growth rate is reduced, and 
adult female fitness, fertility, and fecundity is impacted 
[35]. The bean beetle Callosobruchus maculatus harbors a 
simple microbiota, mainly composed of Staphylococcus 
gallinarum. This bacterium is conserved between larvae 
and adults and its genome retains complete pathways to 
synthetize five B vitamins (B1, B2, B5, B7, and B9) and an 
incomplete pathway for nicotinic acid production (B3) 
[36]. Similarly, Drosophila and other fruit flies, ants, cotton 
stainers, and kissing bugs depend on their microbiota for 
vitamin biosynthesis [22,26,37,38].

Finally, insect symbiotic micro-organisms are sometimes 
involved in sugar and lipid metabolism. In Ae. aegypti 
larvae, the microbiota stimulates lipid uptake from the 
gut to the fat body by upregulating the genes encoding 
vitellogenin and lipophorin transporters, while in contrast, 
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lipids accumulate in the gut of germ-free larvae [32]
(Figure 1). Giraud et al. have demonstrated that adult 
lipid storage, specifically triacylglycerol levels, and star-
vation resistance are influenced by the larval bacterial 
environment [39] (Figure 1). Serratia symbiotica promotes 
fatty acid biosynthesis, fatty acid metabolism, lipogenesis, 
and adipogenesis in the pea aphid Acyrthosiphon pisum 
[40]. Likewise, the microbiota of D. melanogaster larvae 
fosters distribution of lipidic resources, ensuring optimal 
development, while germ-free conditions result in in-
testinal lipid accumulation [41]. Regulation of lipid me-
tabolism is mediated by microbial production of acetic 
acid, which activates the immune-deficiency (IMD) 
pathway and insulin signaling [41,42]. Notably, the acetic 
acid produced by Acetobacter pomorum modulates host in-
sulin/insulin-like growth factor signaling (IIS), accel-
erating development and enhancing adult body size and 
weight [42]. Another symbiotic bacterium, Lactobacillus 

plantarum, activates the target of rapamycin pathway, in-
creasing insulin-like peptide and ecdysone production, 
additionally promoting growth and metamorphosis [43]. 
Lastly, the fungus Zygosaccharomyces, present in the brood 
cells of stingless bee larvae Scaptotrigona depilis, is an es-
sential source of sterols [44]. It provides ergosterol that 
allows the insect to produce cholesterol-like sterols, pre-
cursors of steroid hormones, particularly ecdysone and 20- 
hydroxyecdysone, that stimulate pupation.

Protection
Insects are subjected to a wide range of biotic and abiotic 
stresses from their environment. Their symbionts 
sometimes protect them from these events, allowing 
them to develop and survive in otherwise hostile con-
ditions. This protection can be conferred directly, 
through the symbiont’s metabolism, or indirectly, by the 
symbiont modifying the host’s metabolism.

Figure 1  

Current Opinion in Insect Science

Mosquito larvae microbiota contributes to nutrition by participating in protein, amino acid, and nucleotide supply (purple), vitamin biosynthesis (red), 
and lipid metabolism (orange). The microbiota stimulates protein digestion via peptidase expression and is also implicated in amino acid and 
nucleoside provision. In addition, it induces hexamerin production, which constitutes amino acid reserve for the insect metamorphosis. The microbiota 
contributes to B vitamin biosynthesis, notably thiamine (B1), riboflavin (B2), pyridoxine (B6), biotin (B7), and folate (B9). The microbiota also regulates 
genes involved in lipid metabolism, thereby favoring lipid transport from the gut to the fat body, and enhances lipid storage, increasing starvation 
resistance. (Figure created using BioRender.com).  
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Seasonal variations and changes in meteorological con-
ditions, such as a temperature increase or a drop in hu-
midity level, can be extremely challenging for insects. In 
Aphis and Acyrthosiphon aphid nymphs, Buchnera aphidi-
cola bacteria increase their host’s viable thermal range by 
producing Hsp20 heat shock proteins that confer toler-
ance to heat stress [45] (Figure 2). In A. pisum nymphs, a 
second symbiont, Serratia symbiotica, also confers re-
sistance to repetitive heat stress [46], likely via lysis of 
bacterial cells that release protective metabolites during 
the thermal challenge [47] (Figure 2). Conversely, me-
tabolomic and genetic analyses indicate that the gut 
microbiota of Bactrocera dorsalis flies increases host tol-
erance to cold by stimulating arginine and proline me-
tabolism, two amino acids with cryopreservation 
properties [48].

Additionally, other insects are more desiccation resistant 
due to stronger cuticles (thicker, denser, and more 

hydrophobic to avoid water loss) due to their microbiota 
[49]. This is the case in Cephalotes varians turtle ants, 
whose microbiota contributes to the production of chitin, 
cuticular proteins, and cross-linkers for cuticle formation 
[50]. In Oryzaephilus surinamensis beetles, the en-
dosymbiont Shikimatogenerans silvanidophilus contributes 
to cuticle melanization and sclerotization that start 
during metamorphosis, protecting the insect from dry 
conditions [51]. The symbiont’s shikimate pathway 
synthetizes chorismate and prephenate, which the host 
then converts into tyrosine, a precursor of phenolic 
compounds involved in cuticle hardening. Similarly, the 
obligatory symbiont Nardonella of the Pachyrhynchus in-
fernalis weevil conserves a small genome essentially di-
rected to tyrosine production for their hosts [52].

The microbiota can also be involved in insect’s defense 
against predators and parasitoids. Examples in predators 
include the ascomycete Fusarium oxysporum, associated 

Figure 2  
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Aphid nymph microbiota contributes to resistance and tolerance to abiotic (yellow), biotic (green), and chemical (blue) stresses. Abiotic examples 
include aphids’ increased ability to endure heat stress, provided by both Buchnera’s release of heat shock proteins and Serratia’s cell lysis releasing 
protective metabolites. Biotic examples include predation reduction facilitated by Serratia, Hamiltonella and Regiella via symbionts’ reduction of lady 
beetle fitness. Other biotic examples include parasitism reduction by Hamiltonella’s inhibition of volatile emitted by colonized plants to attract 
parasitoid wasps, and, when infected by APSE bacteriophages, Hamiltonella’s inhibition of wasp larvae development in the aphid. Examples of 
chemical stress reduction include Hamiltonella’s detoxifying enzymes, which are effective against several insecticides, and Sphingomonas’s 
detoxification pathways for imidacloprid (Figure created using BioRender.com).  
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with the leaf beetle Chelymorpha alternans, proliferating 
early in pupation and reducing predation rates by ants 
[53]. In the aphid A. pisum, the facultative bacterial 
symbionts Hamiltonella defensa, Regiella insecticola, and 
Serratia symbiotica do not reduce feeding rates of lady 
beetles, but reduce their fitness, and thus predator po-
pulation [54,55] (Figure 2). The acceleration of cuticle 
formation by the Shikimatogenerans silvanidophilus en-
dosymbiont in Oryzaephilus surinamensis beetle is im-
portant to protect against wolf spider predation and 
Beauveria bassiana fungus infection during the first hours 
after pupal eclosion when the imago is still highly vul-
nerable [56]. Examples of parasitoids include Hamilto-
nella defensa limiting parasitism by Aphidius ervi wasps in 
A. pisum nymphs and adults. First, the presence of Ha-
miltonella reduces the emission of chemical signals from 
the plant that attract parasitoid wasps [57] (Figure 2). 
Second, Hamiltonella also inhibits the development of 
wasp larvae within the aphid [58] via its APSE bacter-
iophage (A. pisum secondary endosymbiont), whose 
genome encodes toxins [59,60]. Furthermore, this bac-
teria’s maintenance in the aphid is partly due to the 
obligate symbiont Buchnera’s metabolism – which sup-
plies essential amino acids for which Hamiltonella is 
auxotrophic – highlighting the complexity of mutualistic 
interactions necessary for the defense of the host [61,62]. 
In several Lepidoptera, Ascoviridae, Baculoviridae, and 
Entomopoxvirinae viruses inhibit Microgastrinae para-
sitoid wasps by releasing parasitoid-killing proteins, 
which can induce cell apoptosis in wasp larvae. This 
increases viral fitness while also protecting the host [63]. 
In D. melanogaster larvae, Spiroplasma poulsonii bacterium 
also limits parasitism by Leptopilina boulardi, Leptopilina 
heterotoma and Asobara tabida wasps. It does this by 
competing with wasp larvae for available lipids [64] and/ 
or producing ribosome-inactivating proteins, which de-
purinate wasp ribosomes as soon as wasp larvae 
hatch [65].

Moreover, the insect microbiota can play a role in de-
fending against other pathogenic micro-organisms. This 
action can be direct, involving the release of anti-
microbial substances or other specific toxins. This is the 
case for Burkholderia gladioli symbionts of Lagria villosa 
beetles, which produce molecules with antibacterial ac-
tivities, such as lagriene and toxoflavin, and molecules 
with antifungal activities, such as lagriamide, car-
yoynencin, and sinapigladioside [66,67]. The symbiont is 
thus a crucial partner for eggs, larvae, and pupae, parti-
cularly during molting when the insect’s cuticle is too 
soft to provide adequate protection. The microbiota’s 
action can also be indirect by accentuating the insect’s 
immune response against pathogens and by participating 
in immune priming [68]. For instance, bacterial pepti-
doglycan activates neuronal signaling in D. melanogaster 
larvae, later triggering adult aversion to food substrates 
that carry potentially pathogenic bacteria [69]. This 

ability is lost in adults reared in a germ-free environment 
during the first 48 hours of larval development. Wolbachia 
endosymbionts are known to protect their adult host 
against viruses in multiple systems, but their impact in 
larvae appears less common or has not been yet in-
vestigated [70,71].

Detoxification
Certain symbionts can also detoxify a variety of inorganic 
and organic compounds, including insecticides and plant 
secondary metabolites. This ability provides a significant 
advantage for some insects, allowing them to colonize 
ecological niches with minimal competition. The coffee 
berry borer Hypothenemus hampei can carry out its entire 
life cycle in coffee beans as a result of its microbiota, 
which degrades caffeine, a deleterious alkaloid [72]. 
Several Pseudomonas strains’ genomes contain a com-
plete set of N-demethylases for the transformation of 
caffeine into theobromine, 7-methylxanthine, and then 
xanthine [73]. Guava fruit flies, Anastrepha striata and 
Anastrepha fraterculus, colonize guava due to their Ko-
magataeibacter symbiont, which degrades fruit tannins 
and polyphenols, while Anastrepha ludens, not associated 
with this bacterium, cannot [74]. Camellia weevils Cur-
culio chinensis grow on trees that produce tea saponin but 
possess several symbionts, notably Acetobacter, that de-
grade this toxic compound [75]. Many other insects 
benefit from similar microbial degradation of phyto-
chemicals [76,77].

Finally, micro-organisms contribute to insecticide re-
sistance in various insects [78–81]. The mosquito mi-
crobiota has been shown to promote resistance to 
deltamethrin in Aedes albopictus larvae and to propoxur 
and naled in Ae. aegypti larvae [82,83]. This effect is 
mediated by increased expression and activity of es-
terases, glutathione-S-transferases, and P450 cyto-
chromes. Similarly, P450 cytochrome transcription, 
induced by the microbiota in Apis mellifera honeybees, 
improves host survival after exposure to thiacloprid or 
fluvalinate [84]. The aphid Sitobion miscanthi possesses a 
Hamiltonella defensa symbiont producing acet-
ylcholinesterases, glutathione transferases, and carbox-
ylesterases, which detoxify insecticides [85] (Figure 2). 
In the Aphis gossypii aphid, a Sphingomonas symbiont 
specifically degrades the neonicotinoid imidacloprid into 
nonharmful 5-hydroxy-imidacloprid, imidacloprid-gua-
nidine, and imidacloprid-urea via hydroxylation and 
nitro-reduction pathways [86].

Conclusion
The microbiota provides a variety of services to its insect 
host, from facilitating nutrition to adaptation to its en-
vironment. This review focuses on positive insect–mic-
robe interactions during insect development, but the 
spectrum of these relationships is broad and generally 
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extends into insect adulthood. Recent years have seen 
significant advancements in understanding the mole-
cular mechanisms underlying microbiota contributions 
to digestion and nutrient supply [10,87], resilience to 
biotic stresses [88], production of defense chemicals 
[89], and breakdown of harmful substances [90,91]. Ad-
ditionally, researchers have also investigated the micro-
biota’s influence on insect behavior [92] and role in the 
transmission of human pathogens [93]. These microbial 
capacities hold promising potential for application in 
human technology.

Given the diversity of insects affecting the biosphere in 
many ways, we propose four main categories of potential 
benefits of insect microbiota. First, probiotics often 
benefit insect mass production. This is the case in 
honeybees, black-solder flies insect-based food produc-
tion, and mosquitoes released for vector control [94]. 
Second, some insect–microbe associations can be used as 
mini-bioconversion factories to recycle natural or artifi-
cial substances (wood, plastic), detoxify pollutants (oil, 
insecticides), or develop new drugs [95,96]. Third, en-
tomopathogens allow humans to fight against agriculture 
pests and disease vectors [97,98]. If target-specific en-
tomopathogens can be harnessed, these ‘green pesti-
cides’ will certainly be more environmentally friendly 
than most chemical insecticides. In addition, their in-
secticidal effect is often linked to a combination of 
several metabolites, which limits the rise of insecticide 
resistance. Fourth, knowledge of how the microbiota is 
influenced by the environment and how it affects host 
fitness may be integrated into models of the effects of 
climate change, urbanization, and/or deforestation [99]. 
Together, these insect microbiota-derived ecological 
data and corresponding models promise to enable in-
novative design approaches to protect biodiversity and 
optimize overall planetary health.
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