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Droplet-based microfluidics techniques coupled to microscopy allow for the
characterization of cells at the single-cell scale. However, such techniques
generate substantial amounts of data and microscopy images that must be
analyzed. Droplets on these images usually need to be classified depending
on the number of cells they contain. This verification, when visually carried out by
the experimenter image-per-image, is time-consuming and impractical for
analysis of many assays or when an assay yields many putative droplets of
interest. Machine learning models have already been developed to classify
cell-containing droplets within microscopy images, but not in the context of
assays in which non-cellular structures are present inside the droplet in addition
to cells. Here we develop a deep learning model using the neural network
ResNet-50 that can be applied to functional droplet-based microfluidic assays
to classify droplets according to the number of cells they contain with >90%
accuracy in a very short time. This model performs high accuracy classification of
droplets containing both cells with non-cellular structures and cells alone and
can accommodate several different cell types, for generalization to a broader
array of droplet-based microfluidics applications.

KEYWORDS
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Introduction

Droplet-based microfluidics (DBMF) have been a breakthrough in the realm of
biological research, having been applied to molecular analyses and single cell analyses,
particularly in the field of immunology. DBMF assays offer significantly improved
throughput and parallelization while also minimizing reagent usage by miniaturizing
the traditional well-plate format. Despite the apparent improvements offered by the
adaptation of existing assays into DBMF formats for single cell characterization, there
is a technical limitation imposed by the nature of current droplet generation methods. The
encapsulation of cells into droplets follows Poisson distribution patterns of in-droplet cell
numbers and is an inherently heterogeneous process (Collins et al., 2015; Moon et al., 2011).
For DBMFmethods to achieve true single-cell resolution, final analysis of single cells may be
achieved by a high cellular dilution factor prior to encapsulation or a means of sorting for
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single-cell/-object droplets following encapsulation. Various
methods have implemented single cell sorting either as a physical
droplet isolation step using dielectrophoresis, a piezoelectric
actuator, or a solenoid actuator (Dortaj et al., 2024; Murphy
et al., 2018; Nakamura et al., 2024; Welch et al., 2024) or
alternatively as an analytical filter applied during data analysis
(Sesen and Whyte, 2020; Srikanth et al., 2021); both approaches
have recently begun to be driven using single cell content
classifications made by machine learning algorithms.

Machine learning has seen considerable growth in recent years
regarding its technical capabilities as well as its ease of applicability and
robustness, reshaping profoundly various technological sectors including
autonomous vehicles (Qiu et al., 2024; Ušinskis et al., 2024), natural
language processing (Vaswani et al., 2017) or automated medical image
analysis (Liu et al., 2022; Qiu et al., 2024). Due to their successful
application in image classification tasks and increased accessibility,
Convolutional Neural Network (CNN) architectures have paved the
way for the exploitation of deep learning methods in biotechnology
(Kusumoto andYuasa, 2019; Samukhina et al., 2021; Sultana et al., 2018).
CNNs can directly extract information from input images: they are
implemented as a deep series of convolutional layers, where at each
convolutional layer a sliding filter is applied to the input image to
produce an activation map of the detected features. Layer after layer this
information is progressively pooled and simplified to obtain, at the last
output layer, a categorical classification for the input image. The fact that
all themodel parameters can be learned directly from the data, using a set
of manually classified training images, simplifies the application and
exploitation of these architectures.

Various machine learning models have been developed to address
the needs of those working on microfluidics (McIntyre et al., 2022;

Riordon et al., 2019). Microfluidic devices and the experimental
procedures they are employed under are now able to be artificially
designed by machine learning, as well as the analysis of droplets for
classification and sorting (Srikanth et al., 2021). Deep learning methods
offer considerable improvement when handling structured data types,
namely, images within the context of DBMF. The availability of
numerous publicly available deep learning solutions offers researchers
means to automatedly identify droplets containing a single cell and
extract biophysical feature data, increasing the throughput and breadth
of analyses (Soldati, Ben, et al., 2018). CNNs have been used for high
throughput sorting of droplets according to the number of objects they
contain with the added functionality to distinguish mixtures of in-
droplet objects, such as a cell and bead mixture (Anagnostidis et al.,
2020). Another method of droplet classification recently demonstrated
the classification of various cell types despite having visually similar
presentations when manually analyzed (Chen et al., 2016).

Parallel to the application of machine learning to DBMF, another
emerging field of DBMF has been in-droplet secretion assays for single
cell functional characterization (Broketa and Bruhns, 2022; Bucheli
et al., 2021). These techniques often utilize microbeads (Konry et al.,
2011), rods (Wei et al., 2019), or nanoparticles (Eyer et al., 2017) as
surfaces for assay reactions or reagent and analyte capture. The
detection of secreted analytes by surface capture is the basis for
several widely used techniques in biomedical research (Bucheli et al.,
2021; Janetzki et al., 2014), namely, ELISA and ELISPOT or FLISA and
FLUOROSPOT depending on whether detection is enzyme or
fluorophore-based, respectively. Single cell DBMF secretion assays
will likely become increasingly common given the increased
throughput and parallelization afforded by such techniques, as has
been seen with DBMF techniques for single cell molecular

FIGURE 1
Image datasets construction. (A) PBMCs were isolated fromCOVID-19 vaccinated patient blood and injected into amicrofluidic chip together with a
mixture of anti-human-κ chain-VHH-coated paramagnetic nanobeads, fluorescent antigen (recombinant SARS-CoV-2 Spike Receptor Binding Domain)
and fluorescent anti-human IgG F(ab’)2. The mix of cells and reagents was encapsulated in droplets using a flow focusing technique. The produced
droplets were introduced and immobilized in an observation chamber. A magnetic field generated by two magnets was applied to the chamber so
that the nanobeads form a vertical line. (B) Brightfield images of the chamber were acquired with an optical microscope. Images of each droplet were
cropped (red square) and manually sorted into 3 populations (empty droplets, single cell droplets, and multiple cell droplets).
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characterization compared to their well plate-based predecessors
(Sánchez Barea et al., 2019). The additional data that may be
extracted from the images gathered during DBMF techniques, such
as cell morphology or motility, also allows one to address unexplored
aspects of functional heterogeneity.

The presence of non-cellular structures within the droplet
represents an additional challenge during analyses where cellular
features require identification. Cell detection and quantification
during image analyses has been extensively addressed and
numerous informatic packages are available to incorporate into
image analysis pipelines (Buggenthin et al., 2013; Maddalena
et al., 2022). Cell detection is commonly performed using
fluorescent surface markers when possible or detection in the
brightfield channel when label-free conditions are necessary.
However, during DBMF secretion assays the included analyte
capture surface (beads or rods) will introduce its own fluorescent
signals or brightfield distortions. DropMap (Eyer et al., 2017) is a
fluorescence relocation-based immunoassay using magnetically
aligned nanobeads in droplets that we previously applied to
measure antibody affinity and secretion rate in the context of
autoimmune disorder (Canales-Herrerias et al., 2022) or
vaccination (Broketa et al., 2023). Analyses of such single cell
DBMF secretion assays that use non-cellular capture surfaces
have largely been limited by a need for manual droplet
verification or experimental restrictions. A requirement for
manual droplet verification by the experimenter represents a
significant analysis bottleneck, is less robust when applied over
larger datasets, and reduces comparability of results between studies.

In this article we describe a deep learning solution using ResNet-
50 for label-free droplet classification that is resistant to vertical non-
cellular structures within the droplet. We used a droplet image
dataset from a previous publication (Broketa et al., 2023) using the
DropMap DBMF system. ResNet-50 models have been showed to be
highly performant to classify droplets containing cells only (Soldati,
Ben, et al., 2018). However, when applied directly to minimally
preprocessed images this CNN poorly performed with droplets
containing non-cellular structures that could partially mask the
cells. To compensate for this drop in performance, we designed a
pre-processing method to remove information irrelevant to
classification (for instance the non-cellular structures) while
emphasizing meaningful information (in this case the cells).
Thanks to this pre-processing, our trained model is capable of
classifying droplets as containing zero, one, or multiple cells with
accuracy scores above 90%, therefore allowing for automated
analyses of DropMap assays. This work addresses a gap in the
current capabilities of machine learning-enabled image analyses to
accommodate non-cellular structures that can obscure or
mimic cells.

Methods

Wafer production

The silicone wafer for microfluidic device production was
fabricated using soft lithography. Wafers were spin-coated with

TABLE 1 Classification accuracy of empty droplets, droplets containing a single cell and droplets containing multiple cells obtained with indicated
conventional methods, in presence or absence of nanobeads in the droplets.

Image dataset Detection Method Classification accuracy (%)

Empty Single cell Multiple cell

Cells only Hough transform 100 85 20

MSER algorithm 99 21 26

Segmentation algorithm 100 83 34

Cells with beads Hough transform 99 31 4

MSER algorithm 68 38 42

Segmentation algorithm 99 62 42

The scores were calculated with 1,000 images for each condition.

TABLE 2 First and third quartiles of classification accuracy scores for empty droplets, droplets containing a single cell and droplets containingmultiple cells
obtained with ResNet-50 models (n = 10), in presence or absence of nanobeads in the droplets.

Training dataset Testing dataset First and third quartile of accuracy scores (%)

Empty Single cell Multiple cell

Cells only Cells only 94.2–99.9 96.8–98.9 99.1–99.5

Cells with beads 7.9–43.8 14.3–39.6 92.0–98.3

Cells with beads Cells only 100–100 87.0–93.3 89.9–95.2

Cells with beads 99.5–99.9 67.7–83.6 81.8–90.8

The scores were calculated with 1,000 images for each condition.
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SU-8 2035 (MicroChem) at 3,000 rpm for 30 s, then heated for pre-
baking at 65°C for 5 min followed by heating at 95°C for 3 min.
Afterwards, wafers were exposed to UV light (365 nm) for 16 s using
MJB-4 (SUSSMicroTec). Subsequently, wafers were heated for post-

baking at 65°C for 3 min and at 95°C for 1 min. Wafers then
underwent development to remove the SU-8 resin residue for 2 min
at 100 rpm. Thickness was measured using a DEKTAK profilometer
(Bruker) to ensure ~40 µm of thickness.

FIGURE 2
Diminishment of classification accuracy due to the beadline. Classification accuracy of model trained and tested with images of droplet containing
cells only (red squares) or cells and beads (blue triangles) on empty droplets (Empty), droplets containing a single cell (Single) and droplets containing
multiple cells (Multiple). The scores were calculated with 1,000 images for each condition. Scores were compared using Welch’s t-test (n = 10). **: p <
0.01; ***: p < 0.001; ns, not significant.

FIGURE 3
Flow chart of proposed preprocessingmethod. (A) A horizontal-edge-detecting convolution using Prewitt operator removes the beadline and other
vertical structures. (B) A bisigmoidal threshold is applied to create firm segregation between the detected edges and the uniform grey. (C) Images are
resized to create uniform input formodel training. (D) The droplet edges are removed by applying a circular blackmask, whose radius is slightly lower than
the half-width of the image.
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Microfluidic chip production

A mix of Sylgard 184 (Dow, 1317318) prepared at a 10:1 mix ratio
was poured onto thewafer covered on its rear by round aluminum foil to
create a mold. Subsequently, a desiccator was used to remove bubbles
and the wafer was incubated in an oven at 65°C for 2 h. Afterwards, the
foil mold andwafer were removed, appropriate holes were punched with
a 0.75 mm biopsy puncher, and the cured PDMS was plasma bonded
with glass slide 75 mm × 50 mm (Corning, 2947-75 × 50). The
microfluidic chips were then silanized using 5% v/v solution of 1H,
1H, 2H, 2H-Perfluorododecyltrichlorosilane (Sigma, 729965) in
HFE7500 oil (3M, B40045191).

Droplet formation

Water-in-oil droplets were produced by mixing two aqueous phases.
Phase 1 consisted of a cell suspension (30e6 cells/mL) and phase
2 consisted of assay buffer with or without paramagnetic nanobeads
as indicated. Both phases were injectedwith aflow rate of 70 μL/h. The oil
phase consisted of 2% v/v solution of Perfluorosurfactant (RAN-
Biotechnologies, 008-FluoroSurfactant) in HFE 7500 oil, with a flow
rate of 600 μL/h to obtain a final droplet volume of ~40 pL.

Computing

Computation was done with a Windows 10, 64-bit operating
system using an AMD 3990X 4.3 GHz processor with 64 GB RAM
and GeForce RTX 3080. All image data was stored and read from a
local M.2 NVME SSD drive. Scripts were written in Python
3.7.11 utilizing the Tensorflow (Abadi et al., 2016) 2.5.0 library.
Scripts used in this work are available as ESI.

Image acquisition

An inverted microscope with a motorized stage (Nikon, Ti2-
Eclipse) was used to acquire droplet images with a high-speed

CMOS camera (Orca Flash 4.0, Hamamatsu) at room
temperature. Images were acquired through a × 10 objective (NA
0.45). The whole of the droplet chamber was acquired as an array of
9 × 9 individual images stitched together to form a single image.
Image acquisition occurred every 7.5 min over a total period of
37.5 min (6 measurements in total). Duplicates were systematically
acquired for every sample, with each replicate consisting of the filling
of the DropMap 2D chamber with a novel droplet population.
Images were stored in the nd2 file format.

Datasets

Droplets were identified as previously described (Broketa et al.,
2023) based on circle detection by Hough transform. Droplet images
for model training were taken from the brightfield channel of the
original nd2 format image, centered on the droplet, and cropped
to the diameter of the droplet. Images were saved in the tif file
format. Droplet images were randomly selected without prior
measurement or filtering based on droplet contents. Images for
the creation of the validation datasets were selected amongst those
images not included in the training dataset. Droplet images were
visually classified by the authors according to the number of cells
inside of the droplets.

Image preprocessing

The droplet image was either loaded from a tif file into a Python
3.7.11 environment using scikit-image v0.19.2 during training or
cropped directly from the nd2 file according to measured position
and diameter. Then, the image undergoes either a minimal or a more
sophisticated preprocessing, where indicated. In the latter, the image
is convolved using a Prewitt operator kernel, with the convolve2d
function from the scipy.signal package. Image contours are then
highlighted using a bisigmoidal filter based on Equation 1:

final pixel value � 24000 ×
1

1 + eα1
+ 1
1 + e−α2

− 1
2

( ) (1)

FIGURE 4
Improvement of classification accuracy due to preprocessing. Classification accuracy of models trained with raw or preprocessed images were
assessed on empty droplets (Empty), droplets containing a single cell (Single) and droplets containing multiple cells (Multiple), without (A) or with (B)
nanobeads. The scores were calculated with 1,000 images for each condition. Scores were compared using Welch’s t-test (n = 10). *: p < 0.05; **: p <
0.01; ns, not significant.
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where α1 � min(initial pixel value− imageminimal pixel value+imagemean pixel value
600 , 700)

and α2 � min(initial pixel value − imagemaximal pixel value+imagemean pixel value
600 , 700)

The image is resized to dimensions of 55 × 55 pixels using the
resize function without anti-aliasing from skimage.transform
package. The pixel values are then normalized using
Equation 2:

final pixel value � initial pixel value − imageminimal pixel value
imagemaximal pixel value − imageminimal pixel value

× 65535

(2)

A circular mask with a 5-pixel radius reduction compared to the
image half-width is applied to the image to occlude the area outside
of the droplet. Whenminimally preprocessed, the image is resized to
dimensions of 55 × 55 pixels using the resize function without anti-
aliasing from skimage. transform package. Pixel values were then
normalized using (Equation 2). Images are finally all passed to the
model as an array of (n, 55, 55) with n representing the number of
images to be classified.

Convolutional neural network
implementation

Droplet images were separated into three classes: “Empty/0”, if
the droplet contained no cell, “Single/1”, if 1 cell is within the
droplet, and “Multiple/2”, if two or more cells are inside the droplet.

The Keras module of the TensorFlow v2.5 library in Python
3.7.11 was used to define a ResNet-50 model. Images were resized to
a uniform dimension of 55 × 55 pixels. Categorical cross-entropy
was used to compute loss during training. The learning rate was set
to 0.001 during training. Hyper-parameters were incrementally
increased to determine optimal values. Final model training was
performed using 6 epochs and a batch size of 160. The training-set
contained 95% of all labeled images with the remaining 5% used for
the validation-set.

The model used to classify droplets containing cells only was
trained with 12 epochs, batches of 30 images and 2,500 training
images for each class.

FIGURE 5
Adjustment of epochs number, training dataset size (per class) and batch size. The values of these parameters were optimized by evaluating
validation accuracy using data from five independent experiments (Groups A-E). For each image, three hundred droplets were used to measure the
accuracy. Prediction accuracy was calculated using either one (A, D) or three (B, C) trained models per parameter value. The default values for the
parameters were training dataset size = 16,000 images per class, epochs number = 12 and batch size = 64.
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Computer-vision-based methods
implementation

Scripts for conventional object recognition were run in Matlab
2021a. Rosenfeld method was performed using the script previously
published (Rosenfeld et al., 2005), run with a “dilatation” parameter
of 15 instead of 7, to allow for the unique and unintended nature of
our dataset.

Morphological shape algorithm method is similar with the
method published by Buggenthin and colleagues (Buggenthin
et al., 2013). On this method, we sequentially detect the edge,
add a circular mask to the image, create linear structuring
elements, dilate the image, fill the holes, erode the images and
find the image centroid. Number of cells was determined based on
how many image centroid were calculated.

Results

In this work, we used an image dataset from previously
published experiments (Figure 1A) (Broketa et al., 2023). In these
experiments PBMCs were isolated from COVID-19 vaccinated
patients’ blood and encapsulated into ~40 pL droplets together
with paramagnetic nanobeads, fluorescently-labeled Receptor
Binding Domain (RBD) of SARS-CoV-2 Spike protein and a
fluorescent anti-human IgG F(ab’)2. Nanobeads are coated with
an anti-human-κ-chain VHH that captures secreted antibodies in
the event that an antibody-secreting cell is encapsulated within the
droplet. Under a magnetic field, the beads in each droplet form a line
of beads (hereafter named beadline) that acts as a physical surface
for a sandwich immunoassay. The fluorescent anti-human IgG
F(ab’)2 and fluorescent RBD allow us to quantify antibody
relocation to the beadline and to identify RBD-specific plasma
cells, respectively. The droplets were then immobilized in an
observation chamber and images of the chamber were acquired
over a period of about 40 min to monitor antibody secretion. We

generated from these experiments three classifications of droplet
images as either empty, containing a single cell, or containing
multiple cells, through sorting of randomly selected droplet
images (Figure 1B). Each classification contained 1,000 brightfield
droplet images. We also generated three similar image datasets of
droplets containing cells only to compare the accuracy of
conventional methods in the presence or the absence of non-
cellular structures (here nanobeads).

Conventional image analyses for cell detection use image
processing algorithms such as morphological or thresholding-
based transformation to identify objects within images and are
preferred due to their relative simplicity and robustness (Gao
et al., 2013; Macfarlane et al., 2021). The detection of cells from
microscopy images is well established and several approaches are
readily available through standard bioinformatic analysis packages
(Cuevas et al., 2013; Li et al., 2008; Markovic et al., 2013). We
therefore initially sought to use conventional object recognition to
address the need for determining the number of cells within
droplets. For each dataset we tested three common cell detection
methods for their ability to classify droplets according to the number
of cells they contained: Hough transform (Djekoune et al., 2017;
Ioannou et al., 1999), Maximally Stable Extremal Regions (MSER)
algorithm (Buggenthin et al., 2013; Zhang et al., 2022), and
segmentation algorithm (Rosenfeld et al., 2005)
(Supplementary Figure S1).

When classifying droplets containing cells only, all conventional
methods tested reached an accuracy above 99% for empty droplets
(Table 1). The accuracies for single-cell droplets was 85%, 21% and
83%, and for multiple-cells was 20%, 26% and 34%, when using
Hough transform, MSER algorithm, or segmentation algorithm,
respectively. When nanobeads forming a beadline were present
within the droplets, the scores changed considerably, with
accuracy for single-cell droplets dropping from 85% to 31% for
Hough transform and from 83% to 62% for the segmentation
algorithm, whereas increasing from 21% to 38% for the MSER
algorithm. Overall conventional cell detection methods performed

FIGURE 6
Model performance after training. (A) Accuracy of model predictions under different conditions of confidence restriction, n = 5 and “+” indicates
mean. Scores were compared using paired t-test. *: p < 0.05 (B) Bar chart representing the proportion of predictions against the classification confidence
of the trained model. (C) Representative confusion matrix used to assess model performance.
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poorly to accurately quantify the number of cells in a droplet,
especially when the droplet contained nanobeads, despite their
proven accuracy and robustness in other applications. This latter
result is most likely explained by partial occlusion of the cells by the
vertical line formed by the nanobeads (Supplementary Figure S2).
Indeed, traditional cell detection methods usually require a defined
border between the cell and other cells or environmental elements.
In this context, occlusion of cells by the beads disrupts the cell border
within the image, as well as cell’s measured “circularity,” causing
cells to erroneously be excluded from detection. Additionally, the
beadline itself occasionally presents with morphological
irregularities that may be detected as a cell, further obfuscating
detection. We therefore sought to use machine learning to find a
more reliable method to classify droplets based on the number of
cells they contain.

We chose ResNet-50, a 50-layer CNN architecture introduced in
2015, designed to address the problem of vanishing gradients in very
deep neural networks (Song et al., 2018). ResNet-50 models are
typically trained using a mini-batch stochastic gradient descent and
these models have been shown to achieve state-of-the-art
performance on a variety of domains including microfluidics
(Gangadhar et al., 2023; Praljak et al., 2021; Sahaai et al., 2022).
Before training the ResNet-50 neural network, we manually
generated two training datasets (with or without nanobeads in
the droplets) each containing three categories (empty, single-cell
and multiple-cell). Each category was composed of 16,000 and
2,500 images for the datasets with and without beadlines,
respectively. We then assessed the performances of ten model
replicates for each dataset. Each replicate was tested against the
images used to evaluate the accuracy of conventional methods.
When trained and tested with droplets containing cells only,
ResNet-50 reached accuracy scores above 99% for each category
(Table 2). When trained and tested with droplets containing cells
and beadlines, the accuracy for single-cell droplets dropped to 55%,
whereas the accuracy for empty and multiple-cell droplets remained
above 90%. Overall, ResNet-50 performances were significantly
lower when classifying droplets containing cells and beads
(Figure 2). The presence of a beadline within droplets therefore
represented an obstacle to classification. The potential for nearby
droplets to also introduce image distortion at the edges of the droplet
image also likely affected the model.

We therefore implemented a pre-processing method for
removing information irrelevant to classification, such as the
beadline and droplet borders, while also emphasizing meaningful
information, which in this case represented the cells. Image
preprocessing was composed here of four steps. First, a
convolution using a Prewitt operator kernel (Baareh et al., 2018)
was applied to remove the beadline and other vertical structures
(Figure 3A). This caused the image background to be uniformly
grey, whereas horizontal edges were either white or black; this
difference is due to the asymmetry of the Prewitt operator. Then,
a bisigmoidal filter was applied to enhance the contrast between the
background and the contours (Figure 3B) (see Methods). All images
were then resized, and pixel values were harmonized by applying an
affine transformation (Figure 3C) (see Methods). Finally, droplet
borders were removed by applying a circular binary mask, in which
the central circle radius is several pixels less than that of the
droplet (Figure 3D).

This preprocessing was then applied to each image of the
training datasets used to compare computer-vision-based and
machine-learning-based methods to build two new datasets of
preprocessed images with cells only or with cells and nanobeads.
Ten model replicates were trained for each dataset and their
performances were assessed on the same validation datasets used
for Table 2 (Figure 4). No statistically significant improvement due
to the image preprocessing was observed when models were tested
with images of droplets containing cells only. However, image
preprocessing significantly improved prediction accuracy when
the models were challenged with images of droplets containing
cells and nanobeads. For single-cell droplets containing nanobeads,
the median accuracy scores of models trained and tested with raw or
preprocessed images were 75.9% and 91.7%, respectively. For
multiple-cell droplets, the median accuracy scores of models
trained and tested with raw or preprocessed images were 86.9%
and 93.4%, respectively. These results demonstrate that the
proposed image preprocessing improved prediction accuracy by
approximately 20% and 7% in single or multiple-cell contexts,
respectively. It is noteworthy that this preprocessing also
significantly improved the confidence values associated with
predictions (Supplementary Figure S3).

We set out to optimize various training parameters, including
the dataset size, the number of epochs, and the batch size. The
training datasets again contained 3 classes of images, empty droplets,
or no cells (empty), droplets with only a single cell (single), or
droplets with multiple cells or clear aggregates (multiple). Accuracy
was tested on droplet images across 5 independent experiments
(300 images per experiment, 1,500 images in total) to investigate
potential performance variability (Figure 5). As expected, the
performance of the model improved as the training dataset
increased, with the accuracy reaching a plateau around
12,000 images per class (Figure 5C). Concerning the number of
epochs, an abrupt increase in accuracy was observed for the first
several epochs, followed by a plateau and a trend to decrease after
10 epochs, corresponding to the onset of overfitting (Figures 5A, B).
Large batch sizes led to irregular performances, as the model likely
became unable to converge quickly enough; the optimal and most
stable accuracies were obtained with batch sizes between 128 and
200 (Figure 5D). From these observations, we proceeded to train a
final model using 16,000 images per class, and the gradient descent
was performed using 6 epochs and a batch size of 160.

We used the same 5 independent experiments to further assess
performance of the final model in representative conditions for
applied experiment analysis. The model demonstrated a high degree
of accuracy, over 90% in most images analyzed (Figure 6A).
Moreover, imposing a confidence threshold to only include the
most reliable predictions led to an increase of accuracy and reduced
variability between experiments. This confidence threshold for
classification exclusion did not result in notable amounts of data
loss, 2% or 5% of all predictions when a threshold of 75 or 90 was
applied, respectively (Figure 6B). We further investigated model
performance through the confusion matrices of classifications to
better understand the nature of errors made by the model
(Figure 6C; Supplementary Figure S4). The model appeared
minorly skewed towards under-detection of cells, with the
number of cells in the droplet being underestimated when
classification was incorrect.
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Discussion

In the process of optimizing and automating our existing DBMF
data analyses, which had relied heavily on manual discrimination of
droplet images, we faced limitations of classical image analysis
approaches aimed at detecting cells in the absence of other
structures that may hide part or the entirety of the cell. We
explored the possibility of using a well-established machine learning
classification approach based on the CNN ResNet-50, designed in
2015 to address the challenge of vanishing gradients in very deep
neural networks, which can make it difficult for the network to learn
and make accurate prediction (Song et al., 2018). ResNet-50 models
have been shown to achieve state-of-the-art performance on a variety of
domains including microfluidics (Gangadhar et al., 2023; Praljak et al.,
2021; Sahaai et al., 2022). Although our large dataset could enable the
training of a deepermodel, we chose ResNet-50 rather than ResNet-102
or ResNet-152 as the variability and complexity of the features relevant
for classification are relatively low. In this case a shallower model might
be preferred to achieve a better generalization. Several studies have
reported similar image classification accuracy scores between ResNet
models (Bianco et al., 2018; Kumar et al., 2024; Sofian et al., 2018).
Moreover, when an improved accuracy is reported for a deeper ResNet
model (i.e., additional layers), it is to the detriment of analysis time
(Bressem et al., 2020; Wightman et al., 2021). Even though we trained
our model for the analysis of a stationary assay, the kind of pre-
processing we present here could be adapted to other contexts involving
live sorting. In such situations, classification speed would become a key
parameter. We demonstrate high accuracy classification under our
assay conditions where magnetic nanoparticles form a column (termed
beadline) within the droplet that often occludes or mimics the shape of
cells. Introducing an additional pre-processing module that was specific
to the morphological properties of these images – the presence of
vertically aligned linear structures – significantly improved the model
training performance and the accuracy of the results.

In most known approaches to machine learning for image
classification, minimal pre-processing is applied to the datasets or
generic data normalization transformations are used with the aim of
improving the numerical stability and the convergence time of the
models (Shanker et al., 1996). Soldati, Ben, et al. (2018) previously
applied CNNs to separate cell-containing droplets from empty
droplets and debris-containing droplets. The assay they used in
this study did not require non-cellular structures within the droplets.
In a previous study, Anagnostidis et al. (2020) developed a CNN
model to classify droplets containing both cells and non-cellular
structures that rarely mask the cells, as they appear mostly
transparent or are smaller than the cells. Hence, the latter model
could reach accuracy scores of 80%–85% with minimally
preprocessed images. Here we show that the presence of the
beadline may represent a major obstacle to accurate classification,
as shown by the decrease of accuracy to identify single-cell droplets
(Table 2). In this scenario we show that adding an application-
specific pre-processing step can be highly beneficial, guided by
previous-knowledge-based assumptions on which image features
do not carry any useful information for the classification. Thanks to
this step, the model could reach accuracy scores above 90%. Also, the
model we present here provides additional information as it can
distinguish single-cell droplets from multiple-cell droplets. Other
DBMF techniques that use non-cellular objects whose morphology

is sufficiently different from cells (Ding et al., 2020) may benefit
from adding a custom filter at the start of any image-based machine
learning pipeline. To do so, our pipeline could be adapted by using a
different kernel for the convolution step or by implementing
additional filters based on morphological operations or other
image treatment algorithms.

It is noteworthy that our full pipeline produced an improvement
in results also for droplets that do not contain any beadline. In this
case, the application of the circular mask before feeding the images
in the neural network may have played a significant role in masking
disturbances that could arise from surrounding droplets. This can be
expected as CNNs alone are inherently local and insensitive to global
(non-local) patterns (Song et al., 2018; Wang et al., 2018), and might
advocate for the integration of non-local layers in networks used to
analyze structured images. Our implementation of ResNet-50 for
droplet classification offers a simple, robust solution for other
investigators seeking to implement cell number classification into
their DBMF analysis workflows.

We applied our approach to the classification of droplet images
coming from a stationary experiment, in which droplets were
immobilized in a horizontal-plane imaging chamber. However,
the sole element needed to perform this classification is a bright-
field image of the droplet. This classification method may also be
applied to images from flowed DBMF systems, in which the images
of single flowing droplets can be captured using a high-speed camera
(Gérard et al., 2020). In such cases, the ability to quickly perform an
automated classification could be used to directly trigger sorting
decisions in real-time. Despite the availability of image flow
cytometry and cell sorting, commercially available systems only
allow for a limited set of information from the image to be used to
gate and sort cells (Holzner et al., 2021); being able to feed the image
through a pre-trained neural network and sort the droplets
according to the output holds the potential of improving existing
workflows in droplet-based assays where the recovery of rare or
difficult-to-detect populations is required.

The application of deep learning methods to make “live” sorting
decisions poses significative barriers, especially in fast high-throughput
setups where all the computations must be done with strict and
reproducible timing. With the computation setup we used (see
Methods), our model is able to classify 1,000 droplets in less than
20 s, in other words with an average frequency of 50 Hz. Therefore, the
model we described here could be adapted to a number of live sorting
assay, as previous studies reported sorting frequency lower than 50 Hz
(Beneyton et al., 2016; Anagnostidis et al., 2020). We believe that the
increasing performance of currently available workstations and
acquisition hardware, coupled with the smart design of synchronized
acquisition setups will make this kind of model a valuable tool for an
increasing number of DBMF assays, even based on higher sorting
frequencies. Our work to implement machine learning for droplet cell
number classification in a context with in-droplet structures to measure
secretion significantly improves the throughput of such single cell assays
as well as the scope of machine learning use for DBMF.
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number(s) can be found below: Training and validation image
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zenodo.10810199). Scripts used in this work will be available as ESI.
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SUPPLEMENTARY FIGURE 1
Illustration of computer-vision based methods to detect cells. Droplet
images were classified using various methods to detect cells: Maximally
Stable Extremal Regions (MSER) algorithm (A), segmentation algorithm (B)
or Hough transform (C). The original images are in the left column. The
detected signal is superimposed over the original image in the right column.

SUPPLEMENTARY FIGURE 2
Challenge posed by the presence of non-cellular structures to computer-
based methods. Examples of incorrect cell detection due to non-cellular
structures, using Maximally Stable Extremal Regions (MSER) algorithm (A),
segmentation algorithm (B) or Hough transform (C). The original images are
on the left. The detected signal is shown (A) on the right, or (B, C)
superimposed over the original image in the middle and on the right.

SUPPLEMENTARY FIGURE 3
Improvement of classification confidence due to preprocessing.
Classification confidence of models trained with raw or preprocessed
images were assessed on empty droplets (Empty), droplets containing a
single cell (Single) and droplets containing multiple cells (Multiple), without
(left) or with (right) nanobeads. The scores were calculated with
1,000 images for each condition. Scores were compared using Welch’s
t test (n = 10). * : p < 0.05; ns, not significant.

SUPPLEMENTARY FIGURE 4
Nature of errors made by the optimized model. The confusionmatrices were
established based on 300 images of 5 independent experiments
(1,500 images in total). Each of these 5 panels represent an independent
experiment.
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