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SUMMARY
Genomic data sequencing is crucial for understanding biological systems. As genomic databases like the Eu-
ropean Nucleotide Archive expand exponentially, efficient data manipulation is essential. A key challenge is
querying these databases to determine the presence or absence of specific sequences and their abundance
within datasets.
This paper presents the Backpack Quotient Filter (BQF), a data structure for indexing k-mers (substrings of
length k), which offers greater space efficiency than the Counting Quotient Filter (CQF). The BQF maintains
essential features such as abundance information and dynamicity, with an extremely low false positive rate of
less than 10� 5%. Our method redefines abundance information handling and implements an independent
strategy for space efficiency.
The BQF uses four times less space than the CQF on complex datasets such as sea-water metagenomics
sequences. Additionally, its space efficiency improves with larger datasets, addressing the need for scalable
data solutions.
INTRODUCTION

Genomic data sequencing is a powerful tool for understanding

the intricacies of biological systems. Sequencing produces

plain text, organized as reads in files. Most of these files are

gathered in public databases like the European Nucleotidic

Archive (ENA)1 that weighs 54.5 PB by early 2024. The size of

the databases follows an exponential growth, and thus we

need appropriate solutions to manipulate the data it contains.

One simple operation that we are not yet able to achieve (in

reasonable time and resources) is to query the database and

then, for each dataset, answer if a sequence is present or ab-

sent. Even better, answer for each dataset how many times a

sequence is present: its abundance. To this end, we use index-

ing data structures that can handle another representation of

the data, making it easier to query afterward. Some of the cur-

rent indexing data structures use sets of k-mers (substrings of

length k, k usually in ½20;50�) as the representation to query.

In this way, the proportion of shared k-mers between a query

sequence and a dataset can be determined. The main opera-

tion is thus to determine for each k-mer in which indexed data-

set it occurs and with what abundance (how many times it oc-

curs in a dataset).
iScience 27, 111435, Decem
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Due to the scale of databases to index, state-of-the-art tools

often sacrifice precision for the sake of performance. This can

be done through pseudo-alignment as defined in Themisto,2

breaking down the queried sequences into k-mers and

comparing them against k-mers of the datasets, often encoded

as a colored De Bruijn graph, as in Bifrost3 or GGCAT.4 Here,

the graph construction is the main limitation of the methods.

Other tools allow false-positive results by using approximate

membership queries (AMQ) data structures to enhance space ef-

ficiency.5–10 They all have trade-offs between the index size and

the false positive rate. By taking advantage of DNA and k-mers

properties (small alphabet, redundancy of consecutive k-mers),

the use of a simple associative array with super-k-mers11 whose

minimizers12 have been hashed with a minimal perfect hash

function13 and can create exact and space efficient indexes

such as SSHash.14,15 However, apart from being static, exact-

ness requires a trade-off with construction and query times.

Data structures form the core of the tools mentioned above.

The choice of the structure impacts the performance and the

range of operations available to the user. To illustrate, a Bloom

filter16 can insert elements after it has been built inmemory, while

an XOR filter17,18 has better space usage, but is static. AQuotient

Filter19 allows more dynamicity than a Bloom filter as it can
ber 20, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:victor.levallois@inria.fr
mailto:pierre.peterlongo@inria.fr
https://doi.org/10.1016/j.isci.2024.111435
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.111435&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Figure 1. k-mers abundance spectrums for sea-water34M and gut dataset

k-mers numbers over (A) sea-water34M dataset an (B) gut dataset. Abscissa and ordinate are on a logarithmic scale.
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enumerate inserted elements and thus relocate elements in a

smaller or larger structure as needed. The Quotient Filter is the

backbone of the Counting Quotient Filter (CQF),20 which can

retrieve not only the presence or absence of a k-mer, but also

its abundance. However, this structure results in suboptimal in-

dex size.

In this paper, we propose a new genomic data indexing struc-

ture, an alternative to the CQF called the Backpack Quotient Fil-

ter (BQF). It is more space-efficient than the CQF while still offer-

ing the same properties (abundance, dynamicity), at the cost of a

negligible false-positive rate. We propose a novel way to handle

the abundance information. We let the user control the balance

between the index size and the precision with which the index

encodes the k-mer counts/abundances. In addition, we use

the fimpera21 scheme to reduce each element’s space usage.

The BQF supports a large range of operations: random lookup

(abundance), insert, enumerate, resize and delete (under circum-

stances). In total, our tests show that at the price of a false-pos-

itive rate below 10� 5%, the BQF can index billions of elements

and their abundance, using between 13 and 26 bits per element.

Compared to existing solutions, the BQF has the fastest average

query time, while being fully dynamic. It is, to our knowledge, the

only data structure that cumulates these features.

RESULTS

We present experimental results on real metagenomic datasets.

The objective is to compare the performances obtained with the

BQF with those obtained using state-of-the-art data structures

for indexing k-mers together with their abundances, based on

the Quotient Filter: the CQF20 and on the counting Bloom Filter:

the CBF.21 We also included a comparison with Bifrost3 and

SSHash.15 Both of these approaches allow for querying indexed

k-mers, but they have significant differences in their main fea-

tures, which are summarized below. Finally, we added a hasht-

able to the benchmark for a standard comparison.

These results also enable to show the impact of the unique

parameter introduced by BQF: the s value. We also show the in-

fluence of the number of indexed elements on the whole data

structure size.
2 iScience 27, 111435, December 20, 2024
The version used for BQF is v1.0.0. Details about protocols

and links to datasets are available online.22
Used datasets
Our results were obtained on three distinct metagenomic data-

sets in which we exclusively considered k-mers present two or

more times.

d Dataset ‘‘sea-water34M’’: 34 million Illumina reads from

the Tara Oceans sequencing project. The uncompressed

fastq file is 7.7GB. It contains 263M distinct 31-mers and

346M distinct 19-mers occurring at least twice.

d Dataset ‘‘sea-water143M’’: 143 million Illumina reads from

the Tara Oceans sequencing project. The uncompressed

fastq file is 33GB. It contains 1.2B distinct 31-mers and

1.5B distinct 19-mers occurring at least twice.

d Dataset ‘‘gut’’: 13 million reads from pig microbiota Pacbio

sequencing. The uncompressed fastq file is 42GB. It con-

tains 471M distinct 31-mers and 420M distinct 19-mers

occurring at least twice.

These sea-water and gut microbiota metagenomic datasets

are representative of a highly complex environment, with a large

diversity content. For instance, there are 9.5 billion k-mers in sea-

water143M dataset, leading to a set of 5.7 billion distinct k-mers.

Among them, only 1.2 billion are present twice or more. For the

gut dataset, we counted 22 billion k-mers, 1.2 billion distinct

ones and 0.475 billion are present twice or more. We present in

Figure 1 a visualization of the k-mer spectrum of the sets sea-

water143M and gut. It shows the complexity of metagenomics

dataset. Because of the variety of species sequenced in metage-

nomics samples, a vast majority of k-mers are present once.

Additionally, 99% of k-mers are present less than 10 times in

sea-water34M dataset, and 83% for gut dataset. Thus, the chal-

lenge here is to index low redundant and low abundant k-mers.
Experimental setup
Tools

In this section, we present a comparative analysis between BQF

and CQF (https://github.com/splatlab/cqf, commit 68939f5).

https://github.com/splatlab/cqf
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Both structures use the same Xorshift hash function, a PHF,

ensuring no collisions. We also compare with results obtained

with a counting Bloom filter (CBF), with one hash function,

implementing the fimpera approach (https://github.com/

lrobidou/fimpera, commit 662328d). Both CBF and BQF use

5 bits for counters (c = 5), allowing a maximal abundance

value of 64 as we store exact values. BQF and CBF use the fim-

pera approach, initialized with k = 31 and s = 19, thus 19-mers

are counted and inserted. The sizes of the BQF and CQF are

determined solely by the total number of elements plus the

element abundances for the CQF. Regarding the CBF, we

decided to create a CBF of the same size as the BQF. This en-

sures fair comparisons when considering a fixed amount of

disk space. The choice of parameters is discussed further in

this section.

We also show results obtained by Bifrost (version 1.3.1) and

SSHash (version 3.0.0). Those comparisons are not exactly

fair as these tools embed additional features (computing

pre-assembly of the data in the so-called compacted De

Bruijn graph, possibly indexing multiple datasets for Bifrost)

while Bifrost cannot index the abundance, and while SSHash

is a static data structure. However, it is interesting to present

these results as they show that these state-of-the-art tools

—which are not specifically designed for the task of only

indexing k-mers with their abundances— are not optimal for

this task.

As a standard reference, we also created indexes in the form

of hashtables. We used a c++ hashmap available here: https://

github.com/martinus/unordered_dense.

Parameters and measurements

We computed the sizes on disk, peak memory usage, build time

and the query throughput for each approach. In addition to the

building time, the results show the pre-processing time, i.e.,

the time used to obtain the correct input file from the raw com-

pressed fastq file (counted k-mers for CQF, CBF and BQF, and

SPSSs23 for SSHash).

The parameters are k = 31, c = 5 (counters size for BQF,

CBF), and s = 19 (19-mers were inserted for BQF, CBF). Bifrost

used 4 threads andm = 17 for SSHash (minimizers size). Finally,

the hashtable used 64 bits unsigned integers as keys and 8 bits

unsigned integers for abundance values.

Positive queries in a dataset D are k-mers reads from D itself.

Negative queries are k-mers from randomly generated se-

quences (between 80 and 120 nucleotides). Around 2 billion

k-mers over 30 million sequences were positively queried.

Around 7 billion negative k-mers over 100 million sequences

were negatively queried.

BQF and CQF sizes are measured experimentally. Their size

corresponds exactly to their theoretical value, also showing

that, thanks to the simplicity of the structure, no space overhead

is required. CBF size was chosen to be the same as BQF’s.

SSHash size is the one displayed by the tool at the end of the

building step. Bifrost size is measured as the peak memory us-

age after loading the graph and the index in memory (from binary

representation on disk).

The executions were performed on the GenOuest platform on

a node with 438 cores Xeon E5-2660 2.20 GHz with 128 GB of

memory.
Performance results
Comparing CQF and BQF

Compared to the CQF, the major advantage of the BQF is in

terms of space. As shown in Table 1, the BQF is approximately

four times smaller than the CQF for every indexed dataset. The

same advantage is found in terms of space efficiency (bits/

element), being approximately 5–7 times more efficient. Howev-

er, one drawback is the occurrence of false positive calls, which

are generally less than 10� 5% and can even be as low as 0% in

the gut dataset.

Comparing CBF and BQF

The results presented in Table 1 indicate that the false-positive

rate is slightly better with the BQF compared to CBF. However,

both approaches still have a very low false positive rate of

approximately 10� 5%, which is insignificant for indexing and

pseudo-alignment applications. BQF offers several significant

benefits over CBF. First, BQF allows for faster time queries,

with an average speed improvement of 50 times compared to

CBF. Additionally, BQF does not have any theoretical limitations

on the number of stored elements, unlike CBF which is designed

for a fixed maximum number of elements that cannot be up-

dated. Finally, the elements stored in a BQF (the s-mers) can

be enumerated, while this is not the case with the CBF.

Abundance overestimation due to the fimpera approach

In this work, we did not recompute the so-called overestima-

tion inherent to the fimpera abundance representation. This

overestimation is in the order of 1–2% according to the results

presented in 21, meaning that 1–2% of the abundances of

true positive calls are overestimated. Furthermore, for those

results that were overestimated, the average difference was

shown to be approximately 1.07 times the correct abundance

range. All in all, this slight overestimation, limited to less than

2% of the calls, has no significant impact while estimating the

abundance of a query composed of at least dozens or hun-

dreds of k-mers.

Other tools results

As shown by results presented in Table 1, Bifrost is approxi-

mately two times slower than BQF to build the data structure

and more than twice as slow to perform negative queries. It

uses approximately 4.5 times more space per element, and

more importantly, it does not provide the abundance of k-

mers. The SSHash approach, for its part, taking advantage of su-

per-k-mers,11 uses approximately 2 times less space per

element than BQF. However, it is static and is nearly two orders

of magnitude slower to construct, drastically limiting its applica-

tion to large-scale projects. On the other hand, the hashtable ex-

hibits lower space utilization compared to CQF. However, the

bottleneck lies in the query process, as no specific optimizations

are applied for searching large index. The structure’s generic na-

ture makes it less suitable for handling the scaling quantities of

data typical in bioinformatics.

Impact of size of the indexed s-mers
As stated earlier, the BQF structure stores s-mers, to emulate

k-mers at query time, with s% k. The choice of the s value has

several consequences that are described in (Section theoretical

influence of the s parameter (in STAR Methods)), and that we

propose to empirically observe here.
iScience 27, 111435, December 20, 2024 3
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Table 1. Comparative performances

Dataset Structure

Index size

On disk (GB)

Bits per

element

Pre-processing +

Build time (s)

Build peak

memory

usage (GB)

Pos. query

throughput

(kmer/s)

Neg. query

throughput

(kmer/s) FP rate (%)

sea-

water34M

Bifrost 5.84 177 1,041a 5.84 2,687,272 3,224,789 0

SSHash 0.40 12 1,165b + 67 2.46 1,150,224 1,354,394 0

Hashtable 2.37 71 219g + 508 8.31 529,901 777,447 0

CQF 4.58 139 219g + 210 4.60 1,448,481 2,121,294 0

CBF 1.11 26 219g + 429 1.11 205,306 285,061 4:83 10�6

BQF 1.11 26 219g + 257 1.11 2,052,016 2,934,776 1:63 10�6

sea-

water143M

Bifrost 17.57 114 6,074a 21.94 1,321,360 2,581,435 0

SSHash 1.97 13 5,875b + 361 11.15 871,794 1,122,606 0

Hashtable 11.00 71 780g + 2563 50.33 316,025 636,648 0

CQF 17.25 113 780g + 949 17.52 1,097,099 1,602,930 0

CBF 3.93 21 780g + 2,039 3.93 195,177 281,244 5:83 10�5

BQF 3.93 21 780g + 1,101 3.93 1,791,640 2,616,583 3:03 10�5

Gut Bifrost 5.84 99 5,972a 5.84 8,448,220 3,114,457 0

SSHash 0.58 10 2,558b + 113 3.79 4,438,401 1,286,876 0

Hashtable 4.25 71 1,085g + 941 15.76 872,072 744,324 0

CQF 8.90 150 1,085g + 396 9.01 1,598,278 1,948,436 0

CBF 1.11 21 1,085g + 468 1.11 352,201 284,545 1:63 10�6

BQF 1.11 21 1,085g + 341 1.11 4,582,535 2,821,471 0

Recall that Bifrost and SSHash do not index the same number of elements than CQF, CBF and BQF, explaining the difference in terms of number of bits

per element as compared to the structure size. Given its computation time (R 24 hours on the sea-water143M dataset), we report SSHash results only

for the sea-water34M dataset.
aBifrost does not require pre-processing step.
bBCALM24 (https://github.com/GATB/bcalm, version 2.2.3) for unitigs + UST23 (https://github.com/jermp/UST, commit b3d0710) for simplitigs.
gKMC25 (https://github.com/refresh-bio/KMC, version 3.2.4) kmer counting.
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Effect of s on the number of construction false positives

Figure 2 illustrates that using any value of s bigger than 17 en-

ables to limit drastically the construction false positive rate.

When s-mers become smaller than 17 nucleotides, the proba-

bility they appear by chance in sequences composed of mil-

lions of characters on the fA;C;G;Tg alphabet becomes close

to 1. In this case, mostly any k-mers can be constructed from

these s-mers, explaining the nearly 100% construction false

positive rate.

Note that the shape of this curve is highly correlated with the

probability that an element of size s appears by chance in a

sequence of size l. This probability is equal to 1 � �
1 � 1

4s

�l
.

In concrete terms, this allows a user to reliably determine a value

of s knowing l, even approximately. The value of l can be

approximated thanks to the number of distinct k-mers in the da-

taset (as this is the case in Figure 2), efficiently computed by

ntCard26 for instance.

These results assume a uniform ATCG distribution, we plan for

future work to study the impact of high or low GC content.

Effect of s on the index size

Recall that decreasing s has two opposite effects on the struc-

ture size.

(a) in certain conditions (see below), decreasing s can in-

crease the number of indexed s-mers, which tends to in-
4 iScience 27, 111435, December 20, 2024
crease the size of the structure (need to double its size

when reaching 95% load factor);

(b) decreasing s decreases the remainder size, and so de-

creases the total size of the structure.

In this section, we propose to observe the practical conse-

quences of this choice.

(a) Figure 3 shows (plain blue curve) the number of distinct

s-mers according to s. With long enough s-mers (s > 17),

decreasing s sub-linearly increases the number of

distinct s-mers. This is true in the case of relatively short

reads, with next generation sequencing for instance (Illu-

mina example within Figure 3 with sea-water34M data-

set). On the other hand, third-generation sequencing

produces longer reads, in this context decreasing s de-

creases the number of elements to index (475M distinct

31-mers and 420M distinct 19-mers in gut PacBio data-

set). Table 1 shows this result: when comparing BQF

and CQF building time (which depends on the number

of elements to index), we can see that BQF is slightly

faster on gut (PacBio) dataset as there are fewer

19-mers than 31-mers.

With s%17, another effect exists: nearly all the s-mers exist in

the text, and so the number of distinct s-mers becomes limited

https://github.com/GATB/bcalm
https://github.com/jermp/UST
https://github.com/refresh-bio/KMC


Figure 2. Empirical observation of the evolution of the construction

false positive rate with respect to s

Indexed dataset: ‘‘sea-water34M’’, querying random 31-mers. The value of s is

decreasing as it starts from k, then we increase the difference between k and s.
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by 4s, explaining why the number of distinct s-mers decreases

when s decreases below 7s = 1.

(b) The two dashed lines of Figure 3 show the number of

bits per element either if the structure is half full or

considered as full (in practice one doubles the structure

size if its load factor is 95%). The observation is that

even on this highly complex sea-water metagenomic da-
Figure 3. Evolution of the number of s-mers depending on s in an Illum

Evolution of the number of bits per element depending on s on the same datase

low bound is plotted in orange, under high bound and corresponds to a full BQ
taset, the space needed to store s-mers decreases

when s decreases, even though more s-mers have to

be stored.

When the number of s-mers is increasing faster than the

number of k-mers for the same dataset, there could be the

need to double the size of the BQF with s-mers requiring 2q+1

slots, when k-mers would have fit in a BQF composed of 2q

slots. We created a synthetic dataset for generating such a

situation, we used sea-water34M numbers of s-mers for

every value of s and simply added 100 million elements every-

where. This is for visualization purposes only. Figure 4 shows

that, when s = 16 or s = 17, more than 229 elements are to

index so 230 slots are needed. For these two values of s,

we can notice that we use even less bits per element

(high bound and low bound) than for higher s values, despite

the doubling of the structure size. This is because the more

elements we add, the more efficient the structure becomes.

This being said, in practice, doubling the size of the struc-

ture means that the load factor drops from 95% to 50%, i.e.,

space efficiency at that moment jumps from low bound to

high bound. To sum up, in some cases, decreasing s might

have a momentary negative impact but the overall space effi-

ciency of the BQF continues to improve. It is always beneficial

to decrease s until we reach the construction false positive

threshold, s = 17.

All in all, regarding the data-structure size, the best choice is to

use s as small as possible, but bigger than 17 to avoid an explo-

sion of the construction false positive rate, as it keeps it below

10� 5% in this setup.
ina sequencing dataset (sea-water34M): plain blue line

t. high bound is the red upper dotted curve, corresponding to a half-full BQF.

F (95% load factor).

iScience 27, 111435, December 20, 2024 5



Figure 4. Effect of s on the number of s-mers in a fictitious dataset (plain blue line)

The data has been modified from dataset sea-water34M so that the number of s-mers reaches a threshold: 229 (500M), requiring to double the number of slots.

Space efficiency is also plotted (dashed lines) in bits per element with both boundaries: high bound = 50% load factor, low bound = 95% load factor.
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Effect of the number of indexed elements on the
structure size
Based on our metagenomic samples, this section comments on

the experimental value of bits per element (Section number of

bits per stored element (in STAR Methods)) used by the BQF

compared to CQF. Figure 5 shows the evolution of the data

structure size (A) and the evolution of bits per element (B) while

elements are inserted.

The stairs shapes of Figure 5A are due to the size of the data

structure that doubles each time their load factor reaches 95%.

Then, each insertion increases the load factorwithout consuming

more space. The figure highlights the fact that on real metage-

nomic datasets, the CQF needs a lot of space due to the counter

encoding which uses an average of 2.44 slots per element (in the

sea-water34M dataset). Given a fixed number of insertions,

because the CQF doubles its size 2.44 times more frequently,

the total size occupied by the CQF is much higher than that of

the BQF. At least with metagenomics data, while counts are

lowbut not unique, BQFwill always occupy less space thanCQF.

In Figure 5B the dented curves show the space used per

element. The curves are decreasing as the data structures are

filled with elements. The vertical jumps correspond to the data

structure resizes. We can see that the two structures behave in

the sameway while the BQF uses fewer bits per element. It is ex-

plained by the number of slots per element (a 2.44 time decrease)

but also by the fimpera scheme used in the BQF approach. An

interesting fact is that the peaks for both structures get lower

while the data structure size doubles. This is because the slots

are one bit shorter after each resize, as explained in (Section

number of bits per stored element (in STAR Methods)).
6 iScience 27, 111435, December 20, 2024
Finally, at the price of a negligible non-null false positive rate

(in the order of 10� 5% to 10� 6% in our experiments), the BQF

enables to make queries among dozens of billions of elements,

using between 13 and 26 bits per element, while the CQF

requires between 75 and 150 bits per element for the same

settings.

DISCUSSION

This paper introduces the BQF, a quotient filter with abundance.

TheBQF, like other quotient filters, usesa table to store elements.

Only a fraction of these elements is explicitly stored, as the rest is

implicitly given through their address. Specifically, in the BQF, for

every element, c additional bits are used to encode the abun-

dance associated. This strategy enables to index billions of ele-

ments with their abundance using between 13 and 26 bits per

element, depending on the data structure load factor.

In addition to this counting strategy, the BQF implements the

fimpera strategy, which emulates k-mers from their s-mers

(with s% k). A direct consequence of this emulation is a gain of

2q323ðk � sÞ bits over the whole structure, with 2q being the

number of slots in the BQF. Our results show that the results

are robust with respect to the s parameter, as long as s is bigger

than a fixed threshold, namely s > 17.

Our results from indexing metagenomic data indicate that the

BQF is at least four times more compact than the most similar

data structure: the CQF.20 The indexing and query times are in

the same order of magnitude. This result is at the price of a

non-null but extremely low false positive rate (z10� 6% in our

experiment). To fully benefit from the flexible sizes of the



Figure 5. Effect of the number of indexed elements on the size and space efficiency

Generated from indexing dataset ‘‘sea-water34M00, k = 31, s = 19 and c = 5 for BQF.

(A) total data-structure size.

(B) size in terms of number of bits per indexed element.
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counters, if the user can afford it, it is advised to index orders of

magnitude (e.g., log2 values) instead of exact counts.

The BQF inserts hash values of the elements. By using a per-

fect hash function, we ensure having no collisions among stored

elements. This offers the possibility to enumerate the elements

stored in the structure. If the structure gets full when adding ele-

ments, this offers a way to relocate all elements after doubling

the size of the structure. So, there is no theoretical limit to the

number of elements stored in the BQF. This dynamicity is signif-

icant in the context of intensive sequencing and indexing.

Limitations of the study
The main limitation of the BQF is that it is able to index only one

source (or sample) of data. One could want to index multiple

samples and answer for a query sequence, the set of samples

where the sequence is sufficiently present. This is called a

colored query and this is a work-in-progress for the BQF. A sec-

ond limitation is the configuration of the tool. It might be

confusing for a new user to understand parameters initialization

and sub-optimal performances can occur because of poor

choices. Lastly, the BQF do not benefit from data redundancy,

which is a good argument for metagenomics data but it might

underperform for other data types, pangenomics, for instance.
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Deposited data
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CBF commit 662328d Robidou and Peterlongo21 https://doi.org/10.1093/bioinformatics/btad305
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BQF This paper https://github.com/vicLeva/bqf/
METHOD DETAILS

Preliminaries
k-mers, pseudo-alignment, and indexing

A k-mer is any sequence of given size k. It can be of any character but in our context a k-mer is a substring of a genomic sequence, i.e.,

made up of nucleotides (A,C,G,T). The number of k-mers existing in two sequences provides a metric to measure the similarity be-

tween them, leading to the so called pseudo-alignment.2 In order to efficiently perform pseudo-alignments between any queried

sequence and a dataset, we index its k-mers. Doing so, it is possible to know whether a k-mer belongs to the dataset or not.

Then, when querying a sequence S, all of its k-mers are individually queried in the index, enabling to compute the pseudo-alignment

between S and each dataset of a collection.

Hash function

A hash function is amathematical transformation that takes an input (here a sequence of characters) and produces a number, called a

hash value. In the current framework, the used hash function produces a value that is coded with a fixed-size number of bits. This

transformation is designed to be deterministic, to produce an uniform distribution, and we want it to be as fast as possible.

Given a hash function, two distinct elements are said in ‘‘collision’’ if they have the same hash value. In this paper, we made the

choice to use a xorshift27 hash function, producing numbers between 0 and 22k for every k-mer. We use this28 xorshift hash function

as it is a injective, preventing collisions.

Also, as long as we project the k-mers into values of 2k bits, the function is reversible. It means that we can retrieve the original

k-mer from its hashed value. The use of a non injective hash function would also be possible but would imply the impossibility to
iScience 27, 111435, December 20, 2024 e1

ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR172/ERR1726642/AHX_ACXIOSF_6_1_C2FGHACXX.IND4_clean.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR172/ERR1726642/AHX_ACXIOSF_6_1_C2FGHACXX.IND4_clean.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR172/ERR1726642/AHX_ACXIOSF_6_1_C2FGHACXX.IND4_clean.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR599/ERR599283/AHX_ATRIOSF_7_1_C0URMACXX.IND4_clean.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR599/ERR599283/AHX_ATRIOSF_7_1_C0URMACXX.IND4_clean.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR599/ERR599283/AHX_ATRIOSF_7_1_C0URMACXX.IND4_clean.fastq.gz
https://ng6.toulouse.inra.fr/fileadmin/data_seqoccin/analyze/af80b3c73/m64122_220509_072836.hifi_reads.fastq.gz
https://ng6.toulouse.inra.fr/fileadmin/data_seqoccin/analyze/af80b3c73/m64122_220509_072836.hifi_reads.fastq.gz
https://ng6.toulouse.inra.fr/fileadmin/data_seqoccin/analyze/af80b3c73/m64122_220509_072836.hifi_reads.fastq.gz
https://zenodo.org/records/13992590
https://www.ebi.ac.uk/ena/browser/view/ERR1726642
https://www.ebi.ac.uk/ena/browser/view/ERR599283
https://www.python.org/
https://academic.oup.com/bioinformatics/article/33/17/2759/3796399
https://github.com/refresh-bio/KMC
https://doi.org/10.1145/3035918.3035963
https://github.com/splatlab/cqf
https://doi.org/10.1186/s13059-020-02135-8
https://github.com/pmelsted/bifrost
https://doi.org/10.1093/bioinformatics/btac245
https://github.com/jermp/sshash
https://doi.org/10.1093/bioinformatics/btad305
https://github.com/lrobidou/fimpera
https://github.com/vicLeva/bqf/


iScience
Article

ll
OPEN ACCESS
enumerates the elements entered in the data structure. This would prevent, for example, the resizing of the data structure. Aswewant

a fully dynamic data structure, we made the choice of using the injection.

Finally, we need a hash function to randomize the positions of elements in the structure and thus avoid the creation of long runs of

elements that would slow down insertions and queries.

Quotient filter (QF)

Theworkwe present, called the BQF, is based on theQuotient Filter (QF) structure.19 In this section, we provide a brief overview of the

fundamental aspects of the QF structure, which is essential for comprehending our contribution.

A QF is a data structure that is used to store a set of elements. It is composed of a table with 2q slots, each of fixed size r, where q

and r are initially defined by the user. q and r are subject to change as the size of the table may change. It utilizes a hash function h that

hashes elements to integers of q+ r bits. When an element x is inserted, its hash value hðxÞ is computed and split into two parts:

d h0ðxÞ of size q bits, called the ‘‘quotient’’. It is used as an address in the table;

d h1ðxÞ of size r bits, called the ‘‘remainder’’. It is a fingerprint and is effectively stored in memory. h1ðxÞ is inserted at the address

h0ðxÞ.

To query the presence of an element y in the structure, h0ðyÞ and h1ðyÞ are computed. Finding h1ðyÞ at position h0ðyÞ implies that y

is, with known probability, present. See below pictures the insertion step at slot 3, where solid hatched green lines symbolize the r bits

of the remainder, inserted at address 3.
A 32 slots long BQF (q = 5)

First line represents the metadata bits (see Pandey et al.20 for more details). This short example does not represent blocks (Section block-based optimization) in

the BQF for simplicity. Each slot has a size of r bits for the remainder with c bits for counts and 2 bits of metadata: occupied and runend. A circled address Q

means that at least one element x such that h0ðxÞ = Q has been inserted. Multiple remainders sharing the same color in the BQF have been originally inserted at

the same address and form a run. Empty metadata bits are set to 0.
Soft collision resolution and run management

We differentiate two kinds of hash collision. One is called ‘‘hard collision’’, and happens when two distinct elements have the same

hash value. We avoid this by using a PHF. The second is called ‘‘soft collision’’. It is inherent to quotient filters. A soft collision occurs

when two distinct elements x and y have different hashes but the same quotient: h0ðxÞ = h0ðyÞ.
Because only one remainder can be inserted in any slot, additional remainders sharing the same quotient value are shifted into the

next slots. Elements in soft collision are stored consecutively in the table, thus forming a so-called ‘‘run’’. Inside a run, the remainders

are stored in ascending order. Formally, for all elements x; y in a run, with h0ðxÞ = h0ðyÞ, and assuming that h1ðxÞ<h1ðyÞ, the slot

address where x is stored is lower than the one of y.

The slot address of the first element xfirst of a run may be distinct from h0ðxfirstÞ. The run can be shifted further than its insertion slot.

This case appears when another upstream run already occupies the slot given by h0ðxfirstÞ.
Note that an element shifted from the last slot (2q � 1) goes into slot 0, since the structure is circular.

To keep track of the shifting process for later insertions and queries, two additional bits of metadata are used in each slot. They

enable, thanks to rank and select operations, to determine the actual slot where an element is stored. Finally, an additional bit per

slot is used to improve the theoretical complexity of the insertion and query and the practical speed.

d The occupied bit determineswhether a slot welcomed an element, whose remainder could be shifted and located elsewhere. In

Figure 6, slot 3 has its occupied bit set to one because the green run (1 element) has been inserted here. In slot 25, the occupied

bit is also set to 1 because it is the insertion slot of the red run, even though the red run has been shifted further by the blue run.

d The runend bit indicates whether a slot stores a remainder that is at the end of a run. In this case, it is set to 1. Otherwise, it is set

to zero, and in this situation, the next slot is either empty or is the first one of a different run.

In Figure 6, 3 remainders are forming a run on slots 8, 9, 10. They all have been inserted with the quotient being 8 and then the

biggest ones were shifted to the right. This simple run of 3 elements differs from slots 13, 14, 15 where we have 3 runs of 1 element

each.
e2 iScience 27, 111435, December 20, 2024
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If we consider a CQF composed of 2q slots, then we have two binary vectors: occupieds and runends, both of size 2q bits. To find a

possibly shifted run from a slot i, we aim to find the end of this run. One way to do so is by:

(1) counting the number d of runs that are present before i by counting the number of 1 in occupieds before occupieds½i�. We call

this operation Rankðoccupieds; iÞ. Rankðv; iÞ is defined as the number of 1’s from position 0 to position i (included) in a binary

vector v.

(2) finding the position of the dth1 in runends. Here we have the second operation: Selectðrunends;dÞ, and we define Selectðv;iÞ =
position of the ith 1 in the vector v.

All in all runend positionðiÞ = Selectðrunends;Rankðoccupieds; iÞÞ.
Block-based optimization

When inserting or querying an element in the filter, the position of the run where it belongs needs to be computed. This means

applying Rank and Select over occupieds and runends. As it becomes too expensive to iterate over a billion bits long vectors, the

structure is divided into blocks of 64 slots. Each block acts as a checkpoint and stores an additional information: Offset, stored

on 64 bits. TheOffset of the slot i is the distance between i and the last slot of its run. We store theOffset of the first slot of each block.

Because we store an additional 64 bits number every 64 slots, it increases the number of metadata bits per slot to 3. As shown in,20

we can encode theOffset so that it uses 0.125 bits per slot instead of 1. In our implementation, we still made the choice to use 64 bits

for every Offset, bringing the number of metadata bits to 3 instead of 2.125 for memory alignment reasons. Thanks to the Offset in-

formation, it is nowpossible to count the number d of runs that started before the slot i and after the first slot (j) of the same block. Then

we jump to the position given by OffsetðjÞ and we find the dth runend from there.

In summary, we compute runend positionðiÞ = Selectðrunends½OffsetðjÞ; i � 1�;dÞ, with d = Rankðoccupieds½j; i�; iÞ.
Originally the QF is a probabilistic data structure: with a non-zero false-positive rate when querying elements. In the current frame-

work, as we use an injective hash function, the false-positive rate is zero. However, as explained later (Section: The Backpack Quo-

tient Filter; subheading: Reducing the Space Usage), we use an additional technique that does not exactly query the actual stored

elements, and that generates a negligible but non-zero false positive rate at query time.

In practice, themetadata bits used, the probingmethod and the global organization of the QFwe use is based on the Rank & Select

Quotient Filter first proposed in.20

Abundance in quotient filters

As previously defined, the Quotient Filter structure is enough to handle the presence or absence of k-mers. It is possible to adapt the

structure so it can store each k-mer alongside with its abundance in the indexed dataset. The Counting Quotient Filter20 (CQF) is an

example of a QF with abundance.

In the CQF, the abundance of each inserted element can be stored using the following process. A slot is used to store a remainder

or an abundance value. If an element x has its abundance 1%n%2, then the element is inserted n times (with n = 2, two consec-

utive slots store h1ðxÞ). When n> 2, h1ðxÞ is stored twice and these two slots act like boundaries in the table, defining the beginning

and the end of the counter. Then n � 2 is encoded and stored between both boundaries, using potentially two slots or more. An extra

slot holding a 0 might be necessary to maintain consistency in the runs. The point here is that this approach uses 2 slots when n = 2

and 3 or more when n> 2.

In the following section, we present our contribution, called the BQF, improving both the way the counts are stored and highly opti-

mizing the size taken by each element to be queried.

The backpack quotient filter
Storing the abundance

In the BQF, the abundance of each element is stored using the following approach. As represented in Figure 6 each slot stores both a

remainder and an abundance value. More precisely, each slot stores r bits for the remainder, and c extra bits are used to encode the

abundance value. The c parameter is a user-defined parameter. The choice of c has a direct impact on the BQF size, adding 2q3 c

bits. The maximum value for abundance is 2c � 1 and the value can be an exact count, or an order of magnitude (e.g., encoding of

log2 values), offering flexibility based on precision requirements.

If the value of a count overflows the number of bits allocated, the 2c � 1 value is stored and the answer at query time is ‘‘R 2c’’.

Compared to the CQF, the BQF uses only one slot per element, regardless of the abundance of this element, but at the same time it

uses more bits per slot. In the end, the BQF will use c bits to encode the abundance, while the CQF will use x3r bits (x slots, x usually

between 1 and 4). Instinctively, the larger the CQF’s r parameter is, the more interesting our method is. But the main point is that r is

not user-defined but more inferred by the hash and q, while c can be determined according to available space and counts. For

instance, one might just want to know that a count is greater than a certain value (2c), to be considered ‘‘big’’ and not worry about

whether the number is 10 or 1000 times greater.

On a side note, the name BQF comes from the fact that every slot handles its own counter, as if it was carrying a backpack.

Reducing the space usage

In order to reduce the space usage, we take advantage of amethod called Fimpera.21 Thismethod is originally designed to reduce the

false-positives of data-structures having non-zero false positive rates.
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Focusing on the presence/absence only, the key idea can be summarized as follows: if a word is present in a text, then all of its

sub-words are present. Conversely, if any sub-word is absent, then the whole word is absent. In practice, instead of indexing the

k-mers from a dataset, we insert all its s-mers, with s% k. At query time a k-mer is considered as indexed if and only if all its

s-mers are indexed in the structure. In the general case of querying a k-mer in an structure with collisions, this approach enables

to lower the false positive rate of the query because all s-mers of a specific k-mer need to be false positives to create a false pos-

itive k-mer.

The same idea can be exploited when taking the abundance into account. The abundance of a k-mer is at most equal to the least

abundant s-mer it is composed of. Therefore, we store the abundance of s-mers in the filter and report the abundance of a queried

k-mer as theminimum of the abundances of the s-mers composing it. The techniques described in21 explain how this approach does

not have a negative impact on query time andmay even improve it. When applied to a structure having collisions, this approach limits

the overestimation of the abundance, as all the s-mers of a queried k-mer have to be overestimated to overestimate the real abun-

dance of this k-mer.

In the BQF, we do not have any collision. We apply this approach to gain space instead.

Let us first study the size of the reversible hash value, used to store words on a four-character alphabet. Each character (here fA;C;
G;Tg) requires two bits for its encoding. Hence, encoding a word of length l requires 2l bits. As we use a reversible hash function, the

size of the hash value requires the same size as the original encoded data, 2l.

By inserting s-mers, smaller than k-mers, the size of the reversible hash value of each inserted element becomes 2s instead of 2k. If

we denote by z the difference between k and s, the gain is 2z bits per element. In the BQF structure, the consequence is that the size of

each slot is decreased by 2z. All in all, applying this approach enables to save 2q32z bits. The same hash function is used, with the

same properties of injection and reversibility of stored elements.

A drawback of using this approach is the loss of the enumerating feature for k-mers. The hash function is still reversible but because

we have s-mers in the filter, we can only reconstruct (and thus enumerate) these s-mers and not the k-mers we want to query. It is

important to note that we only lose the k-mers enumeration, not the dynamicity: resizing the BQF remains possible.

If the counters are not exact, i.e., if orders of magnitude are indexed then inserting and deleting new elements is no longer a trivial

task. We will study the possibilities of updating the BQF in this case in future work.

The second drawback of applying this approach is the creation of a new kind of false positives, called ‘‘construction false posi-

tives’’. The existence of construction false positive is explained by a simple sentence: a k-mer may be absent but all of its s-mers

may be present. We meet this case if each s-mer of an absent k-mer x has been individually inserted through the present k-mers

sharing s-mers with x. Overestimations can also happen, a study of this probability has been realised in fimpera paper.21

Theoretical influence of the s parameter

We now detail the theoretical consequences of reducing the size s of indexed elements, with s˛ ½0;k�.

(1) Decreasing s increases the ‘‘construction false positive’’ rate. The smaller the s value is, the higher is the probability that a

queried k-mer, non existing in the indexed set, has all its s-mers existing in this set.

(2) Decreasing s may increase the number of indexed s-mers in short reads datasets. A sequence of size l contains (l � k + 1)

k-mers and (l � s+ 1) s-mers. Hence, it contains z = k � s additional s-mers than k-mers. This is negligible while indexing for

instance an assembled genome. But when it comes to indexmillions of readswith low redundancy between them, as this is the

case in our experimentations using sea-water metagenomes, each of the million reads contains z more s-mers than k-mers,

with a low redundancy between reads.

(3) Decreasing s decreases the size taken by each indexed s-mer, which is the expected effect. This is the main advantage of the

approach. Recall that the total size of structure is reduced by 2q32zwhen using s-mers instead of k-mers. Hence the smaller s

is, the more space is saved.

In general, the results presented (Section impact of size of the indexed s-mers (in results)) suggest that the size of the data structure

decreases as s decreases, despite the conflicting effects of the last two previous points. Selecting small s values only has the po-

tential to increase the construction false positive rate. However, when using recommended values, it stays below 10� 5%.

Doubling the number of slots when the structure is full

One of the main advantage of building the QFwith an injective hash function is that conversely to a Bloom filter for instance, when the

structure is full, it is possible to double its number of slots (from q to q+ 1). During this process, the hash value of each element re-

mains the same, but theway it is distributed between the quotient and remainder changes. This occurs because, after doubling, q+ 1

bits are used to represent the address, while r � 1 bits are used for the remainder. Finally, the total number of stored elements faces

no theoretical limitation.

In practice, for performances reasons, one doubles the number of slots when the ‘‘load factor’’ (number of stored elements divided

by the number of slots) becomes bigger than 95%. Load factor effect experiments have been performed here.20

Number of bits per stored element

As stated, the basis of the QF data structure is to use the address of stored elements as a part of their hash value. As a conse-

quence, the size of the remainder stored for each element decreases when the number of slots increases. This is not linear. Let us

consider the initial scenario, where the QF is composed of 2q slots in which r bits per slot are used as remainder. In this case, the
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BQF uses 2q3ðr + c + 3Þ bits, as for each stored element, r bits store the remainder, c bits are used to store the abundance, and 3

additional metadata bits are used by the structure itself (runend, occupied and Offset).

Now consider that the size of the structure doubles in order to index more elements. The structure then contains 2q+1 slots. In this

situation, q+ 1 bits indicate the address of each slot, and so the remainder of each element decreases to r � 1 bits instead of r. In this

case, the total size of the structure becomes 2q+1 3 ðr � 1 + c + 3Þ = 2q+1 3 ðr + c + 2Þ. As the structure grows, q+ r remains con-

stant and the slots become smaller.

Note that this practical effect ends when the remainder is empty, in which case the full hash value of each element is entirely given

by the address of the element. This presents a theoretical perspective. In the case of k-mer indexing, where conventional k values are

typically around 30, approximately 140 petabytes would be needed to contain the 4k slots (representing the number of possible

distinct k-mers).

ADDITIONAL RESOURCES

Availability: https://github.com/vicLeva/bqf.
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