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Abstract

Genomic data sequencing has become indispensable for elucidating the complexities of biologi-
cal systems. As databases storing genomic information, such as the European Nucleotide Archive,
continue to grow exponentially, efficient solutions for data manipulation are imperative. One funda-
mental operation that remains challenging is querying these databases to determine the presence or
absence of specific sequences and their abundance within datasets.

This paper introduces a novel data structure indexing k-mers (substrings of length k), the Back-
pack Quotient Filter (BQF), which serves as an alternative to the Counting Quotient Filter (CQF).
The BQF offers enhanced space efficiency compared to the CQF while retaining key properties, in-
cluding abundance information and dynamicity, with a negligible false positive rate, below 10−5%.
The approach involves a redefinition of how abundance information is handled within the structure,
alongside with an independent strategy for space efficiency.

We show that the BQF uses 4x less space than the CQF on some of the most complex data to
index: sea-water metagenomics sequences. Furthermore, we show that space efficiency increases as
the amount of data to be indexed increases, which is in line with the original objective of scaling to
ever-larger datasets.

Availability: https://github.com/vicLeva/bqf
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1 Introduction

Genomic data sequencing is a wonderful tool for understanding the ins and outs of biological systems.
Sequencing produces numeric plain text, organized as reads in files. Most of these files are gathered in
public databases like the European Nucleotidic Archive (ENA) [7] that weighs 54.5PB by early 2024. The
size of the databases follows exponential growth, and thus we need appropriate solutions to manipulate
the data it contains. One simple operation that we are not yet able to achieve is to query the database and
then, for each dataset, answer if a sequence is present or absent. Even better, answer for each dataset
how many times a sequence is present: its abundance. To this end, we use indexing data structures
that can handle another representation of the data, making it easier to query afterward. Some of the
current indexing data structures use sets of k-mers (substrings of length k, k usually in [20; 50]) as the
representation to query. In this way, the proportion of shared k-mers between a query sequence and a
dataset. The main operation is thus to determine for each k-mer in which indexed dataset it occurs and
with what abundance (how many times it occurs in a dataset).

Due to the scale of databases to index, recognized tools often sacrifice precision for the sake of
performance. This can be done through pseudo-alignment as defined in [2], breaking down the queried
sequences into k-mers and comparing them against k-mers of the datasets, often organised in “colored de
Bruijn graph” representation of as in Bifrost [12] or GGCAT [9]. Here, the graph construction is the main
limitation of the methods. Other tools allow false-positive results by using Approximate Membership
Queries (AMQ) data structures to enhance space efficiency [6, 4, 20, 14, 27, 16]. They all use trade-offs
between size and false-positive rate. By taking advantage of DNA and k-mers properties (small alphabet,
redundancy of consecutive k-mers), the use of a simple associative array with super-k-mers [15] whose
minimisers [25] have been hashed with a minimal perfect hash function [23] can create exact and space
efficient indexes such as SSHash [21, 22]. However, apart from being static, this method suffers from
significant computational requirements and is considerably slower compared to the approach we suggest.

Data structures form the core of the tools mentioned above. The choice of the structure impacts the
performance and the range of operations available to the user. To illustrate, a Bloom filter [5] can insert
elements after it has been built in memory, while an XOR filter [10, 11] has better space usage, but is
static. A Quotient Filter [3] allows more dynamicity than a Bloom filter as it can enumerate inserted
elements and thus relocate elements in a smaller or larger structure as needed. The Quotient Filter is
the backbone of the Counting Quotient Filter (CQF) [19], which can retrieve not only the presence or
absence of a k-mer, but also its abundance. However, this structure has the disadvantage of requiring a
lot of space.

In this paper, we propose a new genomic data indexing structure, an alternative to the CQF called
the “Backpack Quotient Filter” (BQF). It is more space-efficient than the CQF while still offering the
same properties (abundance, dynamicity), at the cost of a negligible false-positive rate. We propose a
novel way to handle the abundance information. We leave the trade-off choice between (total) space
and counts encoding precision to the user. In addition, we use the Fimpera [26] scheme to reduce each
element’s space usage. In total, our tests show that at the price of a false-positive rate below 10−5%,
the BQF can index billions of elements and their abundance, using between 13 and 26 bits per element.
Compared to existing solutions, the BQF has the fastest average query time, while being fully dynamic.
It is, to our knowledge, the only data structure that cumulates these features.

2 Material and Methods

2.1 Preliminaries

2.1.1 k-mers, pseudo-alignment, and indexing

A k-mer is any sequence of given size k. It can be of any character but in our context a k-mer is a
substring of a genomic sequence, i.e. made up of nucleotides (A,C,G,T). k-mers are to genomics what
words are to natural language: this way we can compare sequences by comparing their words. The
number of k-mers existing in two sequences provides a metric to measure the similarity between them,
leading to the so called pseudo-alignment [2]. In order to efficiently perform pseudo-alignments between
any queried sequence and a dataset, we index its k-mers. Doing so, it is possible to know in constant and
fast time (see Results) whether a k-mer belongs to the dataset or not. Then, when querying a sequence
S, all of its k-mers are individually queried in the index, enabling to compute the pseudo-alignment
between S and each dataset of the databank.
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In this article, the examples will use 32-mers by default but the BQF data structure does not impose
any value.

2.1.2 Hash function

A hash function is a mathematical transformation that takes an input (here a sequence of characters) and
produces a number, called a hash value. In the current framework, the used hash function produces a
value that is coded with a fixed-size number of bits. This transformation is designed to be deterministic,
to produce an uniform distribution, and we want it to be as fast as possible. Given a hash function,
two distinct elements are said in “collision” if they have the same hash value. A hash function is called
“perfect” if it is injective, also meaning that there are no elements in collision. In this paper, we made
the choice to use a xorshift [17] hash function, producing numbers between 0 and 22k for every k-mer.
We use this [28] xorshift hash function as it is a Perfect Hash Function (PHF), preventing collisions.
Also, as long as we project the k-mers into values of 2k bits, the function is reversible. It means that we
can retrieve the original k-mer from its hashed value. The use of a non perfect hash function would also
be possible but would imply the impossibility to enumerates the elements entered in the data structure.
This would prevent, for example, the resizing of the data structure. As we want a fully dynamic data
structure, we made the choice of using a PHF.

2.2 Quotient Filter (QF)

The work we present, called the Backpack Quotient Filter (BQF), is based on the Quotient Filter (QF)
structure [3]. In this section, we provide a brief overview of the fundamental aspects of the QF structure,
which is essential for comprehending our contribution. A deeper description of the structure is proposed
in the Supplementary Materials.

A QF is a data structure that is used to store a set of elements. It is composed of a table with 2q

slots, each of fixed size r, where q and r are initially defined by the user. q and r are subject to change
as the size of the table may change. It utilizes a hash function h that hashes elements to integers of q+ r
bits. When an element x is inserted, its hash value h(x) is computed and split into two parts:

• h0(x) of size q bits, called the “quotient”. It is used as an address in the table;

• h1(x) of size r bits, called the “remainder”. It is a fingerprint and is effectively stored in memory.
h1(x) is inserted at the address h0(x).

To query the presence of an element y in the structure, h0(y) and h1(y) are computed. Finding h1(y)
at position h0(y) induces that y is present. Figure 1 pictures the insertion step at slot 3, where solid
hatched green lines symbolize the r bits of the remainder, inserted at address 3.

Figure 1: A 32 slots long BQF (q=5). First line represents the metadata bits (see [19] for more details).
This short example does not represent blocks (cf. supplementary data) in the BQF for simplicity. Each
slot has a size of r bits for the remainder with c bits for counts and 2 bits of metadata: occupied and
runend. A circled address Q means that at least one element x such that h0(x) = Q has been inserted.
Multiple remainders sharing the same color in the BQF have been originally inserted at the same address
and form a run (cf. supplementary data). Empty metadata bits are set to 0.

Originally the QF is said to be a probabilistic data structure: with a non-null false-positive rate when
querying elements. In the current framework, as we use a PHF, when querying a stored element, the
false-positive rate is zero. However, as explained later (Section 2.3.2), we use an additional technique
that does not exactly query the actual stored elements, and that generates a negligible but non-null false
positive rate at query time.

3

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2024. ; https://doi.org/10.1101/2024.02.15.580441doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580441
http://creativecommons.org/licenses/by/4.0/


In practice, the QF implementation we use is based on the Rank & Select Quotient Filter first
proposed in [19]. We detail this operation in the Supplementary Materials.

2.2.1 Abundance in Quotient Filters

As previously defined, the Quotient Filter structure is enough to handle the presence or absence of k-
mers. It is possible to adapt the structure so it can store each k-mer alongside with its abundance in the
indexed dataset. The Counting Quotient Filter [19] (CQF) is an example of a QF with abundance.

In the CQF, the abundance of each inserted element can be stored using the following process. A slot
is used to store a remainder or an abundance value. If an element x has its abundance 1 ≤ n ≤ 2, then
the element is inserted n times (with n = 2, two consecutive slots store h1(x)). When n > 2, h1(x) is
stored twice, forming boundaries in the table, and n−2 is encoded and stored between both boundaries,
using potentially two slots or more. An extra slot holding a 0 might be necessary to maintain consistency
in the runs. The point here is that this approach uses 2 slots when n = 2 and 3 or more when n > 2.

In the following section, we present our contribution, called the Backpack Quotient Filter, improving
both the way the counts are stored and highly optimizing the size taken by each element to be queried.

2.3 The Backpack Quotient Filter

2.3.1 Storing the abundance

In the BQF, the abundance of any element is stored using the following approach. As represented in
Figure 1 each slot stores both a remainder and an abundance value. More precisely, each slot stores r
bits for the remainder, and c extra bits are used to encode the abundance value. The c parameter is a
user-defined parameter. The choice of c has a direct impact on the BQF size, adding c × 2q bits. The
maximum value for abundance is 2c and the value can be an exact count, or an order of magnitude (e.g.
encoding of log2 values), offering flexibility based on precision requirements.

Compared to the CQF, the BQF uses only one slot per element, regardless of the abundance of this
element, but at the same time it uses more bits per slot. However, thanks to the proposition described
in the next section, we can reduce the size of the stored remainder. In this way, we cancel out this effect,
even using less space per element while storing abundances.

2.3.2 Reducing the space usage

In order to reduce the space usage, we take advantage of a method called “Fimpera” [26]. This method
is originally designed to reduce the false-positives of data-structures having non-null false positive rates.

Focussing on the presence/absence only, the key idea can be summarized as: if a word is present in a
text, then all of its sub-words are present. Conversely, if any sub-word is absent, then the whole word is
absent. In practice, instead of indexing the k-mers from a dataset, we insert all its s-mers, with s ≤ k.
At query time a k-mer is considered as indexed if and only if all its s-mers are indexed in the structure.
In the general case of querying a k-mer in an structure with hard collisions, this approach enables to
lower the false positive rate of the query because all s-mers of a specific k-mer need to be false positives
to create a false positive k-mer.

The same idea can be exploited when taking the abundance into account. The abundance of a k-mer
is at most equal to the least abundant s-mer it is composed of. Therefore, we store the abundance of
s-mers in the filter and report the abundance of a queried k-mer as the minimum of the abundances
of the s-mers composing it. The techniques described in [26] explain how this approach does not have
a negative impact on query time and may even improve it. When applied to a structure having hard
collisions, this approach limits the overestimation of the abundance, as all the s-mers of a queried k-mer
have to be overestimated to overestimate the real abundance of this k-mer.

In the BQF, we do not have any hard collision. We apply this approach to gain space instead.
Let us first study the size of the reversible hash value, used to store words on a four-character

alphabet. Each character (here {A,C,G, T}) requires two bits for its encoding. Hence, encoding a word
of length ℓ requires 2ℓ bits. As we use a reversible hash function, the size of the hash value requires the
same size as the original encoded data, 2ℓ.

By inserting s-mers, smaller than k-mers, the size of the reversible hash value of each inserted element
becomes 2s instead of 2k. If we denote by z the difference between k and s, the gain is 2z bits per element.
In the BQF structure, the consequence is that the size of each slot is decreased by 2z. All in all, applying
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this approach enables to save 2q×2z bits. The same PHF is used, with the same properties of injectivity
and reversibility of stored elements.

A drawback of using this approach is the lost of the enumerating feature for k-mers. The hash
function is still reversible but because we have s-mers in the filter, we can only reconstruct (and thus
enumerate) these s-mers and not the k-mers we want to query. It is important to note that we only lose
the k-mers enumeration, not the dynamicity: resizing the BQF remains possible.

The second drawback of applying this approach is the creation of a new kind of false positives,
called “construction false positives”. The existence of construction false positive is explained by a simple
sentence: a k-mer may be absent but all of its s-mers may be present. We meet this case if each s-mer
of an absent k-mer x has been individually inserted through the present k-mers sharing s-mers with x.

2.3.3 Theoretical influence of the s parameter

We now detail the theoretical consequences of reducing the size s of indexed elements, with s ∈]0, k].

1. Decreasing s increases the “construction false positive” rate. The smaller the s value is, the higher
is the probability that a queried k-mer, non existing in the indexed set, has all its s-mers existing
in this set.

2. Decreasing s may increase the number of indexed s-mers in short reads datasets. A sequence of
size ℓ contains (ℓ − k + 1) k-mers and (ℓ − s + 1) s-mers. Hence, it contains z = k − s additional
s-mers than k-mers. This is negligible while indexing for instance an assembled genome. But when
it comes to index millions of reads with low redundancy between them, as this is the case in our
experimentations using sea-water metagenomes, each of the million reads contains z more s-mers
than k-mers, with a low redundancy between reads.

3. Decreasing s decreases the size taken by each indexed s-mer, which is the expected effect. This is
the main advantage of the approach. Recall that the total size of structure is reduced by 2q × 2z
when using s-mers instead of k-mers. Hence the smaller s is, the more space is saved.

In general, the results presented Section 3.3 suggest that the size of the data structure decreases as s
decreases, despite the conflicting effects of the last two previous points. Selecting small s values only has
the potential to increase the construction false positive rate. However, when using recommended values,
it stays below 10−5%.

2.3.4 Doubling the number of slots when the structure is full

One of the main advantage of building the QF with a PHF is that conversely to a Bloom filter for
instance, when the structure is full, it is possible to double its number of slots (from q to q + 1). During
this process, the hash value of each element remains the same, but the way it is distributed between the
quotient and remainder changes. This occurs because, after doubling, q + 1 bits are used to represent
the address, while r − 1 bits are used for the remainder. Finally, the total number of stored elements
faces no theoretical limitation.

In practice, for performances reasons, one doubles the number of slots when the “load factor” (number
of stored elements divided by the number of slots) becomes bigger than 95%.

2.3.5 Number of bits per stored element

As stated, the basis of the QF data structure is to use the address of stored elements as a part of their hash
value. As a consequence, the size of the remainder stored for each element decreases when the number
of slots increases. This is not linear. Let us consider the initial scenario, where the QF is composed of 2q

slots in which r bits per slot are used as remainder. In this case, the BQF uses 2q× (r+ c+3) bits, as for
each stored element, r bits store the remainder, c bits are used to store the abundance, and 3 additional
metadata bits are used by the structure itself (runend, occupied and a third one, offset, explained in
supplementary data). In this situation, if this structure is full, each of the 2q stored elements requires
(r + c + 3) bits.

Now consider that the size of the structure doubles in order to index more elements. The structure
then contains 2q+1 slots. In this situation, q + 1 bits indicate the address of each slot, and so the
remainder of each element decreases to r− 1 bits instead of r. In this case, the total size of the structure
becomes 2q+1 × (r− 1 + c + 3) = 2q+1 × (r + c + 2). When this structure is full, each of the 2q+1 stored
elements now requires (r + c+ 2) bits instead of (r + c+ 3). By doubling again the size of the structure,
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it would contains 2q+2 slots, each composed of (r+ c+ 1) bits. When this structure in turn becomes full,
each element require (r + c + 1) bits, and so on.

Note that this practical effect ends when the remainder is empty, in which case the full hash value of
each element is entirely given by the address of the element. This is a theoretical view as, in the case of
k-mer indexing, when indexing conventional k value typically around 30, approximately 140 petabytes
would be needed to contain the 4k slots (the number of possible distinct k-mers).

3 Results

We propose some experiments on real metagenomic datasets. The objective is to compare the perfor-
mances obtained with the BQF with those obtained using state-of-the-art data structures for indexing
k-mers together with their abundances, based on the Quotient Filter: the CQF [19] and on the counting
Bloom Filter: the CBF [26]. We also included a comparison with Bifrost [12] and SSHash [22]. Both of
these approaches allow for querying indexed k-mers, but they have significant differences in their main
features, which are summarized below.

These results also enable to show the impact of the unique parameter introduced by BQF: the s
value. We also show the influence of the number of indexed elements on the whole data structure size.

The version used for BQF is v1.0.0. Details about protocols and links to datasets are available
online [1].

3.1 Used datasets

Our results were obtained on three distinct metagenomic datasets in which we exclusively considered
k-mers present two or more times.

• Dataset “sea-water34M ”: 34 million Illumina reads from the Tara Oceans sequencing project.
The compressed fastq file is 7.7GB. It contains 257M distinct 32-mers and 346M distinct 19-mers
occurring at least twice.

• Dataset “sea-water143M ”: 143 million Illumina reads from the Tara Oceans sequencing project.
The compressed fastq file is 33GB. It contains 1.2B distinct 32-mers and 1.5B distinct 19-mers
occurring at least twice.

• Dataset “gut”: 13 million reads from pig microbiota Pacbio sequencing. The compressed fastq file
is 42GB. It contains 475M distinct 32-mers and 420M distinct 19-mers occurring at least twice.

These sea-water and gut microbiota metagenomic datasets are representative of a highly complex
situation, with a large diversity content. For instance, there are 9.5 billion k-mers in sea-water143M
dataset, leading to a set of 5.7 billion distinct k-mers. Among them, only 1.2 billion are present twice or
more. For the gut dataset, we counted 22 billion k-mers, 1.2 billion distinct ones and 0.475 billion are
present twice or more. We propose in Supplementary Materials a visualisation of the k-mer spectrum
of the sets sea-water143M and gut. They illustrate the complexity of these datasets, where there is no
peak linked to the specific presence of one or more species.

3.2 Compared performances

In this section, we propose to compare the BQF with the CQF (https://github.com/splatlab/cqf,
commit 68939f5). Both structures use the same Xorshift hash function, a PHF, ensuring no collisions.
We also compare with results obtained with a counting Bloom filter (CBF) implementing the Fimpera
approach (https://github.com/lrobidou/fimpera, commit 662328d). Both CBF and BQF use 5 bits
for counters (c = 5), allowing a maximal abundance value of 64 as we store exact values. BQF and CBF
use the Fimpera approach, initialized with k = 32 and s = 19, thus 19-mers are counted and inserted.
The sizes of the BQF and CQF are determined solely by the total number of elements plus the element
abundances for the CQF. Regarding the CBF, we decided to create a CBF of the same size as the BQF.
This ensures fair comparisons when considering a fixed amount of disk space. The choice of parameters
is discussed further in this section.

We also show results obtained by Bifrost (version 1.3.1) and SSHash (version 3.0.0). Those compar-
isons are not exactly fair as these tools embed additional features (computing pre-assembly of the data
in the so-called compacted de Bruijn graph, possibly indexing multiple datasets for Bifrost) while Bifrost
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cannot index the abundance, and while SSHash is a static data structure. However, it is interesting to
present these results as they show that these state-of-the-art tools —which are not specifically designed
for the task of only indexing k-mers with their abundances— are not optimal for this task.

3.2.1 Experimental setup

We computed the build time and the query time for each approach. In addition to the building time,
the results show the pre-processing time, i.e. the time used to obtain the correct input file from the raw
compressed fastq file (counted k-mers for CQF, CBF and BQF, and SPSSs [24] for SSHash).

The parameters are k = 32 for CBF, CQF, and BQF, c = 5 (counters size for BQF, CBF), and
s = 19 (19-mers were inserted for BQF, CBF). For SSHash and Bifrost, we used k = 31 as using k = 32
would have doubled the k-mer encoding size for Bifrost, and because SSHash uses k ≤ 31. Bifrost used
4 threads and m = 17 for SSHash (minimisers size).

Positive queries in a dataset D are k-mers reads from D itself. Negative queries are k-mers from
randomly generated sequences (between 80 and 120 nucleotides). Around 2 billion k-mers over 30
million sequences were positively queried. Around 7 billion negative k-mers over 100 million sequences
were negatively queried.

BQF and CQF sizes are measured experimentally. Their size corresponds exactly to their theoretical
value, also showing that, thanks to the simplicity of the structure, no space overhead is required. CBF
size was chosen to be the same as BQF’s. SSHash size is the one displayed by the tool at the end of the
building step. Bifrost size is measured as the peak memory usage after loading the graph and the index
in memory (from binary representation on disk).

The executions were performed on the GenOuest platform on a node with 4 × 8 cores Xeon E5-2660
2,20 GHz with 128 GB of memory.

3.2.2 Comparative results

Dataset Structure
Memory

(GB)
bits per
element

Pre-processing +
Build time (s)

Pos. query
time (kmer/s)

Neg. query
time (kmer/s)

FP rate
(%)

sea-water34M Bifrost 3.67 111 871α 3,823,877 1,767,818 0
SSHash 0.39 12 1,626β + 34,890 1,460,401 1,450,285 0

CQF 4.85 151 215γ + 210 3,267,592 4,110,300 0
CBF 1.14 26 219γ + 429 55,852 62,229 4.8 × 10−6

BQF 1.14 26 219γ + 257 3,090,526 3,506,136 1.6 × 10−6

sea-water143M Bifrost 17.59 115 4,252α 1,977,587 1,766,008 0
CQF 9.70 129 771γ + 949 3,254,682 3,931,239 0
CBF 4.03 24 780γ + 2,039 55,044 61,407 5.8 × 10−5

BQF 4.03 24 780γ + 1,101 2,601,710 2,562,646 3.0 × 10−5

gut Bifrost 5.85 99 6,137α 4,003,868 1,653,834 0
CQF 19.39 158 1,178γ + 396 2,527,472 3,666,312 0
CBF 1.14 22 1,085γ + 468 56,009 61,356 1.6 × 10−6

BQF 1.14 22 1,085γ + 341 2,855,172 3,317,307 0

α Bifrost does not require pre-processing step
β BCALM [8] (https://github.com/GATB/bcalm, version 2.2.3) for unitigs + UST [24] (https://github.com/jermp/UST, commit b3d0710) for simplitigs
γ KMC [13] (https://github.com/refresh-bio/KMC, version 3.2.4) kmer counting

Table 1: Comparative performances. Recall that Bifrost and SSHash do not index the same number of
elements than CQF, CBF and BQF, explaining the difference in term of number of bits per element as
compared to the structure size. Given its computation time (≥ 24 hours on the sea-water143M dataset),
we report SSHash results only for the sea-water34M dataset.

Comparing CQF and BQF Compared to the CQF, the major advantage of the BQF is in term of
space. As shown Table 1, the BQF is approximately four times smaller than the CQF for every indexed
dataset. The same advantage is found in terms of space efficiency (bits/element), being approximately
5 to 7 times more efficient. However, one drawback is the occurrence of false positive calls, which are
generally less than 10−5% and can even be as low as 0% in the gut data set.
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Comparing CBF and BQF The results presented Table 1 indicate that the false-positive rate is
slightly better with the BQF compared to CBF. However, both approaches still have a very low false
positive rate of approximately 10−5%, which is insignificant for indexing and pseudo-alignment applica-
tions. BQF offers several significant benefits over CBF. First, BQF allows for faster time queries, with
an average speed improvement of 50 times compared to CBF. Additionally, BQF does not have any the-
oretical limitations on the number of stored elements, unlike CBF which is designed for a fixed maximum
number of elements that cannot be updated. Finally, the elements stored in a BQF (the s-mers) can be
enumerated, while this is not the case with the CBF.

Abundance overestimation due to the Fimpera approach In this work, we did not recompute
the so-called overestimation inherent to the Fimpera abundance representation. This overestimation is in
the order of 1% to 2% according to the results presented in [26], meaning that 1 to 2% of the abundances
of true positive calls are overestimated. Furthermore, for those results that were overestimated, the
average difference was shown to be approximately 1.07 times the correct abundance range. All in all,
this slight overestimation, limited to less than 2% of the calls, has no significant impact while estimating
the abundance of a query composed of at least dozens or hundreds of k-mers.

Bifrost and SSHash results As shown by results presented Table 1, Bifrost is approximately two
times slower than BQF to build the data structure and more than twice as slow to perform negative
queries. It uses approximately 4.5 times more space per element, and more importantly, it does not
provide the abundance of k-mers. The SSHash approach, for its part, taking advantage of super-k-
mers [15], uses approximately 2 times less space per element than BQF. However, it is static and is
nearly two orders of magnitude slower to construct, drastically limiting its application to large-scale
projects.

3.3 Impact of size of the indexed s-mers

As stated earlier, the BQF structure stores s-mers, to emulate k-mers at query time, with s ≤ k. The
choice of the s value has several consequences that are described Section 2.3.3, and that we propose to
empirically observe here.

3.3.1 Effect of s on the number of construction false positives

Figure 2: Empirical observation of the evolution of the construction false positive rate with respect to
s. Indexed dataset: “sea-water34M ”, querying random 32-mers
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Figure 2 illustrates that using any value of s bigger than 17 enables to limit drastically the construction
false positive rate. When s-mers become smaller than 17 nucleotides, the probability they appear by
chance in sequences composed of millions of characters on the {A,C,G, T} alphabet becomes close to
1. In this case, mostly any k-mers can be constructed from these s-mers, explaining the nearly 100%
construction false positive rate.

Note that the shape of this curve is highly correlated with the probability that an element of size s

appears by chance in a sequence of size ℓ. This probability is equal to 1 −
(
1 − 1

4s

)ℓ
. In concrete terms,

this allows a user to reliably determine a value of s knowing ℓ, even approximately. The value of ℓ can
be approximated thanks to the number of distinct k-mers in the dataset (as this is the case in Figure 2),
efficiently computed by ntCard [18] for instance.

3.3.2 Effect of s on the structure size

Recall that decreasing s has two opposite effects on the structure size:

(a) in certain conditions (see below), decreasing s can increase the number of indexed s-mers, which
tends to increase the size of the structure (need to double its size when reaching 95% load factor);

(b) decreasing s decreases the remainder size, and so decreases the total size of the structure.

Figure 3: Evolution of the number of s-mers depending on s in an Illumina sequencing dataset (sea-
water34M ): plain blue line. Evolution of the number of bits per element depending on s on the same
dataset. high bound is the red upper dotted curve, corresponding to a half-full BQF. low bound is plotted
in orange, under high bound and corresponds to a full BQF (95% load factor)

In this section, we propose to observe the practical consequences of this choice.
(a) Figure 3 shows (plain blue curve) the number of distinct s-mers according to s. With long enough
s-mers (s > 17), decreasing s sub-linearly increases the number of distinct s-mers. This is true in the
case of relatively short reads, with new generation sequencing for instance (Illumina example within
Figure 3 with sea-water34M dataset). On the other hand, third-generation sequencing produces longer
reads, in this context decreasing s decreases the number of elements to index (475M distinct 32-mers
and 420M distinct 19-mers in gut PacBio dataset). Table 1 shows this result: when comparing BQF and
CQF building time (which depends on the number of elements to index), we can see that BQF is slightly
faster on gut (PacBio) dataset as there are fewer 19-mers than 32-mers.

With s ≤ 17, another effect exists: nearly all the s-mers exist in the text, and so the number of
distinct s-mers becomes limited by 4s, explaining why the number of distinct s-mers decreases when s
decreases below s = 17.
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(b) The two dashed lines of Figure 3 show the number of bits per element either if the structure is half full
or considered as full (in practice one doubles the structure size if its load factor is 95%). The observation
is that even on this highly complex sea-water metagenomic dataset, the space needed to store s-mers
decreases when s decreases, even though more s-mers have to be stored. A fictitious example is available
in the supplementary data, Section “Side effect of lowering s”, demonstrating a case where the number
of s-mers reaches a doubling threshold before the number of k-mers. Results show that, even in this
case, the high and low bound of number of bits per element, is never increasing while s decreases.

All in all, regarding the data-structure size, the best choice is to use s as small as possible, but bigger
than 17 to avoid an explosion of the construction false positive rate, as it keeps it below 10−5% in this
setup.

3.4 Effect of the number of indexed elements on the structure size

(A) (B)

Figure 4: Effect of the number of indexed elements on the size and space efficiency. Generated from
indexing dataset “sea-water34M ”, k = 32, s = 19 and c = 5 for BQF. (A) total data-structure size. (B)
size in terms of number of bits per indexed element.

Based on our metagenomic samples, this section comments on the experimental value of bits per
element (see section 2.3.5) used by the BQF compared to CQF. Figure 4 shows the evolution of the data
structure size (A) and the evolution of bits per element (B) while elements are inserted.

The stairs shapes of figure 4(A) are due to the size of the data structure that doubles each time their
load factor reaches 95%. Then, each insertion increases the load factor without consuming more space.
The figure highlights the fact that on real metagenomic datasets, the CQF needs a lot of space due to
the counter encoding which uses an average of 2.44 slots per element (in the sea-water34M dataset).
Given a fixed number of insertions, because the CQF doubles its size 2.44 times more frequently, the
total size occupied by the CQF is much higher than that of the BQF. At least with metagenomics data,
while counts are low but not unique, BQF will always occupy less space than CQF.

In figure 4(B) the dented curves show the space used per element. The curves are decreasing as the
data structures are filled with elements. The vertical jumps correspond to the data structure resizes. We
can see that the two structures behave in the same way while the BQF uses fewer bits per element. It
is explained by the number of slots per element (a 2.44 times decrease) but also by the Fimpera scheme
used in the BQF approach. An interesting fact is that the peaks for both structures get lower while the
data structure size doubles. This is because the slots are one bit shorter after each resize, as explained
Section 2.3.5.

Finally, at the price of a negligible non-null false positive rate (in the order of 10−5% to 10−6% in
our experiments), the BQF enables to make queries among dozen of billions of elements, using between
13 and 26 bits per element, while the CQF requires between 75 and 150 bits per element for the same
settings.
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4 Conclusion

This paper introduces the Backpack Quotient Filter, a quotient filter with abundance. The BQF, like
other quotient filters, uses a table to store elements. Only a fraction of these elements is explicitly
stored, as the rest is implicitly given through their address. Specifically in the BQF, for every element,
c additional bits are used to encode the abundance associated. This strategy enables to index billions
of elements with their abundance using between 13 and 26 bits per element, depending on the data
structure load factor.

In addition to this counting strategy, the BQF implements the Fimpera strategy, which emulates
k-mers from their s-mers (with s ≤ k). A direct consequence of this emulation is a gain of 2q×2× (k−s)
bits over the whole structure, with 2q being the number of slots in the BQF. Our results show that the
results are robust with respect to the s parameter, as long as s is bigger than a fixed threshold, namely
s > 17.

Our results indexing metagenomic data show that the BQF size is at least four times more compact
than the most similar data structure: the Counting Quotient Filter [19]. The indexing and query times
are in the same order of magnitude. This result is at the price of a non-null but extremely low false
positive rate (≈ 10−6% in our experiment). To fully benefit from the flexible sizes of the counters, if the
user can afford it, it is advised to index orders of magnitude (e.g. log2 values) instead of exact counts.

The BQF inserts hash values of the elements. By using a perfect hash function, we ensure having
no collisions among stored elements. This offers the possibility to enumerate the elements stored in the
structure. If the structure gets full when adding elements, this offers a way to relocate all elements after
doubling the size of the structure. So there is no theoretical limit to the number of elements stored in
the BQF. This dynamicity is significant in the context of intensive sequencing and indexing.
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