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Immune system adaptation during 
gender-affirming testosterone treatment

Tadepally Lakshmikanth1,17, Camila Consiglio1,2,17, Fabian Sardh3,4, Rikard Forlin1, Jun Wang1, 
Ziyang Tan1, Hugo Barcenilla1, Lucie Rodriguez1, Jamie Sugrue5, Peri Noori3, 
Margarita Ivanchenko1, Laura Piñero Páez1, Laura Gonzalez1, Constantin Habimana Mugabo1, 
Anette Johnsson1, Henrik Ryberg6,7, Åsa Hallgren3, Christian Pou1, Yang Chen1, 
Jaromír Mikeš1, Anna James1, Per Dahlqvist8, Jeanette Wahlberg9, Anders Hagelin10,11, 
Mats Holmberg10,11, Marie Degerblad10,12, Magnus Isaksson13, Darragh Duffy5, Olle Kämpe3,14, 
Nils Landegren3,4,17 ✉ & Petter Brodin1,15,16,17 ✉

Infectious, inflammatory and autoimmune conditions present differently in males 
and females. SARS-CoV-2 infection in naive males is associated with increased risk of 
death, whereas females are at increased risk of long COVID1, similar to observations 
in other infections2. Females respond more strongly to vaccines, and adverse 
reactions are more frequent3, like most autoimmune diseases4. Immunological  
sex differences stem from genetic, hormonal and behavioural factors5 but their 
relative importance is only partially understood6–8. In individuals assigned female 
sex at birth and undergoing gender-affirming testosterone therapy (trans men), 
hormone concentrations change markedly but the immunological consequences  
are poorly understood. Here we performed longitudinal systems-level analyses in  
23 trans men and found that testosterone modulates a cross-regulated axis between 
type-I interferon and tumour necrosis factor. This is mediated by functional 
attenuation of type-I interferon responses in both plasmacytoid dendritic cells and 
monocytes. Conversely, testosterone potentiates monocyte responses leading to 
increased tumour necrosis factor, interleukin-6 and interleukin-15 production and 
downstream activation of nuclear factor kappa B-regulated genes and potentiation 
of interferon-γ responses, primarily in natural killer cells. These findings in trans men 
are corroborated by sex-divergent responses in public datasets and illustrate the 
dynamic regulation of human immunity by sex hormones, with implications for the 
health of individuals undergoing hormone therapy and our understanding of 
sex-divergent immune responses in cisgender individuals.

Gender-affirming hormone therapy (GAHT) enables the acquisition 
of secondary sex characteristics better aligned with gender identity 
in transgender individuals. It is important to understand how GAHT 
influences the immune response in these individuals, but this also 
provides a unique opportunity to investigate the immunomodulatory 
functions of gonadal steroids in vivo in humans of reproductive age. 
We performed longitudinal blood sampling of 23 trans men, who were 
assigned female sex at birth and undergoing masculinizing treatment 
with testosterone undecaonate starting at the age of 18–37 years. Blood 
samples were collected at baseline and following 3 and 12 months of 
testosterone treatment (Fig. 1a). By analysing plasma proteins, immune 

cell phenotypes and functional immune cell responses in vitro, we 
searched for coordinated changes among cell populations and the 
protein mediators by which these communicate to understand global 
changes in response to testosterone treatment. Serum concentrations 
of bioavailable testosterone increased to male reference range values 
(Fig. 1b), whereas oestradiol concentrations decreased from baseline 
to 3 months (Fig. 1c), as did progesterone concentrations (Fig. 1d). 
When integrating eight different hormones (Fig. 1b–d and Extended 
Data Fig. 1a), a shared directionality was observed during testosterone 
therapy (Fig. 1e). Five individuals received lower doses (Nebido, 750 mg) 
due to low body mass indices but their plasma hormone concentrations 
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were comparable (Extended Data Fig. 1b). Bulk mRNA sequencing 
(mRNA-seq) of longitudinal blood samples (n = 60 from 20 out of 23 
participants) showing decreasing transcripts enriched for Hallmark 
interferon (IFN)-α (IFNα) responses (Fig. 1f), whereas upregulated 
transcripts were enriched for the Hallmark pathway of tumour necro-
sis factor (TNF) signalling through nuclear factor kappa B (NFκB) and 
Hallmark inflammatory responses (Fig. 1f), indicating a previously 

unappreciated role for gonadal steroids in calibrating type-I interferon 
(IFN-I)/TNF cross-regulation.

Testosterone-induced immune cell changes
We stabilized whole blood cells directly at blood collection, stained with 
a 50-parameter antibody panel and acquired 12,377,068 cells by mass 
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Fig. 1 | Immunological investigation in individuals undergoing gender- 
affirming testosterone therapy. a, Systems-level assessment of blood 
immune system in individuals assigned female sex at birth (trans men)  
in blood samples collected at baseline, and after 3 and 12 months of oral 
testosterone therapy (n = 23). b–d, Sex hormone concentrations measured  
in serum samples (n = 66) using liquid chromatography with tandem mass 
spectrometry in a single experiment and shown in relation to female (pink)  
and male (blue) reference ranges before and during testosterone therapy. 
Kruskal–Wallis tests (5% false discovery rate (FDR) corrected) for bioavailable 

testosterone (b), oestradiol (c) and progesterone (d). e, PCA on the basis of  
nine sex hormones, first two principal components (PC1 and PC2; percentage 
variance explained) and sample points coloured by sample timepoint. f, Bulk 
RNA-seq from whole blood samples (n = 60) and differently expressed mRNA 
transcripts analysed by normalized enrichment scores (NES) for Hallmark 
pathways. Hallmark IFNα responses decrease after 12 months of testosterone 
treatment, TNF signalling through NFκB and Hallmark inflammatory responses 
increased after 12 months of testosterone treatment as compared with 
baseline.
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cytometry. There was no significant change in total white blood cell 
(WBC) counts during testosterone treatment (Extended Data Fig. 2a) 
and a total of 113 immune cell clusters were identified and embedded 
in a force-directed graph (Fig. 2a) and annotated manually by median 
marker expression (Extended Data Fig. 2b). Using mixed-effects mod-
els with age and study visit as fixed effects and participant as a ran-
dom effect, we identified changes in several immune cell populations 
when comparing samples before and during testosterone treatment.  

We found an overall contraction of plasmacytoid dendritic cells (DCs) 
(pDCs), CD8+ mucosa-associated invariant T cells and CD24+CD8+ cen-
tral memory T cells (TCM) during GAHT (Fig. 2b).

Testosterone-mediated adaptation of pDCs
pDCs are efficient producers of IFN-I, and their contraction can con-
tribute to the reduction in Hallmark IFNα transcripts by testosterone 
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cytometry. N = 113 clusters annotated to lineages (n = 35). Cluster-IDs match 
expression heatmap (Extended Data Fig. 2b). b, Cell frequencies in n = 60 
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with visit and age as fixed and participant as random effect. Boxplot centre, 
median; maximum, Q3 + 1.5 × IQR (IQR values ranging from Q1 to Q3); minimum 
whisker, Q1 − 1.5 × IQR; P values 5% FDR corrected. c, Two-dimensional embedding 
(ForceAtlas2) of pDCs (n = 742) analysed by mass cytometry in a single donor 
and one representative experiment of four. d, CD81 expression in pDCs from 
samples in c. e, Summary of CD81 concentrations in pDCs from 18 donors across 
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uncorrected Wilcoxon rank sum test. f, Manually gated pre-DCs in lineage 
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from three experiments by one-way analysis of variance. g, Normalized counts 
of four IFN-I response genes in R848-stimulated pDCs by sc-mRNA-seq at 
baseline (n = 41) and 3 months (n = 47), of two experiments. Counts in stimulated 
cells, subtracting median counts in unstimulated pDCs. h, Median sums of 
genes assigned to indicated BTMs in R848-stimulated pDCs by sc-mRNA-seq  
at baseline and 3 months. *P < 0.05. Uncorrected, two-sided Student’s t-test.  
i, pan-IFNα and IFNb protein ratios (R848-stimulated versus unstimulated)  
in PBMC cultures; P values comparing ratios at baseline and 3 months by 
one-sided, paired Student’s t-tests. j,k, pDC sc-mRNA-seq of R848-stimulated 
pDCs at baseline (n = 41) and 3 months (n = 47) in two independent experiments 
by uncorrected, two-sided Student’s t-tests and R-values from Pearson correlation 
coefficients, IRF7 counts versus Hallmark IFNα count sum ( j), and IRF7 versus 
SOCS3 counts (k). MAIT, mucosa-associated invariant T cells; MFI, mean 
fluorescence intensity; NS, non-significant.
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(Fig. 1f). We also found pDC phenotypic changes upon testosterone 
treatment (Fig. 2c), with surface expression of CD81 on pDCs increasing 
from 3 months (Fig. 2d,e). CD5+CD81+ pDCs were reported previously 
to differ from CD5−CD81− pDCs with attenuated type-I IFN responses 
and more potent regulatory T (Treg) cell induction9. CD5+ DCs have since 
been shown to differ from classical pDCs and are termed AXL+SIGLEC6+ 
DCs (AS-DC)10, transitional DCs (tDCs)11 or pre-DCs12. To study pre-DCs 
during GAHT, we gated these manually (Extended Data Fig. 2b)12 and 
found no change in abundance during testosterone therapy in vivo 
(Fig. 2f).

Webb et al. previously reported lower frequencies of IFNα-producing 
pDCs upon TLR7/8 stimulation in transgender birth females as com-
pared with postpubertal cisgender females13. To directly compare 
pDC functional responses before and after testosterone treatment 
in transgender birth female participants, we stimulated peripheral 
blood mononuclear cells (PBMCs) from baseline and after 3 months 
of testosterone by R848 (TLR7/8) and analysed individual pDCs by 
single-cell RNA sequencing (scRNA-seq). We verified pDC classifica-
tion without pre-DC inclusion (Extended Data Fig. 3a)10 and found 
interferon-stimulated genes (ISGs), ISG20, PAPR14, SP110 and MX1 
(counts) to be less induced after 3 months of testosterone as com-
pared with baseline (Fig. 2g). This corroborates a recent report of pDC 
responses in six trans men14. When investigating blood transcriptional 
modules (BTM) and hallmark gene pathways in these R848-stimulated 
pDC before and during testosterone, BTM S5 (DC surface signature) was 
induced, while the Hallmark IFNα gene set and the related M127 IFN-I 
response, were attenuated significantly (Fig. 2h). We also investigated 
IFN-I protein secretion and found plasma pan-IFNα concentrations 
stable (Extended Data Fig. 3b), while pan-IFNα and IFNb concentrations 
secreted upon R848 stimulation trended lower in PBMC cultures stimu-
lated ex vivo with samples collected after 3 months of testosterone 
therapy as compared with baseline (Fig. 2i). We conclude that pDCs 
contract in vivo and adapt phenotypically and functionally, leading to 
attenuated IFN-I responses during testosterone therapy.

Regulators of IFN-I responses in pDCs
IRF7 is a master regulator of IFN-I responses in pDCs15 and individu-
als with loss of function mutations in IRF7 fail to control respiratory 
viruses such as influenza16 and SARS-CoV-2 (ref. 17). We found IRF7 
mRNA downregulated in pDCs following testosterone therapy, and 
IRF7 expression correlated with Hallmark IFNα transcripts in individual 
pDCs stimulated with R848 (Fig. 2j). The suppressor of cytokine (SOCS) 
family of regulators are triggered by JAK-STAT signalling downstream 
of several cytokine receptors, providing negative feedback regula-
tion. SOCS3 dampens IFN-I responses during flu infection18 and we 
found SOCS3 (Fig. 2k) and, to some extent, SOCS1 (Extended Data 
Fig. 3c,d), upregulated in pDCs during in vivo testosterone therapy 
and inversely correlated with Hallmark IFNα and IRF7 following R848 
stimulation (Extended Data Fig. 3e). These results offer further insights 
to testosterone-mediated attenuation of IFN-I responses in pDCs.

Monocyte adaptation to testosterone therapy
Monocytes were also analysed by scRNA-seq following R848 stimula-
tion, showing attenuated Hallmark IFNα responses after 3 months of 
testosterone therapy (Fig. 3a). In contrast, Hallmark TNF responses 
upon R848 stimulation were potentiated in monocytes by testosterone 
therapy, indicating that the cross-regulation between IFN-I and TNF 
responses in blood mRNA-seq, is manifested in individual monocytes 
(Fig. 3a). Stimulation with lipopolysaccharide (LPS) for 3 h showed 
further potentiated monocyte TNF responses by testosterone therapy 
(Fig. 3b). Top genes involved in the Hallmark TNF response include IL-1, 
IL-6 and TNF but also NFκB pathway member NFKB1 were all induced 
more strongly by LPS stimulation after 3 months of testosterone in 

vivo (Fig. 3c). TNF family proteins such as TNF, RANKL, TNFSFR9 and 
TRAIL were elevated in plasma during testosterone therapy (Fig. 3d 
and Extended Data Fig. 4a). We treated blood from a healthy cisgender 
female participant with testosterone with or without the androgen 
receptor (AR) inhibitor enzalutamide and found RANKL was induced 
after 28 h in an AR-dependent manner (Extended Data Fig.  4b).  
We conclude that, in contrast to attenuated IFN-I responses by pDCs 
and monocytes, Hallmark TNF responses are potentiated during 
testosterone treatment, further underscoring the cross-regulation 
of IFN-I and TNF regulated by sex hormones. These findings are 
important for understanding immunological consequences of mas-
culinizing GAHT in trans men, but perturbations to this regulatory 
axis can also explain cytokine storms and excess mortality in cis 
male patients over female patients with COVID-19 and other severe  
infections.

SLAMF7 is induced by testosterone
A recently described surface receptor, SLAMF7, potentiates TNF 
responses through an autocrine loop in myeloid cells19. We found 
SLAMF7 upregulation in T cells and monocytes during testosterone 
therapy. Pretreatment of blood cells from a cisgender female partici-
pant with dihydrotestosterone (DHT)—a form of testosterone not con-
vertible to oestradiol by aromatase—followed by LPS stimulation for 3 h, 
induced TNF production in monocytes at amounts (mean fluorescence 
intensity) that correlated with SLAMF7 expression (Extended Data 
Fig. 4c). scRNA-seq of monocytes from individuals undergoing GAHT 
and stimulated with LPS for 3 h ex vivo showed Hallmark TNF responses 
consistently more potent in SLAMF7+ than in SLAMF7− monocytes, 
although both of these fractions were further enhanced by testosterone 
therapy (Fig. 3e). SLAMF7 is induced by IFNγ19 and we found one of its 
receptor genes, IFNGR2, upregulated in monocytes after testosterone 
treatment (Fig. 3f). These findings indicate that SLAMF7 upregula-
tion could contribute to testosterone-mediated potentiation of TNF 
responses in monocytes.

Relative effects of androgens and oestrogens
GAHT in individuals assigned female sex at birth decreases oestradiol 
concentrations rapidly and halts menstrual cycles. To investigate the rel-
ative contribution of increased testosterone and suppressed oestradiol 
on immune cell responses, we collected blood from 11 cisgender female 
participants of reproductive age and pretreated blood samples with 
testosterone, with and without the AR inhibitor enzalutamide as a con-
trol. Furthermore, as an alternative condition, we pretreated cells from 
the same donors with fulvestrant—a degrader of oestradiol-receptors 
(ESR) 1/2 (ESR1/2) to mimic the loss of ESR-mediated signals. We veri-
fied the expected hormone concentrations in each culture (Extended 
Data Fig. 4d). After 20 h of pretreatment, we stimulated cultures with 
LPS or R848 (3 h) and induced n = 560 mRNA transcripts (Fig. 3g). 
NFKB1 is a canonical LPS-induced gene, potentiated during GAHT, and 
also potentiated by 20 h pretreatment with DHT, but not Fulvestrant 
(Fig. 3h). AR inhibition prevented the effect, indicating a direct role 
of androgen signalling in potentiating NFKB1 upon LPS stimulation 
(Fig. 3h). Other Hallmark TNF pathway genes (IL-6, TNF and IL1B) were 
not induced significantly by either DHT or fulvestrant, indicating that 
further mechanisms or more time is required to mimic their induction 
in vivo (Extended Data Fig. 4e–g). SLAMF7 upregulation after LPS was 
stronger in either DHT- or Fulvestrant-pretreated cells, indicating a 
balance between androgens and oestrogens regulating this factor 
(Fig. 3i). Similarly STAT3 is an LPS response gene induced by either 
DHT or Fulvestrant, and this effect was visible even in unstimulated 
cultures without LPS (Extended Data Fig. 4h).

Negative regulators of IFN-I responses—SOCS1 and SOCS3—were 
upregulated by DHT pretreatment in an AR-dependent manner, but 
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Fig. 3 | Monocyte responses following testosterone treatment. a, Median 
sum gene counts compared by two-sided, independent samples Student’s 
t-test, Bonferroni corrected P values for the indicated BTM in R848-stimulated 
(3 h) monocytes from baseline (n = 466) and after 3 months of testosterone 
(n = 851) treatment across two independent experiments. b, Median sum  
gene counts compared by two-sided, independent samples Student’s t-test 
with Bonferroni corrected P values for the indicated BTMs in LPS-stimulated 
(3 h) monocytes at baseline (n = 1,297) and 3 months (n = 1,050) from two 
independent experiments. c, log-transformed counts from sc-mRNA-seq of 
LPS-stimulated monocytes as in b after subtracting median expression of 
unstimulated cells at baseline (n = 1,297; grey) and 3 months (n = 1,050; orange) 
across two independent experiments. Twelve genes in the Hallmark TNF 
pathway are shown. d, Analysis of plasma proteins (Olink Target 96 inflammation 
and immune response panels) in samples from n = 20 participants at baseline 
and 3 months of testosterone in a single experiment. Black dots significantly 

different at 12 months over baseline (P < 0.05) by Kruskal–Wallis tests.  
e, sc-mRNA-seq and Hallmark TNF responses upon LPS stimulation (3 h) in 
SLAMF7 high versus low monocytes as in b. Fraction of SLAMF7+ monocytes  
at baseline (n = 1,297) and after 3 months of testosterone (n = 1,050) shown  
on top. Two-sided, independent samples and uncorrected Student’s t-test; 
***P < 0.001. f, The log2 (fold change, 3 months versus baseline) gene counts  
for IFNGR1, IFNGR2 and SLAMF7 mRNA in monocytes (baseline, n = 1,297 and 
3 months, n = 1,050). g, Blood from 11 healthy cis female participants incubated 
for 20 h with DHT with/without AR inhibitor (Enzalutamide) or ESR inhibitor/
degrader (Fulvestrant) and then stimulated (3 h) by LPS or R848 and analysed 
for induced mRNA (n = 560) by Nanostring nCounter. h–k, z-score transformed 
mRNA counts of LPS-induced NFKB1 (h), SLAMF7 (i), R848-induced SOCS1  
( j) and SOCS3 (k). One-sided, paired measurements, uncorrected Student’s 
t-tests, *P < 0.05; **P < 0.01; ***P < 0.001.
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not by ESR inhibition (Fulvestrant) (Fig. 3j,k), verifying the direct effect 
of androgen signalling in suppressing IFN-I through these negative 
regulators in vivo during GAHT and in vitro.

T cell adaptation during GAHT
CD4/CD8 T cell ratios were higher in female in than male participants20,21 
but no decrease occurred during testosterone treatment (Extended 
Data Fig. 5a), indicating that genetic factors rather than steroids are 
responsible for this. In 1889, Calzolari reported enlarged thymi in cas-
trated male rabbits22 and many subsequent studies confirmed this 
inhibitory effect on thymic output in mice23 and humans24 through 
AR-expressing thymic epithelial cells25. In our cohort, a slight reduc-
tion in naïve CD8+ T, but not CD4+ T cell proportions was seen after 
12 months of testosterone treatment (Extended Data Fig. 5b,c). Treg 
cells are more abundant in postpubertal male participants than in 
age-matched female participants26 but, during GAHT, frequencies were 
stable over 12 months (Extended Data Fig. 5d). Sex differences in CD4+ 
T cell polarization have been reported27, but in our sc-mRNA-seq data, 
no difference in TH1, TH2 or TH17 marker genes occurred during testos-
terone therapy (Extended Data Fig. 5e–g). T cell exhaustion in patients 
and mice with cancer has been linked to androgen signalling28–30. We 
found increased expression of a T cell exhaustion gene module in 
CD8+ T cells dominated by TIGIT mRNA upregulation (Extended Data 
Fig. 5h). These findings illustrate how specific immune system com-
ponents, reportedly divergent between male and female participants, 

are regulated by chromosomal differences, whereas others change 
dynamically in response to changing sex hormones.

Epigenetic induction of the NFκB pathway
As testosterone modulated monocyte function strongly during mas-
culinizing GAHT, we performed NicheNet analyses to infer down-
stream consequences on other immune cell populations. We found 
monocyte-derived IL-6, TNF and IL-15 were upregulated by testosterone, 
and monocyte-released IL-12B as candidate genes to best explain sev-
eral upregulated transcripts measured in NK and CD8+ T cells during 
GAHT (Fig. 4a). The IFN-I regulator SOCS1 and the transcription factor 
(TF) RUNX3—important for maintaining cytotoxic function of CD8+ 
T cells31—can be explained by increased monocyte-derived IL-12B and 
IL-15. In NK cells, induced transcripts associated with cytotoxic function 
(GZMB, PRF1 and NKG7) were also explained by upregulated IL-15 and 
IL-12B (Fig. 4a). Furthermore, upregulated IFNγ mRNA in NK cells was 
predicted as a downstream consequence of monocyte-derived IL-6, 
IL-15, IL-12B and TNF (Fig. 4a).

To investigate whether testosterone therapy would induce epigenetic 
adaptations in individual immune cells, we performed single-cell ATAC 
sequencing (sc-ATAC-seq) of (n = 12,773) PBMCs from three participants 
sampled at baseline and after 3 and 12 months of testosterone treatment 
(Fig. 4b). Given the altered IFN-I/TNF cross-regulation, we focussed on 
chromatin accessibility changes at JAK-STAT, AP-1, NFκB and MAPK TF 
binding sites. We found increased TF activity for all canonical NFκB 
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b, Blood T cells analysed for TF binding site chromatin accessibility as log-fold 
enrichment at 12 months versus baseline for a given TF with indicated cell 
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marker genes. Adjusted P values: *P < 0.05, **P < 0.01, ***P < 0.001. c–e, PBMCs 

obtained at baseline or after 3 months of testosterone treatment were 
simulated with PMA/ionomycin for 4 h in vitro and intracellular IFNγ 
production in NK cells (c), CD8+ T cells (d) and CD4+ T cells (e) was analysed 
using flow cytometry. Numbers indicate percentage IFNγ+ cells. f, Expression 
of IL12RB1 and IL12RB2 mRNA in NK cells at baseline and after 3 months of 
in vivo testosterone treatment by sc-mRNA-seq. Two-sided, independent 
samples and uncorrected Student’s t-test; ***P < 0.001. g, Blood from one 
healthy cisgender female participant was incubated for 20 h with DHT with/
without Enzalutamide or Fulvestrant followed by stimulation with PMA/
ionomycin for 4 h, staining for intracellular cytokines and analysis by mass 
cytometry. Manually gated NK cells are shown and the fraction of IFNγ+ cells 
was determined on the basis of staining controls as indicated.
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binding sites, but not RELB (non-canonical NFκB) in T cells and NK cells, 
but not in B cells or myeloid/DCs following 12 months of testosterone 
treatment (Fig. 4b). No significant changes were observed for STAT1, 
STAT2, STAT3, AP-1 (Fig. 4b) or MAPK binding sites (data not shown), 
indicating that the canonical NFκB pathway is induced epigenetically in 
T/NK cells following testosterone treatment, possibly as a consequence 
of elevated TNF responses by myeloid cells, with broad functional impli-
cations for T/NK cell function and proliferation32.

Potentiation of IFNγ responses by NK
To further assess functional consequences of GAHT on lymphocytes, 
we stimulated PBMCs at baseline and following 3 months treatment 
with phorbol 12-myristate 13-acetate (PMA)/ionomycin and assessed 
intracellular IFNγ responses by flow cytometry. We found stronger 
IFNγ responses in NK cells following 3 months of testosterone treat-
ment (Fig. 4c), whereas CD8+ (Fig. 4d) and CD4+ T cell responses were 
unchanged (Fig. 4e). IL12RB1 and IL12RB2 mRNA in individual NK cells 
were induced during GAHT. Collectively, these findings support the 
view that NK cell function is potentiated during GAHT as a consequence 
of induced IL-12 responses by monocytes following testosterone treat-
ment (Fig. 4f).

We also aimed to distinguish relative effects of added testosterone 
through AR-signalling from the loss of oestradiol-mediated signals 
during GAHT. To this end, blood from five healthy cisgender female 
participants was preincubated with DHT, DHT + AR inhibitor (enzalu-
tamide) or ESR inhibitor (fulvestrant) alone (20 h), before stimulation 
with PMA/ionomycin (4 h) (Fig. 4g). Intracellular IFNγ was measured 
by mass cytometry and we found that pretreatment with DHT, but 
not loss of ESR signalling (fulvestrant), potentiated IFNγ responses 
by CD56dim NK cells, but not T cells (Fig. 4g and Extended Data Fig. 5i). 
These findings indicate a loop of potentiated IFNγ responses by NK cells 
and IFNγ-mediated upregulation of SLAMF7 on monocytes associated 
with potentiated TNF responses, triggering epigenetic activation of 
NFκB-regulated genes in T/NK cells and further enhancing IFNγ pro-
duction by NK cells during testosterone therapy.

Corroborating findings in cisgender cohorts
To investigate whether observations made in individuals undergoing 
masculinizing GAHT could also explain divergent immune responses 
in cisgender individuals, we analysed several sc-mRNA-seq datasets of 
immune cells from male and female participants (Fig. 5a). SARS-CoV-2 
triggers sex-divergent immune responses and we found cross-regulated 
IFN-I and TNF responses in pDCs and monocytes, as shown by sig-
nificantly higher Hallmark TNF responses in male monocytes and 
reduced IFN-I responses in two cohorts of adults less than 50 years 
of age (Fig. 5b,c)33,34. In a separate sc-mRNA-seq dataset35 of PBMCs 
from healthy volunteers stimulated in vitro with Candida albicans 
or Mycobacterium tuberculosis (mTB), greater IFN-I responses were 
seen in female pDCs and monocytes, while Hallmark TNF responses 
were higher in male monocytes (Fig. 5d), further supporting sex 
hormone-mediated regulation of the IFN-I/TNF axis as an explana-
tion for divergent responses by cis male and female participants across 
several cohorts.

Using the same dataset35, we found higher frequencies of SLAMF7+ 
monocytes in male participants (Fig. 5e), and these SLAMF7+ monocytes 
produced stronger Hallmark TNF responses following mTB stimulation 
as compared with SLAMF7− monocytes, indicating that this feature 
described during masculinizing GAHT also contributes to sex-divergent 
responses in cisgender individuals (Fig. 5f). In PBMCs stimulated with 
mTB, sex-divergent NK cells responses were also found. After 3 h of 
mTB stimulation, the IFNγ mRNA response was stronger in female NK 
cells, probably reflecting differences in sensing mechanisms and initial 
IFN-I/II responses in female cells (Fig. 5g). In contrast, after 24 h of mTB 

in vitro, secondary signals, such as monocyte-derived IL-6, TNF, IL-15 
and IL-12B, are likely to influence, and in this case female NK cells have 
markedly reduced IFNγ mRNA, whereas male NK cells sustain a high 
IFNγ response transcriptionally (Fig. 5h). This difference in response 
dynamics points towards cell–cell interactions and regulatory mecha-
nisms divergent between sexes and corroborate our predictions from 
individuals undergoing GAHT. Testosterone-mediated potentiation of a 
monocyte–NK cell axis resulting in upregulated TNF and IFNγ can offer 
explanations for previously reported sex differences in mTB disease 
course36. Collectively, our results highlight previously unrecognized 
immunomodulatory effects of sex hormones in humans, calibrating 
an IFN-I/TNF axis across several immune cell populations with implica-
tions for understanding sex-divergent immune responses to infections, 
vaccines and autoantigens in immune-mediated diseases.

Discussion
Sex hormones, in contrast to sex chromosomes, offer an opportunity 
for dynamic regulation of the human immune system in relation to 
changing needs over the course of life, and even during the course of 
the menstrual cycle in women of reproductive age. Sex chromosomes 
on the other hand, encode immunological differences between male 
and female individuals selected for throughout evolution37. The inac-
tive X and active Y chromosomes can broadly modulate autosomal 
gene expression8, and gain-of-function mutations in the X-encoded 
gene TLR7 can trigger monogenic lupus-like disease with elevated 
IFN-I responses38.

GAHT enables the acquisition of secondary sex characteristics 
aligned with gender identity in transgender individuals but the immu-
nological impacts and risks of immune-mediated and infectious dis-
eases upon sex hormone therapy is unknown. Here we describe several 
layers of immunological adaptations in trans men, assigned female 
sex at birth and undergoing masculinizing testosterone treatment.

We find that testosterone increase and the resulting oestradiol sup-
pression, alters a cross-regulation axis involving IFN-I and TNF. Similar 
cross-regulation has been described in vitro39 and in vivo in healthy 
volunteers40, and in patients with female-dominated autoimmune 
lupus41, but its regulation by sex hormones is not previously known. 
Curiously, around 15% of patients treated with anti-TNF develop a 
lupus-like syndrome with autoantibodies against double-stranded 
RNA and elevated IFN-induced gene signatures42. Detailed studies of 
IFN-I and TNF cross-regulation have been performed in osteoclasts 
and show that TNF, RANKL and CSF1 induce NFκB-regulated genes, 
while inhibiting IFN-I (ref. 43). Conversely, IFN-I signalling through 
IFNAR1 limits this NFκB and AP-1 activation43. During GAHT, we find 
that plasma RANKL, CSF1 and TNF are all induced, NFκB TF binding 
sites exhibit more chromatin accessibility and Hallmark TNF responses 
are enhanced in an AR-dependent manner, indicating that IFN-I/TNF 
cross-regulation occurs at the system level and is calibrated by sex 
hormones in vivo.

The question arises as to whether observed changes are associ-
ated directly with testosterone treatment or occur indirectly due 
to reduced oestradiol signals. To test this question, we designed an 
in vitro system in which blood from 11 cis female donors was pre-
treated with either DHT (in the presence or absence of the AR inhibitor 
enzalutamide) or the ESR inhibitor fulvestrant only. Results showed 
that NFκB-mediated responses to LPS stimulation were potentiated 
by DHT alone through AR and not by loss of ESR-mediated signals. 
Inhibitors of IFN-I responses—SOCS1 and SOCS3—were also induced by 
DHT alone, indicating direct effects of androgens in suppressing IFN-I 
responses. It is conceivable that loss of oestradiol-mediated signals can 
also contribute to attenuated IFN-I responses through other mecha-
nisms not investigated herein. In support of this, Seillet et al previously 
showed that oestradiol supplementation potentiates IFNα responses 
in postmenopausal women44 and Griesbeck et al. reported that ESR 
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signalling in mice potentiates IFNα responses in pDCs through IRF5 
induction45. A case of a trans woman developing lupus during oestradiol 
therapy46 points towards direct potentiating effects of oestradiol on  
IFN-I responses.

Male patients are at increased risk of severe disease following 
SARS-CoV-2 infection due to less efficient IFN-I responses and exces-
sive inflammation mediated by IL-6, IFNγ, TNF and IL-1/18 (ref. 1). This 
could be explained in part by the testosterone-mediated potentiation 
of proinflammatory responses through IFNγ, SLAMF7 and TNF reported 
herein. Female patients with polycystic ovary syndrome have elevated 
testosterone concentrations, elevated plasma TNF47 and are at greater 
risk of severe COVID-19 as compared with age-matched female control 
participants without polycystic ovary syndrome48. Not much is known 
about the severity of SARS-CoV-2 infections in individuals undergoing 
GAHT but one single-centre study found higher rates of symptomatic 
COVID-19 in trans men on testosterone therapy as compared with trans 

women on oestradiol49. Whether this reflects immune response differ-
ences and more symptomatic disease or differences in risks of con-
tracting the virus through modulated ACE2 and or TMPRS2 expression 
remains to be determined.

Recent developments in immune-oncology have shown important 
roles for AR signalling in regulating T cell responses to tumours and 
limiting the efficacy of checkpoint blockade through T cell exhaus-
tion28–30. We find upregulation of TIGIT—a marker of T cell exhaustion 
during masculinizing GAHT—in vivo, but we also find induction of 
TNF responses and IFNγ responses by NK cells, which seems at odds 
with reported impairments of TH1 responses in male prostate can-
cer patients. However, analyses of chronic infection models (human 
immunodeficiency virus or lymphocytic choriomeningitis virus) have 
indicated TNF signalling in T cells as another important regulator of 
T cell exhaustion during chronic antigen stimulation50. It is tempting 
to speculate that the testosterone-driven induction of TNF described 
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infected with SARS-CoV-2 selected for pDCs (n = 144 (male, 103; female, 41))  
and monocytes (n = 33,887 (male, 18,262; female, 15,625)) and gene count sum 
for the indicated BTM. Two-sided, independent samples and uncorrected 
Student’s t-test: *P < 0.05; **P < 0.01; ***P < 0.001. c, PBMC data from SARS-CoV-2 
infected patients analysed by sc-mRNA-seq and divided into pDCs (n = 21  
(male, 10; female,11)) and monocytes (n = 4,521 (male, 2,672; female, 1,849)). 
Two-sided, independent samples and uncorrected Student’s t-test: *P < 0.05; 
**P < 0.01; ***P < 0.001. d, PBMCs from healthy male and female participants 
stimulated in vitro (3 h) and analysed by sc-mRNA-seq. pDCs (n = 262 (male, 162; 

female, 100)) were selected from cells stimulated with C. albicans, and 
monocytes (n = 12,961 (male, 6,652; female, 6,309)) were selected from cells 
stimulated with mTB. Two-sided, independent samples and uncorrected 
Student’s t-test: *P < 0.05; **P < 0.01; ***P < 0.001. e,f, Monocytes in d subdivided 
according to SLAMF7 expression (e), and Hallmark TNF gene count following 
mTB stimulation in vitro for SLAMF7+ and SLAMF7− monocytes (f). Two-sided, 
independent samples and uncorrected Student’s t-test: *P < 0.05; **P < 0.01; 
***P < 0.001. g,h, Single NK cell transcriptome analyses following in vitro 
exposure to mTB for 3 h (g) and 24 h (h) and mean mRNA count for IFNγ are 
shown. Two-sided, independent samples and uncorrected Student’s t-test: 
*P < 0.05; **P < 0.01; ***P < 0.001.
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herein could be another driver of T cell exhaustion in cancer patients 
and a possible target for combination therapies in the future.

The main drawback of this study is the limited cohort size and the 
challenges in studying mechanisms of hormone-induced changes in 
human participants. Studies of model organisms are warranted to 
clarify mechanisms in vivo but, unlike higher order primates, labora-
tory mice do not menstruate51 and also differ in their sex hormone 
regulation, affecting trade-off mechanisms in relation to changing 
needs. Performing in vitro experiments using human cells as described 
herein offers some mechanistic understanding but is limited in that 
such experiments are disconnected from physiological mechanisms 
of regulation in vivo through the nervous system or other endocrine 
pathways of importance.

Another challenge in human studies is separating the direct effects 
of gonadal steroids on a particular cell type from secondary effects 
mediated through cell–cell communication in vivo. Expression of the 
AR varies across cell populations, with maximal protein amounts found 
in pDCs followed by monocytes, while lymphocyte populations express 
lower amounts of AR protein (Extended Data Fig. 6a). The two ESRs 
show variable expression across immune cell types but highest protein 
expression in pDCs (Extended Data Fig. 6b). Analyses of mRNA from cell 
populations derived from fluorescence-activated cell sorting (FACS) 
show a similar pattern, with highest expression in pDCs in both male 
and female cells (Extended Data Fig. 6c) and varied AR/ESR expression 
amounts across cell types, which offers another layer of complexity to 
the regulation of immunity by these hormones.

Life history theory provides a framework for understanding alloca-
tion of limited resources between critical traits such as reproduction, 
growth and maintenance, in which immunity is a key component52. 
Male investment into reproduction is much lower than that of females, 
and males allocate more resources into muscle growth and immune 
function and testosterone is a key regulator of such resource allo-
cation in vertebrates53. Metcalf and Graham modelled trade-offs 
between sex-divergent recognition of pathogens (female superior) 
and pathogen-killing processes (male superior) and found that sexual 
maturation and changes in reproductive investments during the life 
course explains these observed divergent immune processes54. Our 
results corroborate this and adds mechanisms of hormone-mediated 
regulation of immunity in response to changing needs during the life 
course.

Evolutionary pressures from pathogens have shaped human immune 
systems and the risk of vertical transmission is a selective pressure 
unique to pregnant females55. It is thus tempting to speculate that 
potentiated IFN-I induced by elevated oestradiol amounts in pregnancy 
is selectively favoured to limit such vertical transmission of viruses. 
This also corroborates clinical observations of increased lupus flares 
mediated by IFN-I during pregnancy56. TNF is critical for the defence 
against Mycobacteria, Staphylococci and other common bacteria, but 
elevated TNF is also associated with failure of implantation57, pregnancy 
loss58 and preeclampsia59. Evolutionary pressures to suppress TNF 
while potentiating IFN-I during the second half of the menstrual cycle 
and following implantation in pregnant people could increase the 
likelihood of reproductive success. Conversely, in male individuals, 
we speculate that increased investment into muscular growth could 
explain testosterone-mediated potentiation of TNF and suppression 
of IFN-I. Testosterone is induced following acute exercise and tran-
sient TNF responses by tissue macrophages is important for muscle 
regeneration and growth56. Chronically elevated TNF leads to muscle 
wasting. IFN-I directly inhibits myoblasts, leading to muscle weakening 
and wasting as seen in patients with autoimmune dermatomyositis60. 
To this end, it is conceivable that hormone control of the TNF/IFN-I 
axis reflects these different investments in reproduction and muscle 
growth, respectively, as predicted by life history theory.

Understanding the mechanisms by which gonadal steroids modulate 
immunity in individuals undergoing masculinizing GAHT are important 

to ensure the health and wellbeing of trans men and avoid long-term 
adverse outcomes such as severe infection and inflammatory disor-
ders. These mechanisms can also help explain the divergent immune 
responses in cis men and women that are regulated dynamically by 
sex hormones in relation to ever changing needs during the human 
life course.
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Methods

Inclusion and ethics
Twenty-three adult individuals who were assigned female sex at birth 
and who were undergoing masculinizing gender-affirming treat-
ment were enroled at specialist centres for transgender medicine in 
Stockholm, Uppsala, Linköping and Umeå in Sweden between 2016 
and 2023. The study was approved by the Swedish Ethical Review 
Authority (2016/1422-31/1). Informed consent was obtained from all 
individuals. Only individuals who had not previously received testos-
terone treatment and who had normal sex hormone concentrations 
were included. Additionally, individuals with autoimmune diseases, 
immunodeficiencies or signs of continuing infection/inflammation 
were excluded from the study.

Testosterone therapy
Venous blood samples were collected at three timepoints: baseline, 
3 months and 12 months following testosterone injections (Testos-
terone Undecaonate, Nebido administered once every 12 weeks). All 
patients received 1,000 mg of Nebido except for four participants 
who received reduced doses of 750 mg due to low body mass indices 
or haematocrit values. The baseline sample was collected within the 
2 weeks before the start of testosterone treatment.

Measurement of serum sex hormones
Serum concentrations of sex hormones were analysed using liquid 
chromatography with tandem mass spectrometry assays at Gothenburg 
University as described previously61. The same method was used to 
analyse sex hormones from resulting culture supernatants as shown in 
Extended Data Fig. 4d. Briefly, calibrator stock solutions were prepared 
for all sex hormones and each internal standard stock solution was 
made separately using 13C3-labelled versions of each steroid, except for 
dehydroepiandrosterone, which was labelled with d6. Steroid hormones 
were analysed using a two-dimensional liquid chromatography system 
consisting of an Acquity ultra-performance liquid chromatography 
system and a TQ-XS triple quadrupole mass spectrometer from Waters. 
The lower limit of detection (LLOD) was defined as the lowest peak with 
a signal more than three times the noise level. The lower limit of quantifi-
cation (LLOQ) was defined as the lowest peak that was reproducible with 
a coefficient of variation of less than 20% and an accuracy of 80% to 120%. 
To circumvent problems with endogenous steroid amounts, the deter-
minations of LLOD and LLOQ were performed in human serum pools 
with isotope-labelled steroids spiked at four different concentrations.

The amounts of bioavailable testosterone were calculated according 
to the formulae below62:

r r r rBioavailable testosterone = ( × 0.5 − ) × /3 4 5 6

r = (1 + rKb, ALB × P − ALB + rKb, SHBG × (S − SHBG − S − TEST)) × 21

r = 4 × rKb, SHBG × (1 + rKb, ALB × P − ALB) × ( − S − TEST)2

r = r − r3 1 2

r = (1 + (rKb, ALB × P − ALB) + rKb, SHBG × (S − SHBG − S − TEST))4

r = (1 + (rKb, ALB × P − ALB)5

r = 2 × rKb, SHBG × (1 + rKb, ALB × P − ALB)6

in which rKb,ALB is the binding constant (0.601) for testosterone 
(TEST) to albumin (ALB), rKb,SHBG is the binding constant (1.0) for 
testosterone to sex hormone-binding globulin (SHBG) and P − ALB is 
a fixed value of 42.

Sample processing
A 4 ml sample of blood was drawn in EDTA-containing sterile vacutainer 
tubes from each participant in the sex reassignment therapy cohort and 
prepared as follows: 0.5 ml of blood was mixed with an equal amount 
of whole blood stabilizer63 (Cytodelics AB), incubated for 10 min at 
ambient temperature and stored at −80 °C. A 1 ml aliquot of blood was 
mixed with PAXgene solution (BD Biosciences), incubated for 2 h at 
ambient temperature and stored at −80 °C. The remaining blood was 
centrifuged at 4 °C and 1,200g for 10 min, after which plasma was col-
lected and stored at −80 °C. The leftover blood after plasma removal 
was mixed equally with PBS and layered over Lymphoprep (STEMCELL 
Technologies) for PBMC isolation by density gradient centrifugation 
following the manufacturer’s protocol. Cells were washed, counted 
and cryopreserved in a solution of 90% FBS (Sigma-Aldrich) mixed 
with 10% dimethylsulfoxide (DMSO; Sigma-Aldrich), initially stored 
at −80 °C overnight and then transferred to −150 °C for future use.

Bulk RNA-seq of whole blood samples
To analyse changes in gene expression, we performed RNA-seq using 
RNA extracted from PAXgene blood samples. The RNA samples were 
prepared using a QIAcube with the PAXgene Blood RNA Kit (Qiagen). 
Before cDNA library preparation, the quality of the RNA was assessed 
by determining the RNA integrity number using the Agilent 2100 
Bioanalyzer with the RNA 6000 Pico Kit. The RNA concentration was 
measured using the Qubit Fluorometer with the Qubit dsDNA HS Kit 
(ThermoFisher Scientific).

For final sequencing and cDNA library preparation, an Advanta 
RNA-Seq XT NGS Library Preparation Kit was used with the Juno system 
(Standard BioTools Inc.). We performed Bulk RNA-seq on a NovaSeq 
6000 instrument using one flow cell SP-200 (Illumina) with paired-end 
reads and a read length 2 × 100.

Data analysis of bulk mRNA-seq data
Bulk RNA-seq results from 59 samples from 20 individuals undergoing 
testosterone treatment were preprocessed with Kallisto64. Quality 
control was provided by the National Genomics Infrastructure at Sci-
ence for Life Laboratory, Stockholm, Sweden. To generate abundance 
estimates for all samples, the Kallisto program (v.0.46.2) was used to 
quantify abundances of transcript sequences in FASTA format using the 
Ensembl transcriptome Homo_sapiens.GRCh38.cdna.all.index (https://
ftp.ensembl.org/pub/release-109/fasta/homo_sapiens/cdna/) for the 
Kallisto index. The Kallisto outputs were then imported into R using 
the tximport package, and the effect of ‘visit’ on whole blood mRNA 
expression was assessed using DESeq2 (ref. 65) while accounting for 
interindividual variability and age effects. Before assessing differential 
gene expression, genes with fewer than 100 reads across samples were 
filtered out, as well as genes that did not have a normalized count of ten 
in at least one-fourth of the samples. The results from the differential 
gene expression analysis were used for gene set enrichment analysis 
of Hallmark pathways using clusterProfiler66.

scRNA-seq experiments
Cryopreserved PBMCs obtained at baseline and after 3 months of 
testosterone treatment were thawed in thawing medium (RPMI 1640 
HyClone supplemented with 10% FBS, 1% penicillin-streptomycin 
and Benzonase-nuclease (Sigma-Aldrich)). Cells were counted using 
a Cellaca MX (Nexcelom), plated and incubated for 1 h at 37 °C and  
5% CO2 to rest. Samples were then either left untreated or stimulated 
ex vivo with LPS (100 ng ml−1) or R848 (1 μg ml−1) for 4 h. After stimula-
tion, the cells were collected, and supernatants were stored for later  
analysis by SIMOA (Quanterix)67.

Viability and cell counts were assessed after resuspending col-
lected cells in PBS with 0.04% BSA (ThermoFisher Scientific). The 
cells were then prepared for scRNA-seq using the 10x Genomics 3′ v.3.1  

https://ftp.ensembl.org/pub/release-109/fasta/homo_sapiens/cdna/
https://ftp.ensembl.org/pub/release-109/fasta/homo_sapiens/cdna/
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(dual index) kit according to the manufacturer’s instructions (catalogue 
no. CG000315 Rev B) on a Chromium Controller. Approximately 1 × 104 
cells from each condition were loaded onto separate wells of a 10x 
Genomics chip and the Chromium Controller was used to create GEM 
emulsions. The target recovery was 6,000–7,000 cells per condition. 
The libraries were sequenced on an Illumina NovaSeq 6000 platform, 
using paired- end reads (configuration 28 × 10 × 10 × 90) with 20,000 
reads per cell.

scRNA-seq data analyses
CellRanger with default parameters was used to process FASTQ-files 
and align sequencing reads from 10x Genomics 3′ HT v.3. and 3′ GE 
towards the human genome. Cells were further filtered using a bimodal 
distribution-based approach, excluding those with read counts below 
(considered low quality) or above (considered technical artifacts) 
cut-off thresholds. The cut-off thresholds for each sample were chosen 
on the basis of distribution shape of read counts to retain biologically 
relevant cells and to eliminate technical artifacts. Cells with mitochon-
drial gene expression above 10% were also filtered out. All scRNA-seq 
data were preprocessed in Python using Scanpy v.1.9.1. For each sample, 
normalization by counts per cell (target sum = 1 × 104) and feature scal-
ing were applied to the CellRanger outputs for each sample, followed 
by linear dimensionality reduction using PCA and uniform manifold 
approximation and projection (on top 2000 variable genes), nearest 
neighbours (n = 10) computation and identification of clusters (res = 1). 
Clusters were annotated on the basis of canonical marker genes. BTMs68 
were used to compare transcriptional patterns before and during tes-
tosterone treatment and in response to stimulation.

NicheNet analyses
The NicheNet analysis and circus plots were created following the 
standard workflow available from NicheNet69 and circlize70. Specifi-
cally, differentially expressed genes between samples from baseline 
and after 3 months of testosterone treatment were identified using 
Seurat’s (v.4.3.0) built in function FindMarkers and filtered with an 
adjusted P value of less than 0.05 and an absolute value for the aver-
age fold change of at least 0.15. Ligand activities were calculated, and 
the top upstream ligands that could explain the observed target gene 
expression changes were selected. The ligand–target links were filtered 
on the basis of their weights (strength of the ligand–target relation-
ship), with links belonging to the lowest 66% of scores being removed. 
The circos plot blocks were coloured according to a gene’s target cell, 
inferred as the cell type with the highest mean-value change between 
the two visits. The widths of the blocks indicate the potential of each 
receptor to be influenced by all shown ligands, with some interactions 
not visible due to the cut-off weight threshold. The transparency of the 
arrows indicates the regulatory potential of a ligand–target interaction 
(the more transparent, the weaker the regulatory potential).

sc-ATAC-seq and data analysis
sc-ATAC-seq experiments were conducted on the 10x Chromium plat-
form, following a previously described protocol71. Briefly, cells were 
washed with PBS containing 0.04% BSA and nuclei subjected to isolation 
as per the manufacturer’s instructions. After counting, approximately 
10,000 nuclei were used for tagmentation. The tagmented nuclei were 
then loaded for capture using the 10x Chromium controller. Following 
gel emulsion generation, we carried out linear amplification and DNA 
purification according to the manufacturer’s protocol. The resulting 
DNA was used for library construction, following the guidelines pro-
vided on the manufacturer’s website. The libraries were quantified 
using an Agilent Bioanalyzer and sequenced on an Illumina NovaSeq S4 
sequencer, with the following setup: 50 bp read 1N, 8 bp i7 index, 16 bp 
i5 index and 50 bp read 2N. In this setup, 1N and 2N refer to the DNA 
insert sequencing, while i5 and i7 sequencing identify the individual 
barcodes of single cells.

The 10X Genomics cellranger pipeline (cellranger-atac mkfastq, 
count and aggr) was followed for 10x sc-ATAC-seq analysis. Cellranger 
aggr outputs were used for downstream analysis in R using the Signac 
package. We performed quality control using Signac’s default settings 
for transcriptional start site enrichment score, nucleosome banding 
pattern, sequencing depth and complexity, and fraction of fragments 
in peaks. The ratio of reads in genomic blacklist regions was calculated 
using the FractionCountsInRegion function with the blacklist for hg38. 
After quality control, a total of 143,624 peaks (features) across 12,773 
cells remained for further analysis. The number of cells per sample 
varied between 636 and 4,632 for the eight total samples analysed. We 
applied frequency-inverse document frequency normalization, fol-
lowed by feature selection and dimensionality reduction using singular 
value decomposition on the frequency-inverse document frequency 
matrix. We performed uniform manifold approximation and projection 
dimensionality reduction72 on the first 30 latent semantic indexing 
components, with latent semantic indexing components capturing 
technical variation excluded from further analysis. K-nearest neigh-
bour graph construction and clustering were done using the smart 
local moving algorithm, resulting in the identification of 21 unique 
clusters. Gene activities were used for cluster annotation, with gene 
activities determined using the GeneActivity function followed by log 
normalization. Five main immune clusters were identified and used for 
further analyses. TF motif analysis was conducted by identifying over-
represented motifs in a set of differentially accessible peaks between 
pre- and post-testosterone therapy (3 or 12 months) for all the five 
immune subsets using hypergeometric tests and P values corrected 
for several hypotheses (Benjamini–Hochberg).

Immune cell profiling by mass cytometry
Blood samples were mixed with a stabilizer63 (Whole blood processing 
kit component; Cytodelics AB) within the first hour post blood-draw 
and cryopreserved according to the manufacturer’s recommenda-
tions. Samples were then thawed, fixed and lysed using Lysis and Wash 
buffers (Whole blood processing kit; Cytodelics AB). After fixation/
lysis, 1–2 × 106 cells per sample were plated and cryopreserved using 
CRYO#20 (Cytodelics). For staining, cells were thawed at 37 °C, bar-
coded using an automated liquid handling robotic system (Agilent 
Technologies)73 using the Cell-ID 20-plex Barcoding kit (Standard 
BioTools Inc.) as per the manufacturer’s recommendations and stained 
batch-wise after pooling. Cells were washed using cell staining buffer 
(CSB) (Standard BioTools Inc.), FcR blocked using an in-house-prepared 
blocking solution for 12 min at ambient temperature then stained using 
a cocktail of metal-conjugated antibodies targeting surface antigens 
(Broad extended panel) and incubated for 30 min at 4 °C. Cells were 
washed twice with CSB and fixed overnight using 2% formaldehyde 
in PBS (VWR international). The panel of antibodies used is listed in 
Supplementary Table 1.

For cells from whole blood pretreated and stimulated in vitro, we 
performed intracellular staining. Cells were first stained with a cocktail 
of antibodies targeting surface antigens (Supplementary Table 2) and 
then washed twice with CSB, fixed and permeabilized using Foxp3/
Transcription Factor Staining Buffer Set (ThermoFisher Scientific) 
according to the manufacturer’s instructions. Cells were then stained 
using a cocktail of metal-conjugated antibodies targeting intracellular 
antigens (Supplementary Table 3) and incubated for 1 h at ambient 
temperature. Cells were washed twice with CSB and fixed overnight 
using 2% formaldehyde in PBS.

For acquisition by CyTOF XT73, cells were stained with DNA interca-
lator (0.125 mM Iridium-191/-193 or MaxPar Intercalator-Ir (Standard 
BioTools Inc.) in 2% formaldehyde and incubated for 20 min at ambient 
temperature. Cells were washed twice with CSB followed by two washes 
with Maxpar Cell Acquisition Solution (CAS) Plus (Standard BioTools 
Inc.) before being filtered through a 35 mm nylon mesh, diluted to 
500,000 cells ml−1 using CAS Plus and divided into polypropylene 



tubes. A total of 2 × 106 cells per tube in pelleted form were then placed 
in the chilled carousel of the CyTOF XT instrument (Standard BioTools 
Inc.). EQ Six (EQ6) element calibration beads (Standard BioTools Inc.) 
were added to a tube and placed in the carousel. The autosampler of 
the CyTOF XT dispensed CAS Plus to the pelleted sample tubes, mixed 
with EQ beads 0.1×, and then acquired on CyTOF XT mass cytometers 
at a rate of 300–500 cells s−1 using CyTOF software v.8.0 with noise 
reduction, event length limits of 10–150 pushes, and a flow rate of 
0.030 ml min−1.

Mass cytometry antibodies and reagents
Purified antibodies were obtained in carrier/protein-free buffer and 
coupled to lanthanide metals using the MaxPar X8 or MCP9 antibody 
conjugation kits (Standard BioTools Inc.) as per the manufacturer’s 
recommendations. Metal-conjugated antibodies were also purchased 
from Standard BioTools. The antibodies used for this study are listed 
in Supplementary Tables 1–3.

Mass cytometry data analyses
Samples from participants undergoing sex reassignment therapy 
were processed through mass cytometry in four batches to investigate 
immune composition and phenotype. This involved analyzing.fcs files 
from 60 samples from 20 series of participants receiving testosterone 
treatment. Data analysis was conducted in R. The data were arcsin h 
transformed with a cofactor of five using the flowCore package. Beads 
and dead cells were filtered out. Batches were combined, and batch 
effects in marker expression were eliminated using the sva package. 
The resulting matrix was used for immune composition analysis with 
the FlowSOM package74.

Initially, 30 clusters were identified, neutrophil clusters were anno-
tated, and the remaining non-neutrophil cells were clustered into a 
total of 100 clusters. A total of 113 unique clusters were annotated on 
the basis of median marker expression using the pheatmap package. A 
total of 12,377,068 cells from the 60 samples of participants undergoing 
testosterone treatment were further analysed. This analysis included 
investigating immune phenotypes using PAGA75 (see below) and exam-
ining the effects of testosterone on immune cell composition using a 
mixed-effects model with the lme4 package. For linear mixed-effects 
models, the frequency of 35 immune subsets was modelled considering 
visit (baseline, 3 months and 12 months) and age as fixed effects, and 
participant ID as random effect. Significant visit effects were deter-
mined using a P value of 0.05 and a 5% FDR threshold, with beta coef-
ficients indicating the directionality of the effect.

Spectral flow cytometry analysis of AR and ESR expression
For ESRa staining, PBMCs were extracted from heparinized whole 
blood, as described above. One million live cells were aliquoted per 
test, washed twice in ice-cold PBS, and incubated with LIVE/DEAD 
Fixable Blue dye (ThermoFisher Scientific) for 10 min at 4 °C. PBMCs 
were then washed in ice-cold FACS buffer (2% FBS, 0.5 mM EDTA in 
PBS) and FcR blocked using an in-house-prepared solution for 10 min 
at ambient temperature. The Horizon Brilliant Stain Buffer Plus (BD 
Biosciences) and extracellular antibodies (Supplementary Table 4) 
were added, and cells were incubated for 30 min at 4 °C followed by 
fixation and permeabilization with Fixative buffer (Cytodelics AB) 
or Foxp3/Transcription Factor Staining Buffer Set (ThermoFisher 
Scientific) according to the manufacturer’s instructions. Cells were 
mixed with FcR block buffer and, after 10 min at room temperature, 
intracellular antibodies (Supplementary Table 4) were added, and the 
samples were incubated for 30 min at 4 °C. For AR staining, WBCs from 
heparinized whole blood were prepared using a Cytodelics kit, and 
1.5 million fixed-permeabilized cells was aliquoted per test and exposed 
to FcR block (BD Biosciences) for 30 min at 4 °C. Horizon Brilliant Stain 
Buffer Plus (BD Biosciences) and all-antibody cocktail (Supplementary 
Table 4) were added, and cells were incubated overnight at 4 °C. AR and 

ESRa antibody concentrations were established on the cell line MCF7 
(ATCC); the specificity of AR antibody was also verified using a competi-
tive displacement approach on MCF7 cells. Briefly, 60,000 cells were 
collected at passage two, fixed-permeabilized using Cytodelics kit, FcR 
blocked and stained as described for WBCs. Unconjugated antibodies 
and isotype controls information is present in Supplementary Table 4. 
After a wash in cold FACS buffer, data were acquired using an Aurora 
spectral cytometer (Cytek Biosciences). Cytobank Community (Beck-
man Coulter) software was used for data analysis.

PBMC stimulation and intracellular staining by spectral flow 
cytometry
Cryopreserved PBMCs obtained from individuals undergoing 
gender-affirming testosterone treatment were collected at baseline 
and after 3 months of testosterone treatment. These cells were thawed 
in thawing medium (RPMI 1640 HyClone supplemented with 10% FBS, 
1% penicillin-streptomycin and Benzonase-nuclease (Sigma-Aldrich).

The cells were then counted using a Cellaca MX (Nexcelom), plated 
and incubated for 1 h at 37 °C and 5% CO2 to rest. After this, some sam-
ples were left untreated while others were stimulated ex vivo with PMA 
(50 ng ml−1) and Ionomycin (1 μg ml−1) for 4 h. Brefeldin A (5 μg ml−1) 
and Monensin (2 μg ml−1) were added during the last 3 h of stimulation.

Following stimulation, the cells were washed twice in ice-cold PBS 
and then incubated with LIVE/DEAD Fixable Blue dye for 10 min at 4 °C. 
The cells were then washed in ice-cold FACS buffer and FcR blocked 
using blocking solution prepared in-house for 10 min at ambient tem-
perature.

Horizon Brilliant Stain Buffer Plus was added, and the cells were 
stained with a cocktail of fluorochrome conjugated antibodies target-
ing surface antigens for 30 min at 4 °C (Supplementary Table 4). The 
cells were then fixed using Fix, Lysis and Wash buffers (Whole blood 
processing kit; Cytodelics AB) and permeabilized using permeabiliza-
tion buffer (ThermoFisher Scientific).

Next, the cells were stained with a cocktail of antibodies targeting 
intracellular antigens (Supplementary Table 4) for 30 min at 4 °C and 
then acquired using an Aurora spectral cytometer.

Plasma protein profiling by Olink
Plasma protein data was generated using the Olink assay, a proxim-
ity extension assay (Olink AB)76. Plasma (20 μl) from each sample was 
thawed and analysed using a Target Inflammation panel (Olink AB), 
at the Affinity Proteomics Stockholm, Science for Life Laboratory or 
Olink AB. In these assays, plasma proteins are dually recognized by 
pairs of antibodies coupled to a cDNA-strand that ligates when brought 
into proximity by its target, extended by a polymerase and detected 
using a Biomark HD 96.96 dynamic PCR array (Standard BioTools Inc.). 
Analyses of differentially abundant plasma proteins were performed 
using linear mixed-effects models considering age as fixed effects.

Whole blood pretreatment in vitro using testosterone and AR 
antagonist for Olink analysis
A blood sample obtained from a healthy female donor was mixed 
in equal ratio with WB-STIM buffer (Cytodelics AB) without phenol 
red. The sample was then split into three groups: untreated, treated 
with testosterone (Sigma-Aldrich) alone at 10 ng ml−1, or treated with 
a combination of testosterone and the AR antagonist Enzalutamide 
(Sigma-Aldrich) at 2.3 μg ml−1. All samples were incubated for 28 h at 
37 °C and 5% CO2. After incubation, supernatants were collected, cryo-
preserved and later analysed using the Olink Target Inflammation panel 
(Olink AB) as described above.

Whole blood pretreatment and stimulation in vitro for 
Nanostring and mass cytometry analysis
For the in vitro pretreatment step, blood samples were mixed in 
equal ratio with WB-STIM buffer (Cytodelics AB) without phenol red 
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and split as follows: untreated, treated with DHT (Sigma-Aldrich) 
alone at 10 ng ml−1, treated with DHT combined with Enzalutamide 
(Sigma-Aldrich) at 2.3 μg ml−1 or treated with fulvestrant (Sigma-Aldrich) 
alone at 100 nM. Samples were incubated for 20 h at 37 °C and 5% CO2. 
DHT was chosen because this androgen cannot be converted to oestra-
diol by aromatase77. Fulvestrant is a degrader of the ESR and blocks 
oestradiol-mediated signalling78.

For Nanostring analyses, blood samples from healthy cisgender 
female donors (n = 11) were pretreated and then immediately stimulated 
with either LPS (10 ng ml−1) or R848 (1 μM) for 3 h or left unstimulated as 
a control. Samples were then centrifuged at 4 °C and 1,200g for 10 min 
and supernatants were collected, cryopreserved and analysed using 
SIMOA. The remaining 1 ml of blood was mixed with PAXgene solu-
tion (BD Biosciences), incubated for 2 h at ambient temperature and 
stored at −80 °C. RNA samples were prepared using a QIAcube with the 
PAXgene blood RNA kit (Qiagen) and analysed using the Nanostring 
nCounter Sprint Profiler system with a broad human immune response 
panel (Human Immunology v.2 Gene Expression CodeSet) as described 
previously6. For each sample, 100 ng of total RNA in a final volume 
of 5 μl was mixed with a capture probe and a reporter probe tagged 
with a fluorescent barcode from the gene expression code set. Probes 
and target transcripts were hybridized overnight at 65 °C for around 
19 h according to the manufacturer’s recommendations. Hybridized 
samples were run on the Nanostring nCounter instrument using 
the corresponding protocol, in which excess capture and reporter 
probes were removed and transcript-specific ternary complexes 
were immobilized on the surface of the cartridge. The images from 
samples were scanned at high resolution by the nCounter instrument 
and gene expression data were collected after scanning and image  
processing.

For mass cytometry analyses of cytokine production, blood sam-
ples from healthy cisgender females (n = 5) of reproductive age were 
collected before the ovulation phase of the menstrual cycle (day 1–10 
from the first day of menstruation), pretreated and then immediately 
stimulated with either LPS (0.1 ng ml−1) or PMA (50 ng ml−1) combined 
with ionomycin (1 μg ml−1) for 4 h or left unstimulated as a control. 
Brefeldin A (5 μg ml−1) and Monensin (2 μg ml−1) were added in all condi-
tions. Samples were then fixed and lysed using Lysis and Wash buffers 
(Whole blood processing kit; Cytodelics AB). After fixation/lysis, cells 
were cryopreserved using CRYO#20 (Cytodelics AB) and analysed using 
intracellular staining mass cytometry as described above.

Analyses of Nanostring gene expression data
Batch-normalized data were log-transformed and scaled to have unit 
variance and zero mean. This was followed by principal component 
analysis (PCA). The resulting PCAs were then plotted alongside the 
PCA loadings of hallmark TNF genes.

Quantification of IFNa and IFNb by Simoa
IFNa subtypes were quantified in plasma and in supernatants of  
ex vivo-stimulated PBMCs using Simoa digital ELISA (Quanterix)  
with HomeBrew assays as previously described79. Several IFNα sub-
types were measured using a pan-IFNα subtype assay (Quanterix), 
with IFNa17 (PBL Assay Science) as a reference standard. Antibodies 
cloned from two patients with mutated APS1 were used for multi-IFNα 
subtype quantification. The 8H1 clone was coated on paramagnetic 
beads and used as the capture antibody (0.1 μg ml−1), and the 12H5 
clone was biotinylated at a ratio of 30:1 and used as the detector. The 
limit of detection for IFNα was 0.03 fg ml−1. IFNβ was also quantified in 
plasma from the cohort. For the IFNβ assay, the 710906-9 IFNβ antibody 
(PBL Assay Science) was coated on paramagnetic beads (0.3 μg ml−1) 
and used as a capture antibody. The 710323-9 antibody (PBL Assay 
Science) was biotinylated and used as the detector (30:1). Recom-
binant IFNβ (PBL Assay Science) served as a standard to determine  
unknown sample concentrations. The LOD for IFNβ was 0.3 pg ml−1.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw mass and flow cytometry data (FCS files) are available at Flow-
Reposity.org (https://flowrepository.org/id/FR-FCM-Z75Z). Plasma 
protein (Olink), induced cytokines (SIMOA), blood mRNA-seq count 
tables, sc-mRNA-seq count tables as well as ATAC-seq data are avail-
able at Zenodo (https://zenodo.org/doi/10.5281/zenodo.11517624)80.

Code availability
All scripts and data for reproduction of figures are available 
at GitHub (https://github.com/Brodinlab/Gender-affirming- 
Testosterone-treatment) and at Zenodo (https://zenodo.org/
doi/10.5281/zenodo.11517624)80.
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Extended Data Fig. 1 | Modeling of whole blood mRNA transcriptome data. 
Sex hormone measurements by LCMS over time during testosterone treatment 
in n = 22 subjects and 3 timepoints per subject. Shaded areas represent male 
(blue) and female (pink) reference ranges where available. P-values from 

Kruskal-Wallis tests (5% FDR corrected) b) Testosterone and estradiol levels in 
patients receiving full dose (1000 mg, black) or reduced doses (750 mg, 
orange) of Nebido at one or more timepoints.



Immune cell marker expression (Mass cytometry)
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Extended Data Fig. 2 | Immune cell changes during gender affirming 
testosterone therapy. a) White blood counts as measured by clinical 
chemistry analyses at baseline and following 3- and 12-months of testosterone 
therapy. Repeated measures ANOVA, unadjusted p-value. b) Marker expression 

(Z-score transformed per marker) across all 113 immune cell clusters and 
n = 12,377,068 cells c) Manual gating strategy to identify pDC, pre-DC and 
CD11c+ DC populations among lineage negative HLA-DR+ cells analyzed by  
Mass cytometry.
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pDCs at 3-months from two independent experiments. Boxplot centre = median, 
max whisker = Q3 + 1.5*IQR (IQR = values ranging from Q1-Q3), min whisker = Q1 
– 1.5*IQR. b) Plasma pan-IFNα and IFNβ protein levels measured by SIMOA in  
71 samples from 24 subjects across two experiments at baseline and following  
3 and 12 months of testosterone therapy. Repeated measures ANOVA, unadjusted 

p-values. c) pDC RNA counts for IRF7 vs SOCS1 following R848 stimulation 
in vitro comparing pDCs collected at baseline (n = 41) and following 3 months  
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2-sided t-tests and R-values from pearson correlation-coefficients, d) pDC RNA 
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | TNF family proteins and monocyte responses.  
a) Olink Target96TM inflammation panel analyses of plasma samples from n = 20 
subjects sampled 12 months after initiating Gender affirming testosterone 
therapy shown as mixed-effects modeling coefficients. b) In vitro testosterone 
treatment (28 h) of blood from a healthy female with/without AR antagonist 
Enzalutamide and analyses by Olink Target 96 Inflammation. Linear mixed 
effects analysis with treatment as fixed effect and subject as random effect and 
5% FDR corrected p-values, n.s: non-significant c) Blood from a healthy female 
incubated (20 h) with dihydrotestosterone (DHT) with/without AR inhibitor 
(Enzalutamide) and stimulated by LPS (4 h) followed by Mass cytometry 
analysis of intracellular TNFα and SLAMF7 surface protein. Randomly down 
sampled (5%) of cells and visualized with dot size corresponding to SLAMF7 

expression show TNFαhi cells predominantly expressing high SLAMF7 upon 
DHT pre-treatment. A single representative experiment of three. d) Blood from 
eleven healthy cis females incubated (20 h) with dihydrotestosterone (DHT) 
with/without androgen receptor inhibitor (Enzalutamide) or oestradiol-
receptor blocker and degrader (Fulvestrant). Resulting culture supernatants 
were analyzed for Androstenedione, DHEA, DHT, Estrone, Testosterone and 
17a-Hydroxyprogesterone using GC-MS. e) Cultures were stimulated by LPS  
for 3 h and analyzed for mRNA-abundances (n = 560) by Nanostring nCounter. 
Z-score transformed mRNA (counts) of LPS induced TNF, f) IL6, g) IL1B, and  
h) STAT3. P-values: *p < 0.05, n.s: non-significant, by uncorrected pairwise 
t-tests. Boxplot centre = median, max whisker = Q3 + 1.5*IQR (IQR = values 
ranging from Q1-Q3), min whisker = Q1 – 1.5*IQR.
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Extended Data Fig. 5 | T cell adaptation to testosterone treatment. a) CD4/
CD8 ratio, b) Naive CD4 + T cells, and c) Naive CD8 + T cell fractions before  
and during testosterone treatment. P-values from two-sided, paired and 
uncorrected t-tests. n.s = non-significant. d) Mass cytometry analyses of Treg 
frequency. P-values from two-sided, paired and uncorrected t-tests. n.s = 
non-significant. e) Single cell mRNA sequencing from PBMCs at baseline and 
after 3 months of testosterone in vivo selected on memory CD4 + T cells and 
transcripts related to Th1, f) Th2 and g) Th17 markers shown. h) Expression of 

the indicated T cell exhaustion markers for CD8 + T cells at baseline and  
3 months following testosterone analyzed by single cell mRNA sequencing. 
P-value from 2-sided, uncorrected t-test indicating global module expression 
at baseline vs. 3 months. i) Five healthy female donors, pretreated with DHT, 
DHT + AR inhib. (Enzalutamide) or ESR inhibitor (Fulvestrant) followed by  
PMA/Ionomycin stimulation (4 h) and analyzed by intracellular IFNγ in CD4+ T, 
CD8+ T and NK cells analyzed by repeated measures ANOVA with Tukey’s 
Honest Significant Differences posthoc multiple hypothesis test.
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Raw mass and flow cytometry data (FCS-files) are available atat FlowReposity.org (https://flowrepository.org/id/FR-FCM-Z75Z). Plasma protein (Olink), induced
cytokines (SIMOA), blood mRNA-sequencing count tables, single-cell mRNA-sequencing count tables asas well asas ATAC-seq. data isis available via Zenodo: https://
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Sex and gender are important considerations for the study and study participants have been described with respect to sex
and gender in accordance with Nature policies and with careful consideration of language acceptable to the trans
community. The co-authors have consulted representatives of the trans community in planning the study and preparing the
manuscript.

Race and ethnicity are not reported.

Age and sex is reported and taken into account into mixed effects models and described when appropriate.

23 adult individuals who were assigned female at birth and were undergoing masculinizing gender-affirming treatment were
enrolled at specialist centers for transgender medicine in Stockholm, Uppsala, Linko ping, and Umea  in Sweden between 2016
and 2023.

Swedish Ethical Review Authority (2016/1422-31/1).

The number of included subjects was maximized but not pre-specified by a priori power analysis.

No exclusions

All in vitro experiments performed on healthy donor blood samples were performed repeatedly to ensure reproducibility and all replicates
reported.

This was an observational study and not a treatment investigation, thus randomization was not performed.

Blinded therapy would not have been possible given the striking and well-established consequences of testosterone therapy.

Table 1. Broad extension panel of antibodies used in mass cytometry.
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Metal tag Marker Catalog number Antibody dilution, times Clone Vendor*

89Y CD45 3089003B 200 HI30 Standard BioTools

102Pd Barcode 201060 - - Standard BioTools

104Pd Barcode 201060 - - Standard BioTools

105Pd Barcode 201060 - - Standard BioTools

106Pd Barcode 201060 - - Standard BioTools

108Pd Barcode 201060 - - Standard BioTools

110Cd CD33 303402 125 WM53 BioLegend

111Cd CD26 302702 60 BA5b BioLegend

112Cd CD11c 337202 60 Bu15 BioLegend

113Cd IgD 348202 250 IA6-2 BioLegend

114Cd HLA-DR 307602 125 L243 BioLegend

115In CD57 322302 200 HCD57 BioLegend

140Ce CD71 334102 200 CY1G4 BioLegend

141Pr CD49d 3141004B 100 9F10 Standard BioTools

142Nd CD43 14-0439-82 125 84-3C1 eBiosciences

143Nd CD3e 317302 250 UCHT1 BioLegend

144Nd CD45RB 310202 125 MEM-55 BioLegend

145Nd CD81 349502 60 5A6 BioLegend

146Nd CD52 316002 125 HI186 BioLegend

147Sm CD1c 331502 125 L161 BioLegend

148Nd CD55 311302 125 JS11 BioLegend

149Sm CD25 3149010B 100 2A3 Standard BioTools

150Nd CD64 305002 60 10.1 BioLegend

151Eu CD123 306002 100 6H6 BioLegend

152Sm TCRgd TCR1061 125 5A6.E9 Thermo Fisher Scientific

153Eu Siglec-8 837535 125 837535 R&D Systems

154Sm CD95 305602 125 DX2 BioLegend

155Gd CD73 344002 60 AD2 BioLegend

156Gd CD20 302302 200 2H7 BioLegend

157Gd CD9 14-0098-82 75 SN4 C3-3A2 eBiosciences

158Gd CD34 343502 30 581 BioLegend

159Tb CD22 302502 60 HIB22 BioLegend

160Gd CD14 301802 100 M5E2 BioLegend

161Dy CD161 339902 100 HP-3G10 BioLegend

162Dy CD29 303002 100 TS2/16 BioLegend

163Dy 4-1BB 309802 125 4B4-1 BioLegend

164Dy CD62L 304802 125 DREG-56 BioLegend

165Ho CD127 3165008B 100 A019D5 Standard BioTools

166Er CD24 311102 40 ML5 BioLegend

167Er CD27 3167006B 100 L128 BioLegend

168Er CD141 344102 60 M80 BioLegend

169Tm CD45RA 3169008B 200 HI100 Standard BioTools

170Er CD38 303502 60 HIT2 BioLegend

171Yb CD85j 333702 60 GHI/75 BioLegend

172Yb CD103 350202 60 Ber-ACT8 BioLegend

173Yb CD56 559043 150 NCAM16.2 BD Biosciences

174Yb CD99 318002 60 HCD99 BioLegend

175Lu CD28 302902 60 CD28.2 BioLegend

176Yb CD39 328202 60 A1 BioLegend

191Ir DNA Ir 201192A 1000 Cell-ID DNA Intercalator Standard BioTools

193Ir DNA Ir 201192A 1000 Cell-ID DNA Intercalator Standard BioTools

194Pt CD8a 344702 50 SK1 BD Biosciences

195Pt CD5 300602 50 UCHT2 BioLegend

196Pt CD7 343102 200 CD7-6B7 BioLegend

198Pt CD4 300502 85 RPA-T4 BioLegend

209Bi CD16 3209002B 100 3G8 Standard BioTools

*All antibodies that are not from Standard BioTools were purchased in a purified format and coupled

In-house.

Table 2. Surface staining panel of antibodies used in intracellular mass cytometry.

Metal tag Marker Catalog number Antibody dilution, times Clone Vendor*

89Y CD45 3089003B 200 HI30 Standard BioTools

102Pd Barcode 201060 - - Standard BioTools

104Pd Barcode 201060 - - Standard BioTools

105Pd Barcode 201060 - - Standard BioTools

106Pd Barcode 201060 - - Standard BioTools

108Pd Barcode 201060 - - Standard BioTools
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112Cd CD11c 337202 60 Bu15 BioLegend

114Cd HLA-DR 307602 125 L243 BioLegend

142Nd CD19 3142001B 100 HIB19 BioLegend

143Nd CD3e 317302 250 UCHT1 BioLegend

145Nd CD81 349502 60 5A6 BioLegend

147Sm CD1c 331502 125 L161 BioLegend

151Eu CD123 306002 100 6H6 BioLegend

153Eu Siglec-8 837535 125 837535 R&D Systems

157Gd CD9 14-0098-82 75 SN4 C3-3A2 eBiosciences

160Gd CD14 301802 100 M5E2 BioLegend

161Dy CD161 339902 100 HP-3G10 BioLegend

162Dy SLAMF7 331802 100 162.1 BioLegend

167Er CD27 3167006B 100 L128 BioLegend

168Er CD141 344102 60 M80 BioLegend

169Tm CD45RA 3169008B 200 HI100 Standard BioTools

173Yb CD56 559043 150 NCAM16.2 BD Biosciences

191Ir DNA Ir 201192A 1000 Cell-ID DNA Intercalator Standard BioTools

193Ir DNA Ir 201192A 1000 Cell-ID DNA Intercalator Standard BioTools

194Pt CD8a 344702 50 SK1 BD Biosciences

195Pt CD5 300602 50 UCHT2 BioLegend

196Pt CD7 343102 200 CD7-6B7 BioLegend

198Pt CD4 300502 85 RPA-T4 BioLegend

209Bi CD16 3209002B 100 3G8 Standard BioTools

*All antibodies that are not from Standard BioTools were purchased in a purified format and coupled

in-house.

Table 3. Intracellular staining panel of antibodies used in mass cytometry.

Metal tag Marker Catalog number Antibody dilution, times Clone Vendor*

149Sm IL-4 500802 75 MP4-25D2 BioLegend

150Nd IFN 506502 125 B27 BioLegend

156Gd IL-6 3156011B 100 MQ2-13AS Standard BioTools

159Tb IL-1ß 508201 60 JK1B-1 BioLegend

175Lu TNF 502941 75 Mab11 BioLegend

*All antibodies that are not from Standard BioTools were purchased in a purified format and coupled

in-house.

Table 4. Fluorescent marker antibodies (Surface and intracellular) used in spectral flow cytometry.

Fluorophore Marker Catalog number Antibody dilution, times Clone Vendor*

BUV496 HLA-DR 753685 100 L243 BD Biosciences

BUV737 CD56 612767 100 NCAM16.2 BD Biosciences

BUV805 CD8 612890 100 SK1 BD Biosciences

BV421 CD123 306018 100 6H6 BioLegend

eF450 CD15 48-0158-41 33 MMA Invitrogen

BV570 CD16 302035 100 3G8 BioLegend

FITC CD4 300505 62,5 RPA-T4 BioLegend

Spark Blue 574 CD3 300487 100 UCHT1 BioLegend

BB630-P2 CD19 624294 100 SJ25C1 BD Biosciences

BB790-P CD14 624296 100 M5E2 BD Biosciences

RB780 CD14 569069 100 M5E2 BD Biosciences

PE AR* IC5876P 200 523339 R&D Systems

PE - IC0041P 40 Mouse IgG2B –

Isotype control R&D Systems

APC AR* IC5876A 50 523339 R&D Systems

PE ESR# ab209288 5000 E115 Abcam

PE - ab37407 1250 Rabbit IgG –

Isotype control Abcam

BV421 IFN 506538 350 B27 BioLegend

PE-Cy7 CCR7 353226 100 G043H7 BioLegend

cFluor R685 CD45RA RC-00656 100 HI100 Cytek Biosciences

APC CD45RA 304112 100 HI100 BioLegend

*AR, androgen receptor; #ESR, estrogen receptor alpha.

Specificity testing of 1-3 target cell types with either single- or multi-color analysis (including positive and negative cell types). Once
specificity is confirmed, each new lot must perform with similar intensity to the in-date reference lot. Brightness (MFI) is evaluated
from both positive and negative populations. Each lot product is validated by QC testing with a series of titration dilutions.
Independent validation was performed by fluorescence/mass-minus one, negative and positive controls and where possible such as
MCF7 cells (human breast adenocarcinoma cell line) expressing ESR and AR.
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Novel plant genotypes

Seed stocks

Authentication

Plants

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot ofof group (a(a 'group' isis anan analysis ofof identical markers).

All plots are contour plots with outliers oror pseudocolor plots.

A numerical value for number ofof cells oror percentage (with statistics) isis provided.

Methodology

Sample preparation

Instrument

Software

Cell population abundance

Gating strategy

Tick this box toto confirm that a figure exemplifying the gating strategy isis provided inin the Supplementary Information.

N/A

N/A

N/A

For Mass cytometry experiments, whole blood stabilized atat blood collection isis used and for inin vitro stimulation and hormone
treatment experiments, whole blood oror PBMCs were used. Details are described inin supplementary methods.

CyTOF XTXT (Standard BioTools), Aurora spectral flow cytometer (Cytek Biosciences).

CyTOF software v8.1 (Standard Biotools) was used for acquisition ofof mass cytometry data. Cytobank Community v10.3
(Beckman Dickinson) and FlowJo 10.10.0 (BD Biosciences) were used for manual gating and plotting. For modeling and
statistical analyses custom R scripts were used and are available through GitHub: https://github.com/Brodinlab/Gender-
affirming-Testosterone-treatment.

N/A

Gating templates are shared via FlowRepository.org and for pre-DC gating it isis shared inin Extended Data Fig. 2c2c
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