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Abstract

Background

Dengue is an increasing health burden that has spread throughout the tropics and sub-trop-

ics. There is currently no effective vaccine and control is only possible through integrated

vector management. Early warning systems (EWS) to alert potential dengue outbreaks are

currently being explored but despite showing promise are yet to come to fruition. This study

addresses the association of meteorological variables with both mosquito indices and den-

gue incidences and assesses the added value of additionally using mosquito indices for pre-

dicting dengue incidences.

Methodology/Principal findings

Entomological surveys were carried out monthly for 14 months in six sites spread across

three environmentally different cities of the Philippines. Meteorological and dengue data

were acquired. Non-linear generalized additive models were fitted to test associations of the

meteorological variables with both mosquito indices and dengue cases. Rain and the diurnal

temperature range (DTR) contributed most to explaining the variation in both mosquito indi-

ces and number of dengue cases. DTR and minimum temperature also explained variation

in dengue cases occurring one and two months later and may offer potentially useful vari-

ables for an EWS. The number of adult mosquitoes did associate with the number of dengue

cases, but contributed no additional value to meteorological variables for explaining varia-

tion in dengue cases.

Conclusions/Significance

The use of meteorological variables to predict future risk of dengue holds promise. The lack

of added value of using mosquito indices confirms several previous studies and given the
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onerous nature of obtaining such information, more effort should be placed on improving

meteorological information at a finer scale to evaluate efficacy in early warning of dengue

outbreaks.

Author summary

Dengue is a widespread mosquito-borne disease. Mosquitoes are sensitive to temperature

and rainfall and hence there have been efforts to identify such variables for predicting

dengue outbreaks. Several mosquito indices are measured routinely by national surveil-

lance systems, but which vary considerably in their success of predicting dengue out-

breaks. This study explored the current and lagged associations of meteorological

variables with mosquito indices and dengue incidence. Associations of mosquito indices

with dengue were also explored. Rain and the diurnal temperature range (DTR) contrib-

uted most to explaining the variation in both mosquito indices and number of dengue

cases. DTR and minimum temperature also explained variation in dengue cases occurring

one and two months later. Mosquito indices did not provide any additional explanatory

power for dengue incidences. Given the onerous nature of measuring mosquito indices,

advanced warning systems might be improved using meteorological variables measured

at finer scales than that traditionally available.

Introduction

Dengue is a rapidly spreading mosquito-borne infectious disease caused by any of the four

serotypes of the dengue virus (DENV 1–4). Despite the known underestimation of its real

global burden [1], it is estimated that dengue incidence has increased 30-fold over the last few

decades [2]. The disease is endemic in over 100 countries and more than 3.5 billion people are

at risk of DENV infection [3,4]. Southeast Asia and the Western Pacific have historically been

and are still among the most affected places [5–8]. The public health significance of dengue in

the Philippines has continued since its initial discovery in 1954 to date [9]. Based on surveil-

lance data in the Philippines for 2010–2014, Undurraga et al. estimated there were 794,255

annual dengue episodes [10], illustrating the high burden in the population.

Several environmental and socio-economic factors such as weather, urbanisation and glob-

alisation have been associated with the spread of dengue [11–15] and this spread depends on

the presence and abundance of the arthropod vector [16]. Moreover, in light of recent anthro-

pogenic environmental impact, there has been a growing concern over global climate change

as a potential factor increasing the risk of dengue through both the increased distribution of

the mosquito vector species and the increased capacity for the vector population to transmit

the virus (the vectorial capacity) [17–19].

DENV transmission is shaped by climatic conditions such as temperature and rainfall [20].

Aedes spp. reproductive and feeding behaviours, as well as viability of the species, depend, at

least partly, on these environmental variables and thus have been widely studied. Mosquito

abundance is partially regulated by rainfall by providing oviposition sites and triggering egg

hatching [21]. Temperature influences the life span of the mosquito vector and has a direct

effect on developmental and feeding rates [21–24]. In addition to this, DENV replication

inside the vector also increases in warmer temperatures [23–25].
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Having no fully effective vaccine to prevent infection, or drugs to treat the infection, vector

control is still the main strategy to prevent transmission of DENV. Vector monitoring and sur-

veillance is an evidence-based, analytical approach to better understand the mosquito vector

population dynamics and virus transmission. Combined with a community-based strategy,

which requires direct and immediate action in the community, vector surveillance offers the

best defense against the vector and disease [26–28]. In urban settings, the major vector species

is Aedes aegypti, which has adapted to the peridomestic environment, ovipositing in man-

made artificial containers. Several Aedes indices, such as the House, Container, Breteau and

Pupal indices (see Methods for definitions), have been proposed for monitoring strategies to

predict risk of dengue transmission. However, to date there is little consensus on the appropri-

ate threshold values to trigger a mosquito control response and their general utility to enable

measures to be taken to avert an outbreak [29–33].

Identifying the factors that are implicated in DENV transmission and being able to forecast

the onset of dengue outbreaks in endemic areas would provide the opportunity to be prepared

and implement timely responses to decrease the burden of dengue in human populations.

Efforts have been made to predict the incidence of infection using meteorological data [34–

36]. However, our understanding remains poor over the relative contributions of meteorologi-

cal variables in the context of urban settings where the microenvironment and the abundance

of artificial oviposition sites impact mosquito abundance [18,19]. While other prevention and

control measures for dengue are being developed, understanding the relationship between the

risk of disease and meteorological factors in an urban setting for elaborating early warning sys-

tems (EWS) remains of key interest.

The aim of this study was to expand the current knowledge on the associations between dif-

ferent meteorological variables and both the Aedes indices and the incidence of dengue and to

assess the extent to which the mosquito indices, which are laborious to perform, bring added

value to meteorological variables for explaining variation in dengue incidences in three repre-

sentative cities in the Philippines.

Methods

Ethics statement

This study was granted approval by the Institutional Review Board of the Research Institute

for Tropical Medicine, the Philippines, approval number 2013–007.

Study sites (Fig 1)

The study was carried out in six barangays, of which two were in each of the three study cities,

Manila and Muntinlupa on the major island of Luzon and Puerto Princesa on Palawan island.

In the highly densely populated area of Manila, two barangays were selected: Sampaloc, Manila

(14˚ 36’ 39.708"N 120˚ 59’ 46.4496"E) covering 7.90 km2 with a population of 388,305 and

Tambunting, Santa Cruz District, Manila (14˚37’46.3"N 120˚59’01.5"E) covering 3.07 km2

with a population of 126,735. In the more recently urbanized and less dense city of Muntin-

lupa, two barangays were selected: Cupang (14˚25053.4@N 121˚2055@E) covering 5.37 km2 with

a population of 57,013 inhabitants and Putatan (14˚23054.12@N 121˚2010.96@E) covering 6.75

km2 with a population of 99,725. On the island of Palawan, which has a much lower degree of

urbanization and population density, two urban barangays were chosen within Puerto Prin-

cesa, a coastal city covering 2,381 km2 with a population of 307,079. The two selected baran-

gays were: San Miguel (09˚44’39.48”N 118˚44’44.16”E), considered an urban barangay with a

population of 21,157 and San Pedro (09˚45’19.44”N 118˚45’2.52”E), a neighboring urban bar-

angay with a population of 25,909.
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Fig 1. Study Sites (Downloaded from https://data.humdata.org/dataset/cod-ab-phl?).

https://doi.org/10.1371/journal.pntd.0011603.g001
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Entomological, meteorological and dengue case data

Entomological surveys were carried out monthly from November 2014 until December 2015,

thus 14 months duration. Dengue case data were available monthly from October 2014 until

December 2015. It subsequently transpired that the numbers of dengue cases during these two

years were lower than average [37], despite there being an El Niño event during 2015–2016.

Meteorological data were available on a daily basis, provided by the Philippine Atmospheric,

Geophysical and Astronomical Services Administration (PAG-ASA) from meteorological sta-

tions closest to the areas under study. Meteorological data included rain, relative humidity and

temperature. From these data the cumulative monthly rain (mm), the monthly mean daily

rain (mm), the monthly mean daily Relative Humidity (%), the monthly mean daily minimum,

maximum and mean temperatures (˚C) and the monthly mean daily Diurnal Temperature

Range (DTR,˚C) were calculated.

Mosquito indices: Immature mosquito life stages surveillance was conducted in 100 house-

holds per selected barangay wherein all water-holding containers were inspected for presence

of immature mosquito stages. Inspection was carried out within and immediately surrounding

the house; i.e. in their yards/gardens. Containers inspected were majoritarily artificial, but did

include organic waste (discarded coconut shells) and bamboo stumps of palm plant axials

where present. Larvae and pupae found in the containers were all collected by pipetting. Speci-

mens from each positive container were transferred into separate plastic bags for transport to

the laboratory for rearing and identification. The number of water-holding containers (artifi-

cial or natural) with or without cover that were found indoors or outdoors, together with the

number of containers found positive for larvae and/or pupae were recorded. The number of

people who slept inside the house the previous night was also noted. The following indices

were used: the Container Index (CI, percentage of water-filled containers positive for larvae or

pupae), the House Index (HI, percentage of houses found positive for larvae or pupae), the

Breteau index (BI, the number of containers positive divided by the number of houses visited),

the Pupal Index (PI, the number of pupae divided by the number of houses visited x 100), the

number of pupa per person (PPI, the number of pupae divided by the total population of the

inspected households). In addition to these immature Aedes spp. mosquito stage indices, adult

mosquitoes were captured in the houses using a sweep net each month. Adult mosquitoes

were collected by circumnavigating the internal periphery of the house from the front door to

the different rooms while continually moving the net in a figure of eight at 90˚ or at 180˚ tar-

geting known resting places of adult mosquitoes. These areas include areas under the beds,

hanging clothes, under the sink, comfort rooms, closets, dark cool rooms of the house, shoe

racks, and outdoors such as vegetation, bushes, trees and plants. Trapped mosquitoes were

transferred to Styrofoam cups with the use of sucking tubes. All collected mosquitoes were

identified morphologically to species in the laboratory. In addition to the monthly adult Aedes
spp. mosquito count, a cumulative two-monthly count was calculated.

Statistical analyses

To test the association of the meteorological variables with the mosquito indices, a Generalized

Additive model (GAM) with a spline function was fitted to account for any non-linearity in

the relationships. For indices concerning percentages (i.e. House Index and Container Index),

a logistic regression with a logit link function was fitted. For the indices concerning counts, a

Poisson loglinear regression with a logarithmic link function was fitted.

Thus for the case of the Poisson log-linear models, the following regression equation was

implemented:

Y (mosquito index or dengue cases)~Poisson (μt)
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log(μt) = α + β1(City)t + β2(City.Barangay)t + s(meteorological variable, λ)t where log(μt)

is the logarithm of expected mosquito index N or dengue cases at time point t, α is the model

intercept, β are the beta coefficients and s(variable, λ) is the natural cubic spline smoothing

function.

First, all variables were fitted in a univariable analysis and those achieving a P-value less

than 0.25 were fitted in the multivariable analysis. Barangay was nested within City and fitted

as a fixed factor. The multivariable analysis proceeded by step-wise elimination of non-signifi-

cant variables until a final adequate model containing only significant variables was achieved.

Thus, for example, for the association of the seven meteorological variables with each mos-

quito index, there were eight models fitted (seven univariable and one multivariable). Because

many of the variables were strongly correlated (i.e. the min, mean and max temperature vari-

ables), and thus led to collinearity and potentially spurious non-significance in the multivari-

able analysis, models were refitted with removal and replacement to identify which of such

variables, when significant, were the most strongly associated (based on % variance explained).

If more than one such variable was significant, then all were retained in the final model. To

explore the delayed effect of the meteorological variables on mosquito indices, weekly time

lags were generated considering Aedes mosquitoes adult life span (i.e. ~15–20 days) as well as

the dengue transmission cycle (i.e. ~15 days), thus approximately a month. Based on previous

significant meteorological findings [35,38], lags of 1–4 weeks were generated. Thus, for exam-

ple, for lag week 1, we took the meteorological data from the week prior to current month plus

the meteorological data from the following three weeks to generate a monthly value. For lag

week 2, we took the meteorological data from 2 weeks prior to the current month and the sub-

sequent 2 weeks and again generated a monthly value. By lag week 4, therefore, we used the

meteorological data from the month preceding the mosquito collections. As for the same

month analyses, we first conducted univariable and then multivariable analyses per lag week.

Finally, we performed a multivariable analysis including all significant lag week variables.

Therefore, overall, there were five “lag” time points (0, 1, 2, 3, 4 weeks), eight models per lag

plus a combined analysis including all the four lags (lag wks 1–4) giving 41 models per mos-

quito index. The significance threshold P value of 0.05 was thus divided by 41, giving a Bonfer-

roni P threshold of 0.0012.

For associations with dengue, we approached this differently because the time scale for a

putative effect of meteorological or entomological variables on dengue cases was deemed to be

longer for several reasons. Firstly, the expansion of the mosquito population because of meteo-

rological effects will take time and thus any consequent effect on virus transmission will be

accordingly delayed. Secondly, because of the extrinsic incubation period (EIP). The first

blood meal is generally taken three days after emergence of the adult mosquito [21]. Therefore,

assuming an EIP of 7–12 days, a minimum of 10–15 days would be required for a newly

emerged mosquito to become infectious if its first blood meal was on an infected person [39].

This additional delay will thus generate a lag between the mosquito indices and the dengue

incidence. Thirdly, the probability of a mosquito having an infected bloodmeal will be low at

the start of the epidemic and increase with increasing dengue incidences. Thus, there will be

some delay during the initial phases of the epidemic prior to the expansion of the viral popula-

tion within the community. For these reasons we assessed the association of the variables on

the current month’s dengue cases and those occurring one and two months later. Thus, seven

univariable and one multivariable analysis was performed for the association with meteorolog-

ical variables. Seven mosquito indices were used for association with dengue cases: HI, CI, BI,

PI, PPI, Adults and cumulated adults over two months. A Poisson log-linear regression was

again fitted, including the natural log of the population of each barangay as an offset. When

using the mosquito indices as explanatory variables, because the distribution of the data are
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not normal, the data were transformed either by using an arcsine transformation for the per-

centage indices or by standardization for the count indices (standardization is akin to normali-

zation and is calculated as the subtraction of the mean from each data point and division by

the standard deviation). A dispersion parameter was estimated to account for any over-disper-

sion of the data in all analyses. Relative Risk from the Poisson regression was calculated as the

exponentiated value of the model parameter estimates for the linear parameters. All analyses

were conducted in Genstat version 22 [40].

Results

Description of city specific meteorological variables, dengue cases and

mosquito catches

Rainfall showed distinct seasonality, with the dry season from January to April and the peak

rainy season from July to October (S1 Fig). There was little variation among the three cities,

with the monthly mean of the daily rainfall varying from 0.014–14.35 mm in Muntinlupa,

0–9.24 mm in Manila and 0–10.16 mm in Palawan. Relative humidity was consistently lower

from February to June in all three cities (S2 Fig). Palawan varied the least over the year (73.7–

82.5%) as compared to Manila (61.8–84.6%) or Muntinlupa (65.8–81.0%). Maximum tempera-

tures reached a peak from April to June (Maximum 35˚C in Manila, 34–35˚C in Muntinlupa

and 32–33˚C in Palawan) (S3 Fig). Year round temperatures varied little with minimum tem-

peratures oscillating around 24–27˚C and mean temperatures around 25–31˚C (S4 and S5

Figs). Temperatures varied little in the three cities but were generally less variable in Palawan

as compared to Manila and Muntinlupa. The same was seen for the Diurnal Temperature

Range with a peak from March to June (8–9˚C) and higher values in Manila and Muntinlupa

than Palawan (6–9˚C vs. 6–8˚C) (S6 Fig).

Over the study period, dengue cases were concentrated from July-December 2015. Overall,

there were 343 and 369 in Tambunting and Sampaloc (Manila), respectively, 76 and 240 in

Cupang and Putatan (Muntinlupa), respectively, and 188 and 110 in San Miguel and San

Pedro (Palawan). Dengue Incidence rates (IR) per 10,000 individuals were initially low (0–5.2

/ 10000) until July when an epidemic occurred, notably in San Miguel, Palawan, with IRs rang-

ing from 9.0–28.4 / 10000 (Fig 2).

Overall, 10,856 immature stage mosquitoes were collected, 5,353 males and 5,503 females:

85.4% of were Aedes aegypti, 12.3% Aedes albopictus and 2.4% Culex or other genus spp. In the

Luzon study sites (Manila and Muntinlupa), there were 3,661 immature stages collected;

96.8% were Ae. aegypti, 1.9% were Ae. albopictus and 1.4% Culex or other genus spp. In the

two Palawan study sites, 7,195 immature stages were collected; 79.5% were Ae. aegypti, 17.5%

Ae. albopictus and 2.9% Culex or other genus spp. The most productive containers for imma-

ture stages in Manila and Muntinlupa were jugs/pitchers, dish drains, gallons, pails and

drums. In Palawan, in addition to these container types, other productive containers were

tyres, coconut shells, wells and garbage cans.

For the adult mosquito catches (N = 1,386, 735 Male and 651 Female), 50.5% were Ae.
aegypti, 0.2% Ae. albopictus and 49.3% Culex or other genus spp. The differences in the relative

percentages of Culex and Aedes spp. for their immature vs. adult stages reflects the different

oviposition site preferences of these genera and the fact that the mosquito immature indices

are specifically designed for Aedes spp. In Palawan, where there was the most Ae. albopictus,
Ae. albopictus larvae were only found alone (in the absence of Ae. aegypti) in containers on 16

occasions out of 572 positive containers. Thus, for the subsequent calculation of mosquito

indices, Ae. aegypti and Ae. albopictus numbers were combined. However, because of the dif-

fering relative abundance of Ae. albopictus in Palawan, for the association of mosquito indices
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with meteorological variables we first analyzed all the sites together and then the two Palawan

and four Luzon sites alone.

Association of meteorological variables with mosquito indices

The House indices (HI) were very high, reaching 50% in some sites in the months following the

onset of the rains in July (S1 and S7 Figs). Indices were highest in San Pedro and San Miguel in

Palawan and Putatan in Muntinlupa, the latter being exceptionally high as compared to the

other sites during the dry season, reaching 20%. Association analyses revealed that in addition

to the variation explained by location (I.e. City and Barangay) (27.2% variance explained), mete-

orological variables explained 57.4% of the observed variation in HI (Table 1). The monthly

mean of the Diurnal Temperature range exhibited an increase in HI to a peak at 6–6.5˚C before

a subsequent decline (Fig 3). Cumulative monthly rainfall and mean daily rainfall showed the

same relationship with HI, where HI increased gradually before reaching a plateau at ~150mm

for cumulative monthly rain and ~5mm for mean daily rain per month (Fig 3).

Container indices (CI) were substantially lower, generally less than 5%, except reaching a

maximum of 17% in San Pedro following the rains (S8 Fig). Once again, CIs were higher fol-

lowing the rains in San Pedro, Palawan and during the dry season in Putatan, Muntinlupa.

The same relationships were observed with the meteorological variables as for HIs, explaining

50.6% of the variation in CIs (Table 1 and S9 Fig for the relationship with DTR).

Breteau indices in the two sites in Manila never exceeded a BI> = 5 (S10 Fig). In Cupang,

Muntinlupa, BI> 5 occurred on three occasions but Putatan was consistently higher than 5

and again showed aberrantly high values (10–23) during the dry months. Values in the two

sites in Palawan were consistently very high throughout the year except for the dry season

months (February to June); values reached over 100 in San Pedro and 9–23 in San Miguel dur-

ing the dengue epidemic period from July onwards in 2015. The same associations and rela-

tionships with meteorological variables observed for HI and CI were observed, explaining 63%

of the variation in BI (Table 1).

Fig 2. Dengue Incidence Rate per 10,000 individuals in the six study sites.

https://doi.org/10.1371/journal.pntd.0011603.g002
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The Pupal index was highly variable ranging from 0 to over 100% (S11 Fig); the Pupa per

person indices were also highly variable, ranging from 0 to 0.25) (S12 Fig). With the exception

of Putatan, which showed the aberrantly high pupal indices in the dry season months, PIs and

PPIs were generally zero during the dry season and then rapidly increased in the months fol-

lowing the rains. The same meteorological associations were observed, albeit generally weaker

than those observed for the HI, CI and BI. However, these variables still explained 49% of the

observed variation in PI and PPI (Table 1).

In contrast to these immature stage indices, adult Aedes spp. were less abundant in the two

Palawan sites and most abundant in Putatan, especially during the dry season (S13 Fig). The

relationship of the meteorological variables with the number of adult Aedes spp. mosquitoes

Table 1. Association of meteorological variables with mosquito indices collected in the same month, in the multi-

variable analyses.

P value variance explained (%)

House Index Cumulative Rain (mm) < .001 13.37

Mean DTR (˚C) < .001 20.71

Mean Rain (mm) < .001 15.10

Mean RH (%) < .001 5.01

Min. Temp. (˚C) 0.01 3.22

Container Index Cumulative Rain (mm) < .001 15.25

Mean DTR (˚C) < .001 20.19

Mean Rain (mm) < .001 6.45

Mean RH (%) 0.001 5.39

Min. Temp. (˚C) 0.016 3.34

Breteau Index Cumulative Rain (mm) < .001 14.94

Mean DTR (˚C) < .001 25.16

Mean Rain (mm) < .001 14.57

Mean RH (%) 0.001 4.14

Min. Temp. (˚C) 0.002 3.82

Pupal Index Cumulative Rain (mm) 0.009 6.90

Mean DTR (˚C) < .001 17.38

Mean Rain (mm) 0.009 6.85

Mean RH (%) 0.007 7.30

Min. Temp. (˚C) 0.011 6.61

Max. Temp. (˚C) 0.043 3.58

Pupa per person Cumulative Rain (mm) 0.007 6.94

Mean DTR (˚C) < .001 18.03

Mean Rain (mm) 0.013 6.14

Mean RH (%) 0.006 7.19

Min. Temp. (˚C) 0.01 6.44

Max. Temp. (˚C) 0.033 3.78

Adults Cumulative Rain (mm) < .001 36.26

Mean DTR (˚C) 0.006 4.76

Mean Rain (mm) 0.006 4.82

Mean RH (%) < .001 7.22

Min. Temp. (˚C) < .001 14.42

Max. Temp. (˚C) 0.003 4.52

P values in italics are those above the Bonferroni corrected P threshold for multiple tests (P = 0.0012, See Methods).

https://doi.org/10.1371/journal.pntd.0011603.t001
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also differed (Table 1). There was a strong association with cumulative rain, with progressively

increasing numbers of Aedes spp. adults caught with increasing rain (Fig 4). There was a dis-

tinct non-linear relationship with minimum temperature, with a peak at 25–26˚C (Fig 4). The

strength of the relationships with the other meteorological variables was much weaker, but

combined overall explained 72% of the observed variation.

Analysis of the two sites on Palawan separately from the Luzon study sites revealed a similar

series of relationships with the meteorological variables. For HI, CI and Breteau, cumulative

rain and DTR were significantly associated (cumul. Rain: % variance explained 43.8%, 39.8%

and 46.9% for HI, CI and Breteau respectively; DTR explained 13.1%, 14.2% and 17.3% of the

variance for HI, CI and Breteau respectively). For the Pupal Index, cumulative rain and

Fig 3. The fitted logistic regression of the House Index (here shown as a proportion) against (A) the Diurnal Temperature range, (B)

cumulative rain and (C) mean rain. The red lines show the fitted model in the GAM.

https://doi.org/10.1371/journal.pntd.0011603.g003
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Relative Humidity explained 28.4% and 31.0% of the variance. For the PPI, cumulative rain,

DTR and Relative Humidity explained 26.2%, 17.5% and 20.4% of the variance. Finally, for the

adults, cumulative rain and DTR were significantly associated, explaining 44.3% and 27.2% of

the variance.

Association of meteorological variables with lagged mosquito indices

The association analyses were then repeated for lag periods of one to four weeks as indicated

in the methods. Monthly values of the meteorological variables were thus calculated for the

weeks preceding the mosquito index counts. With the exception of the Pupal Index, lagged

associations explained less of the observed variation in the mosquito indices (S1 Table). For

the Pupal Index, variables lagged by two weeks explained 52.9% of the variation as compared

48.6% for the unlagged associations. In both cases there was a notable decrease in PI with

increasing DTR (Fig 5) and a significant increase in PI with increasing cumulative rain (Fig 5).

Fig 4. The fitted loglinear regression of the number of adult Aedes spp. mosquitoes against (A) the monthly

cumulative rain and (B) the monthly mean minimum temperature. The red line shows the fitted model in the GAM.

https://doi.org/10.1371/journal.pntd.0011603.g004

Fig 5. The fitted loglinear regression of the lagged 2 week Pupal Index against (A) the monthly mean Diurnal

Temperature range (˚C) and (B) the monthly cumulative rain (mm). The red line shows the fitted model in the GAM.

https://doi.org/10.1371/journal.pntd.0011603.g005
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Performing a combined analysis of all the significant variables identified in the individual four

week lag times did not improve the model fit (% variance explained Current month vs lagged

fits: HI: 57% vs. 25%; CI: 51% vs. 40%: BI: 63% vs.57%; PI: 49% vs. 40%; PPI: 49% vs. 36%;

Adults: 72% vs.60%)(S1 Table).

Association of meteorological variables with dengue cases

There were several associations of meteorological variables with the number of dengue cases

during the same month (Table 2). There was a gradual increase in the number of cases with

increasing cumulative rain, mean minimum temperature and DTR (Fig 6). Dengue cases

peaked at a minimum temperature of 25–26˚C and a DTR of 6.5–7˚C. Overall the meteorolog-

ical variables explained 60.4% in the variation of observed cases. Assessing the association with

dengue cases the following one or two months explained less of the variation (38.9% and

39.3% respectively) and the rain variables became non-significant. However, the associations

with DTR and especially minimum temperature remained significant and followed the same

form as for the current month’s dengue cases. Shown in Fig 7 are the model fits for mean daily

minimum temperatures and dengue cases one and two months later.

Analyzing the two Palawan sites independently of the four Luzon sites revealed a much

improved model fit, with cumulative rain, DTR and Relative Humidity explaining 71.3% of

the variation in the number of dengue cases in the same month. Moreover, cumulative rain,

DTR and mean maximum temperatures explained 73.9% and 71.7% of the variation in cases

one and two months later respectively. The overall model fit for the association of the meteoro-

logical variables with the number of dengue cases two months later is shown in Fig 8 for each

of the two Palawan sites. 10.2% of the variation was accounted for by the site (San Miguel vs.

San Pedro). Likewise, when analyzing the four sites on Luzon independently of Palawan gave a

much improved model fit, explaining 69.5%, 48.1% and 77.9% of the variation in dengue cases

the same month and one and two months later. Minimum temperatures and DTR contributed

the most. The forms of the associations of the individual meteorological variables with dengue

cases was as observed in the combined site analysis (e.g. Fig 7 for minimum temperatures).

The overall model fit for the association of the meteorological variables with the number of

dengue cases two months later is shown in Fig 9 for each of the four Luzon sites. However,

when analyzing Muntinlupa and Manila separately, there was no improved model fit from

when analyzing all four Luzon sites together.

Table 2. Association of meteorological variables with dengue cases in the multivariable analysis.

Variable P value variance explained (%)

Cases same month Cumulative Rain (mm) < .001 15.02

Mean DTR (˚C) 0.001 8.36

Mean Rain (mm) < .001 15.32

Mean RH (%) 0.01 5.75

Min. Temp. (˚C) < .001 11.54

Max. Temp. (˚C) 0.012 4.39

Cases 1 month later Mean DTR (˚C) 0.002 10.90

Mean RH (%) 0.018 7.32

Min. Temp. (˚C) < .001 20.63

Cases 2 months later Mean DTR (˚C) 0.001 11.38

Mean RH (%) 0.003 9.68

Min. Temp. (˚C) < .001 18.20

8 models per analysis. Bonferroni P value threshold P = 0.0063. P values in italics are those above this threshold.

https://doi.org/10.1371/journal.pntd.0011603.t002
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Association of mosquito indices with dengue cases

Whilst Container, House and Breteau indices and cumulative adult mosquitoes (over 2

months) were all associated with dengue cases in the same month in the univariable analyses,

only the latter was positively associated with dengue cases in the final multivariable analysis

(P = 0.001), explaining 4.79% of the variation in the number of dengue cases (Fig 10). There

was an increased Relative Risk of 1.52 (95%CI 1.18–1.95) for every increase in one mosquito in

the standardized mosquito number, equivalent to a Relative Risk of 1.02 (95% CI 1.01–1.03)

for every increase in one mosquito (unstandardized). This positive association was lost when

combined with the meteorological variables. There were no associations of mosquito indices

with dengue cases the following one or two months.

Fig 6. Fitted model of the association between (A) cumulative rain, (B) Mean Minimum Temperature and (C) DTR with dengue

cases in the same month. Shown are the observed data (crosses) and the fitted model (red line).

https://doi.org/10.1371/journal.pntd.0011603.g006
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Discussion

Meteorological conditions can influence the spread of dengue through their impact on the vec-

tor’s life cycle and ability to transmit the virus. Because of this and the relative ease with which

such data can be collected and collated, the use of meteorological variables for EWS of dengue

outbreaks has been explored [34–36,41]. This study aimed to expand the knowledge on the

associations and their time lags between different meteorological variables and mosquito indi-

ces on the one hand and dengue incidence on the other. This study also aimed to assess the

added value of incorporating the mosquito indices in explaining variation in dengue

incidence.

There were several non-linear associations between meteorological variables and the imma-

ture mosquito indices, namely HI, CI, BI, PI and PPI. The most pertinent variables were those

associated with rain (whether cumulative or mean daily rain over the month) and the DTR.

These variables explained 49–63% of the variation in the immature indices. During a longer

time series study in Sri Lanka, cumulative rain greater than 200mm during the same month

was associated with increased Breteau Indices [41]. The rain variables showed a distinct pla-

teau, with increasing values of indices up a certain level of precipitation but not beyond. Heavy

rain has been suggested to result in a decrease in immature mosquito indices by flushing out

the immature stages, thus decreasing its population and ability to transmit the disease [35,42].

This study found no evidence of a decrease as might be expected if excess rain led to flushing

of the oviposition sites. The plateauing out of the indices with increasing rain might reflect a

saturation in the number of available water-filled oviposition sites. Although the number of

potential containers increases with population density, a modelling study on the relationship

between human and mosquito densities has previously suggested that water container number

likely does not keep increasing after a given number of humans is reached [43]. Larval and

pupal developmental rates increase with temperature and an increase in larval indices with

temperature (>31.5˚C) has previously been observed at monthly lag times [41]. Interestingly,

there were significant lagged associations with temperature variables and larval indices at lag

times in this study, even if the meteorological associations gave an overall better fit with the

current month’s larval indices. The non-linear relationship of immature indices with DTR is a

Fig 7. The fitted model association between monthly mean daily minimum temperatures and the number of dengue

cases (A) one month later and (B) two months later. Shown are the observed data (crosses) and the fitted model (red

line).

https://doi.org/10.1371/journal.pntd.0011603.g007
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well-recognised phenomenon and developmental rates have been shown to decrease with

increasing DTR. [44,45]. Furthermore, Carrington et al. found that both small and large DTRs

can affect the population dynamics [46].

In contrast to the immature indices, the adult mosquito numbers were most strongly influ-

enced by minimum temperatures and cumulative rain, with moderate effects of the other

meteorological variables. No plateau in adult mosquito numbers was observed with increasing

cumulative rain, but which may reflect the weak correlation between immature and adult

numbers. The association with minimum temperature most likely reflects the more general

effects of temperature on adult longevity with peak survival rates occurring round 27˚C and

increased mortality rates occurring above 32˚C [47–49]. The temperature variables are all

highly correlated and thus the minimum temperature per se may not be the most biologically

important.

The absence of any improved model fitting when using mosquito indices lagged by one to

four weeks after the meteorological variables suggests that the current month’s weather is that

impacting the current month’s mosquito numbers. It should be noted, however, that although

there was not an improved model fit, the meteorological variables in the lagged analyses did

Fig 8. The fitted model association of meteorological variables with the observed number of dengue cases two

months later in the two study sites on Palawan. (A) San Pedro, (B) San Miguel. Observed values shown by the blue

line and fitted values by the orange line.

https://doi.org/10.1371/journal.pntd.0011603.g008
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explain a substantial amount of the observed variation, ranging up to 64% for a four week lag

with adult mosquitoes (as compared to 72% for the same month’s weather). Moreover, when

we analysed the two islands separately, the lagged meteorological associations gave as good as,

or even a better fit than the variables from the current month. This relatively strong association

might be of value for an advanced warning index for an increase in mosquito densities. In

addition, the absence of improved lag effects may also reflect the relatively low variation in the

meteorological variables over such a short time period and a longer time frame might be more

informative, especially with respect to the adult population density following the dry season.

Similarly to previous studies, most meteorological variables had a non-linear association

with the incidence of dengue [35,38,50]. Temperature fluctuations have an impact on the mos-

quito’s life span, development, reproduction rates, and feeding frequency, as well as the speed

of virus replication and extrinsic incubation rate [21,51]. Low temperatures have been associ-

ated with a decreased vector capacity, and here we clearly observed an accelerating risk of den-

gue above a minimum temperature of ~22˚C. High temperatures have also been found to be

associated with decreased risk of dengue, generating a non-linear pattern [24,35,38,52]. In an

in-depth analysis, Mordecai et al. 2019 derived trait thermal performance curves from experi-

mental data and found the thermal optimum for Ae. aegypti-vectored dengue transmission

occurs at 29.1˚C (and thermal maxima and minima of 34.5˚C and 17.8˚C, respectively). For

Ae. albopictus these values were 26.4˚C (optimum) and 31.4˚C and 16.2˚C for the maximum

Fig 9. The fitted model association of meteorological variables with the observed number of dengue cases two

months later in Luzon. (A) Cupang, (B) Putatan, (C) Sampaloc, (D) Tambunting. Observed values shown by the blue

line and fitted values by the orange line.

https://doi.org/10.1371/journal.pntd.0011603.g009
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and minimum temperatures [24]. This thermal maximum is also observed in the present

study, with a trend for decreased dengue incidence at temperatures beyond 33˚C. A suggestive

decrease in dengue risk was also observed beyond 34˚C in Guangzhou [53]. Previous estimates

of threshold temperature values for increased risk of dengue incidence, all from Guangzhou,

China have identified values of 18–23˚C and 22–32˚C for minimum and maximum tempera-

ture thresholds [53–55]. The values we found fall within the same range.

Lower diurnal temperature ranges have been associated with a higher spread of the dengue

[22]. Moreover, less temperature variation during the day can also coincide with an optimal

temperature mean for dengue transmission. A modelling approach found that decreased tem-

perature variation around the predicted optimal temperature (~29˚C) increases the chances of

viral transmission [23]. This negative association between temperature variation and dengue

incidence was observed here and found only to lead to reduced risk at DTR above 6.5˚C.

Below this DTR, mean temperatures ranged from 27–29˚C, suggesting an optimal combina-

tion of temperatures for transmission. It should, however, be noted that increasing DTR has

been predicted to increase vectorial capacity at lower temperatures (~14˚C), highlighting the

complex temperature effects on viral transmission [23].

Rainfall can increase dengue transmission, generating more abundant oviposition sites and

maintaining a sufficient relative humidity for adult mosquito survival [21]. A positive

Fig 10. The fitted loglinear regression of the standardized cumulative adult mosquitoes against the number of

dengue cases the same month. The red line shows the fitted model in the GAM.

https://doi.org/10.1371/journal.pntd.0011603.g010
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association with cumulative rainfall was observed here, with incidence increasing with as little

as 100mm rainfall in a month. The similarity in the shape of the relationship of rain with adult

mosquitoes and with dengue cases would suggest that this latter is occurring through the

increase in adult mosquito numbers during that same month. This is supported by the obser-

vation of a positive association of cumulated adult mosquito numbers and dengue incidence.

When analysing the study sites on the island of Palawan separately from those on Luzon led

to vastly improved model fit, especially for dengue cases occurring two months later. The same

occurred when analysing the Luzon sites separately from the Palawan sites, but no added value

was observed when analysing each city within Luzon separately. It is tempting to hypothesise

that the weather variables are differentially affecting the two Aedes species that have differing

relative abundances on the two islands with knock-on effects for explaining variation in den-

gue incidence. That the significantly associated meteorological variables with dengue cases in

Palawan remained over one to two months lag time is consistent with previous findings and

potentially useful for any advanced warning strategy [35,38]. Such long delayed effects are bio-

logically plausible, reflecting the delay between amplification of the mosquito population, ini-

tial spread and subsequent expansion of the viral population, not to mention the reporting

delays. DENV has a lifecycle taking a minimum of 15 days, including a ~10 day extrinsic incu-

bation period within the mosquito following an infective bloodmeal and then a 4–10 day

intrinsic incubation period following an infectious bite on a human. Two months lag would

thus correspond to a maximum of three generations of viral transmission even with an ade-

quate mosquito population density. Furthermore, given that the majority of DENV infections

are inapparent, the consequences of expanding viral circulation identified through clinical

cases would take longer [56].

This study identified two meteorological variables, DTR and minimum temperature, which

were found to be associated with dengue cases one and two months later. Previous analyses

found, amongst other meteorological variables, mean or minimum temperature to be associ-

ated with dengue cases occurring one month, 2–3 months and 1–12 weeks later according to

the study [35,36,57]. This consistent association of temperature being associated with increas-

ing dengue incidences in geographically different settings (Thailand, Brazil, Mexico, Barbados)

is very promising for its use in a EWS [35,36,57]. The clear associations of meteorological vari-

ables and the mosquito indices is encouraging and yet it seems that the link between such indi-

ces and dengue incidence remains difficult to detect. Only adult mosquitoes showed any

positive association with dengue incidence, but far weaker than when using meteorological

variables. Previous work examining the association between mosquito indices and dengue

cases did reveal associations with BI, CI and HI at lags of 1–2 months, but did not consider

simultaneously the effect of the meteorological variables [58]. Despite recommendations from

stakeholders testing the most elaborate EWS to date, EWARS, to include mosquito indices,

our study suggests that the indices bring no added value [35].

There are several limitations to this study. Firstly, we only had 14 months dengue case data

upon which to base our analyses, but which was carried out in six sites on two environmentally

differing islands. Secondly, even though we had meteorological data from each of the cities, we

had no more specific information at the scale of each site and thus could not include a spatial

element in the analyses. Intra-annual spatial variation in incidence was observed, but may

more likely reflect the known clustered nature of dengue outbreaks and the impact of herd

immunity [59,60]. Whilst meteorological variables likely vary at very local scales, disentangling

the relative roles of immunity, clustering and meteorology will require fine-scale measures of

serology, meteorology and case geolocalisation. However, efforts to calibrate local microcli-

mate with satellite data would be a major step in addressing the real associations of meteoro-

logical variables with mosquito indices.
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In conclusion, there have been increasing efforts to establish early warning and response

systems using meteorological information, but which although promising have often proven

country-specific [34,35,57]. Our study does, however, suggest that there are globally consistent

meteorological variables providing some predictive power at lead times of 1–2 months. It also

reaffirms the lack of explanatory power of mosquito indices and hence questions the utility of

investing the substantial effort necessary for collecting such indices. The absence of added

value of mosquito indices may be because the meteorological variables strongly influence the

mosquito bionomics and vectorial capacity and thereby better capture the associations with

dengue incidence than mosquito indices can. It is possible, however, that at finer spatial scales

mosquito indices may bring additional predictive value, being affected by the microclimate

that the meteorological stations cannot capture. Further studies focussing on the more local

scale with respect to both microclimate and mosquito indices might be a promising route of

investigation.
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