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Significance

Microorganisms colonize anoxic 
ecological niches and use water 
as an oxygen donor for 
hydroxylation reactions in such 
environments. Here, we identify 
a unique source of oxygen, 
namely the metabolite 
prephenate, which enables the 
anaerobic biosynthesis of 
ubiquinone, a lipid important for 
bacterial bioenergetics. We 
predict that prephenate is 
involved as an oxygen donor in 
several biological pathways, 
including RNA modification.  
This study opens prospects for 
deciphering anaerobic 
metabolism and designing 
antimicrobial agents.
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All biological hydroxylation reactions are thought to derive the oxygen atom from one 
of three inorganic oxygen donors, O2, H2O2, or H2O. Here, we have identified the 
organic compound prephenate as the oxygen donor for the three hydroxylation steps 
of the O2-independent biosynthetic pathway of ubiquinone, a widely distributed lipid 
coenzyme. Prephenate is an intermediate in the aromatic amino acid pathway and 
genetic experiments showed that it is essential for ubiquinone biosynthesis in Escherichia 
coli under anaerobic conditions. Metabolic labeling experiments with 18O-shikimate, 
a precursor of prephenate, demonstrated the incorporation of 18O atoms into ubiqui-
none. The role of specific iron–sulfur enzymes belonging to the widespread U32 protein 
family is discussed. Prephenate-dependent hydroxylation reactions represent a unique 
biochemical strategy for adaptation to anaerobic environments.

hydroxylation | anaerobiosis | prephenate | ubiquinone | U32 proteins

Hydroxylation reactions are involved in the biosynthesis, degradation, and modulation 
of the biological activity of a wide variety of molecules, by introducing a single oxygen 
(O) atom into a carbon–hydrogen bond. The enzymes that catalyze hydroxylation reac-
tions, collectively referred to as hydroxylases, typically derive the added O atom from O2 
or its reduction product H2O2 (1, 2), and therefore require aerobic conditions to function. 
Enzymes such as flavin monooxygenases or heme/nonheme monooxygenases form large 
families of O2-dependent hydroxylases that have been studied for decades (3–7). In anaer-
obic environments, H2O is currently the only known O-donor for biological hydroxylation 
reactions. H2O-dependent hydroxylases contain a molybdenum cofactor and represent a 
diverse family with well-known members like xanthine oxidase, resorcinol hydroxylase, 
or ethylbenzene dehydrogenase (8, 9).

Ubiquinone (UQ) is a redox lipid that contributes to the function of energy-producing 
respiratory chains in both aerobiosis and anaerobiosis (10–12). The biosynthesis of UQ 
requires three hydroxylation steps, which are catalyzed by flavin-dependent hydroxylases 
(UbiI, UbiH, and UbiF in Escherichia coli) under aerobic conditions, using O2 as the 
O-donor (13) (Fig. 1). Under anaerobiosis, the iron–sulfur (Fe–S) proteins UbiU and 
UbiV are essential for UQ biosynthesis, but the O-donor used remains unknown (Fig. 1) 
(14, 15). UbiU-V are widely distributed in Proteobacteria and belong to the U32 peptidase 
family. Most of the twelve subfamilies of U32 proteins remain uncharacterized, but two 
have been linked to O2-independent hydroxylation reactions of RNA molecules (16–18), 
raising the possibility of a common hydroxylation function with an as yet unidentified 
O-donor.

Here, we show, using genetics and isotopic labeling, that prephenate, a molecule derived 
from the shikimate pathway, is the O-donor for the hydroxylation reactions of the UQ 
biosynthetic pathway operating under anaerobic conditions. We propose a prephenate- 
dependent hydroxylation chemistry that is likely shared by U32 proteins.

Results

The aro Pathway is Required for the Biosynthesis of UQ in Anaerobic Conditions. 
Preliminary evidence indicated that the aromatic amino acids (aro) pathway is involved 
in O2-independent UQ biosynthesis in E. coli (14). When grown anaerobically in an 
LB medium containing aromatic amino acids, Δaro mutants showed a strong decrease 
in the level of UQ (Fig.  2 A and B), whereas the latter remained unaffected in cells 
grown aerobically (SI Appendix, Fig. S1A). Furthermore, the anaerobically grown Δaro 
mutants accumulated octaprenyl-phenol (OPP) (Fig. 2C), a UQ pathway intermediate 
downstream of 4-hydroxybenzoic acid (4-HB) (Fig. 1), suggesting that the UQ deficiency 
was independent of 4-HB. Accordingly, the addition of 4-HB to cultures of Δaro mutants 
did not increase their UQ levels (SI Appendix, Fig. S1B).D
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The Δaro mutants were also deficient in demethylmenaquinone 
and menaquinone, but this was true under both anaerobic and 
aerobic conditions (SI Appendix, Fig. S1 C and D). This is likely 
due to a deficiency in the isochorismate precursor, which is derived 
directly from chorismate in the aro pathway (Fig. 2D). Overall, 
this genetic analysis shows that preventing the synthesis of 
chorismate affects the biosynthesis of UQ under anaerobic con-
ditions at a step downstream of OPP (Fig. 1).

Prephenate Is Essential for the Biosynthesis of UQ under 
Anaerobic Conditions. Single deletions of genes located 
downstream of chorismate in the aro pathway had no effect 
on UQ levels (Fig.  3A). In contrast, combined inactivation 
of pheA and tyrA resulted in a severe UQ deficiency under 
anaerobic conditions (Fig. 3A) associated with increased OPP 
levels (SI  Appendix, Fig.  S2A), while UQ levels were normal 
under aerobic conditions (SI Appendix, Fig. S2B). Expression 

OPP4-HB

PPO H
8

UbiA UbiX,D UbiG UbiE UbiG

UQ8

OH

COOH
1

2

3
4

5

6

R
OH

HO
OH

R H3CO
OH

R H3CO
OH
R

OH
CH3

H3CO
OH
R

OH OH
HO

H3CO

CH3

OH
R H

8H3CO

H3CO
OH

OH

1

2

34
5

6

?

UbiI

UbiUV

O2

?

UbiH

UbiUV

O2

?

UbiF

UbiUV

O2

Fig. 1.   Aerobic and anaerobic pathways of UQ8 biosynthesis in E. coli. The Ubi-enzymes common to both pathways are in black, those specific to the O2-
dependent pathway are shown in red, and those specific to the O2-independent pathway are shown in blue (? for the unknown O- donor). The O atoms derived 
from the three hydroxylation steps are highlighted in yellow. R, octaprenyl chain shown in green in the UQ8 structure; 4-HB, 4-hydroxybenzoic acid; OPP, 
3-octaprenylphenol; UQ8, ubiquinone-8.

D

phenylalanine

O HP
OH

O
O

OH
CH2

O

D-erythrose
4-phosphate

phosphoenol
pyruvate

O H
OH

OH

OHO

O

OH
O

O
HO

OH
shikimate chorismate prephenate

OH

O

O

OH

O

O

OH OH
NH2

O

4-hydroxyphenyl
pyruvate

phenylpyruvate

tyrosine

NH NH2

OO H

tryptophan

O
O

OH

OH
P OH
O

OH

AroB

AroF
AroG
AroH AroD AroE AroA

AroL
AroK AroC

OH
O

OHO

OH

O

CH2

NH2
OH

OH

O

TyrA
PheA
(CM)

TyrA

PheA
(PDT)

IlvE
AspC
TyrB

IlvE
AspC
TyrB

O

OHO

OH
CH2

O

OH

4-HBisochorismate

UbiCEntC
MenF

(D)MK8 UQ8

OHO

OH

TrpE

TrpD

TrpC

TrpA

TrpB

Time (min)

co
ur

an
t 

(µ
A)

UQ8

DMK8

UQ10

MK8

OPP

ΔaroD
ΔaroE

WT
ΔaroA
ΔaroB
ΔaroC

6 7 8 9 10 11 12 13 14 15 16

A B

0

10

20

30

40

50

U
Q

8
co

nt
en

t
(p

m
ol

es
/m

g 
ce

lls
)

WT
Δa

ro
A
Δa

ro
B
Δa

ro
C
Δa

ro
D
Δa

ro
E

**** ****
***

**** ****
0

5000

10000

15000

20000

25000

O
PP

 c
on

te
nt

(M
S 

pe
ak

 a
re

a/
m

g 
ce

ll)
WT
Δa

ro
A
Δa

ro
B
Δa

ro
C
Δa

ro
D
Δa

ro
E

**

*

ns

**

***

C

Fig. 2.   O2-independent biosynthesis of ubiquinone depends on the aro pathway in E. coli. (A) High Perfomance Liquid Chromatography-Electrochemical Detection 
(HPLC-ECD) analysis of lipid extracts from E. coli Δaro strains grown anaerobically in LB medium, UQ10 added as internal standard. UQ8 (B) and OPP (C) content in 
the strains analyzed in A. Mean ± SD (n = 3). ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05 by unpaired Student’s t test comparing to WT. ns, not significant. 
(D) Metabolic pathway of aromatic amino acids in E. coli, modified from ref. 17. The chorismate mutase (CM) and prephenate dehydratase (PDT) domains of 
PheA convert chorismate to prephenate and prephenate to phenylpyruvate, respectively (19). The black and gray arrows indicate the mutants not tested or 
tested in this study. The red and green disks indicate the proteins dispensable or essential for UQ8 biosynthesis under anaerobic conditions, respectively. The 
ΔpheA and ΔtyrA strains are not deficient for UQ8 but the double-mutant ΔpheA ΔtyrA is. The UQ pathway is highlighted in gray, and (D)MK8 corresponds to the 
(demethyl) menaquinone pathway.D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 I

N
ST

IT
U

T
 P

A
ST

E
U

R
 o

n 
Ju

ly
 3

1,
 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

15
7.

99
.1

2.
13

5.

http://www.pnas.org/lookup/doi/10.1073/pnas.2321242121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2321242121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2321242121#supplementary-materials


PNAS  2024  Vol. 121  No. 13  e2321242121� https://doi.org/10.1073/pnas.2321242121   3 of 6

of the chorismate mutase (CM) domain of PheA (PheA_CM) 
complemented the deficiency (Fig.  3B), supporting that 
prephenate, the product of PheA_CM (Fig.  2D), is required 
for the O2-independent biosynthesis of UQ. Accordingly, the 
addition of prephenate to cultures of the ΔpheA ΔtyrA strain 
increased UQ levels (Fig.  3C). We observed a residual level 
of UQ in the ΔpheA ΔtyrA strain, which was abolished upon 
inactivation of the O2-dependent hydroxylases, UbiI and UbiH 
(Fig. 3C). The residual level of UQ was therefore attributed to the 
activity of the O2-dependent hydroxylases using trace amounts 
of O2 in the anaerobic culture medium, a hypothesis supported 
by the complete absence of UQ in the ΔaroD ΔubiIH mutant 
(Fig. 3D). Importantly, prephenate increased UQ levels in both 
strains (Fig. 3D). Collectively, the data support that prephenate 
is essential for UQ biosynthesis under anaerobic conditions.

The Hydroxylation Steps Involving UbiU-V Are Dependent on 
Prephenate. The expression of UbiU-V is tightly regulated 
by the transcription factor FNR (Fumarate and Nitrate 
Reductase); as a result, the two proteins are well expressed 
under anaerobiosis but very poorly expressed under aerobiosis 
(15). When expressed under aerobic conditions thanks to a 

constitutive promoter, UbiU-V can replace UbiI, UbiH, and 
UbiF in catalyzing the three hydroxylation reactions necessary 
for UQ biosynthesis, using an unidentified O-donor (15). 
In line with previous results, UbiU-V allowed robust aerobic 
growth of the ΔubiIH strain on succinate medium, which is 
strictly dependent on UQ biosynthesis (Fig. 3E). Consistent 
with the requirement of the 4Fe–4S cluster of UbiU for activity 
(15), the C176A mutation, which impairs the binding of the 
Fe–S cluster, abolished growth on succinate (Fig. 3E). Deletion 
of aroD (Fig. 3E) or pheA tyrA (Fig. 3F) abolished the growth 
conferred by UbiU-V on succinate, whereas anaerobic growth 
on glucose, which is independent of UQ, was maintained 
in all cases. The addition of shikimate rescued the growth 
of the ΔaroD ΔubiIH strain expressing UbiU-V (Fig.  3E), 
demonstrating that a metabolite downstream of shikimate in 
the aro pathway is required for UbiU-V function. Furthermore, 
the expression of PheA_CM in the ΔpheA ΔtyrA ΔubiH strain 
restored the function of UbiU-V (Fig. 3F). Taken together, these 
results demonstrate that prephenate is required for the UbiU-
V-dependent hydroxylation steps and suggest that prephenate 
could be the O-donor for the O2-independent hydroxylation 
reactions of UQ biosynthesis.
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Biosynthesis of 18O3-UQ from C4[18O]-Shikimate under Anaero­
bic Conditions. To test whether prephenate is the O-donor of 
the hydroxylation reactions of the anaerobic UQ pathway, we 
designed an in vivo labeling experiment using shikimate labeled 
with 18O at position 4 exclusively, which we termed C4[

18O]-
shikimate. Shikimate was preferred over prephenate, which has 
a low bioavailability (20) and is unstable in solution, especially 
under acidic conditions (21–24). Moreover, the C4-hydroxyl 

group of shikimate remains intact during in vivo conversion to 
prephenate (25), and shikimate restored higher UQ levels when 
added to cultures of the ΔaroD strains (Fig. 3D and SI Appendix, 
Fig. S2C). The synthesis of C4[

18O]-shikimate was performed in 
five steps using commercial shikimate as the starting material 
(Fig.  4A and SI  Appendix, Fig S4-S22). The general strategy 
was to protect all reactive functions of the molecule, except the 
hydroxyl at position 4 to selectively label it with 18O and then 
remove the protecting groups (Fig. 4A). LC–MS analysis of the 
final compound revealed that 64% of shikimate was labeled 
with 18O, while 36% remained unlabeled and contained 16O 
(SI Appendix, Fig. S3A).

C4[
18O]-shikimate and unlabeled shikimate, used as control, 

were added to anaerobic cultures of the ΔaroD ΔubiIH strain 
and yielded similar levels of UQ (SI Appendix, Fig. S3B). The 
mass spectra of UQ differed significantly depending on whether 
the shikimate added to the cultures was labeled or not (Fig. 4 
B and C). With C4[

18O]-shikimate, the most prominent ions 
corresponding to H+, NH4

+, and Na+ adducts of UQ8 were 
predominantly shifted by +4 mass units, and lower peaks at +6 
were also detected (Fig. 4 B and C), indicating the incorporation 
of two and three 18O atoms, respectively. Quantification of these 
signals by single-ion monitoring of the H+ adducts (SI Appendix, 
Fig. S3 C and D) yielded a relative abundance consistent with 
a quantitative incorporation of three oxygen atoms from a pre-
cursor labeled at 64% with 18O (compare Fig. 4D and 
SI Appendix, Fig. S3 E–G). Importantly, when 4-HB, which 
provides the hydroxyl group at position C4 of UQ (Fig. 1), was 
added together with C4[

18O]-shikimate, the labeling of UQ8 
was not affected (compare Fig. 4C and SI Appendix, Fig. S3H). 
This result established that the 18O labels incorporated from 
C4[

18O]-shikimate are present at the three positions C1, C5, 
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and C6 of the UQ8 molecule. Collectively, the data demonstrate 
that an organic molecule derived from shikimate is the O-donor 
for the three hydroxylation reactions required to convert OPP 
into UQ8 under anaerobic conditions.

Discussion

We have established genetically that prephenate is essential for the 
biosynthesis of UQ under anaerobic conditions. In addition, iso-
topic labeling experiments demonstrated that the three O atoms 
of UQ are derived exclusively from the O atom at position C4 of 
shikimate, the unique precursor of prephenate. These data show 
conclusively that the hydroxylation reactions of the O2-
independent pathway leading to the biosynthesis of UQ use pre-
phenate as the O-donor. This is the first example of an organic 
molecule serving as an O-donor in a biological reaction, with only 
O2, H2O2, and H2O previously known as O-donors (1, 2, 8).

We have shown here that prephenate is required for the function 
of UbiU-V, two Fe–S proteins of the U32 family that are essential 
for the hydroxylation steps of the O2-independent UQ biosyn-
thetic pathway (14, 15). Interestingly, two other U32 members, 
RlhA and TrhP, are involved in O2-independent hydroxylation 
reactions of RNA molecules (16–18), but a direct hydroxylation 
activity has not been demonstrated so far. Overall, an attractive 
hypothesis is that U32 proteins are bona fide hydroxylases that 
catalyze prephenate-dependent hydroxylation reactions, consistent 
with previous proposals (16, 17). While waiting for the develop-
ment of in vitro activity assays, the availability of C4[

18O]-shikimate, 
through the chemical synthesis reported here, provides an oppor-
tunity to confirm in vivo the importance of prephenate for U32 
protein-dependent pathways.

We propose the following mechanism for prephenate-dependent 
hydroxylation: i) a 2-electron oxidation of the substrate aromatic ring 
would lead to a cation intermediate, followed by ii) a concerted pre-
phenate decarboxylation, releasing a nucleophilic hydroxide molecule 
that would quench the reactive cation to form the hydroxylated prod-
uct and phenylpyruvate (Fig. 5). Interestingly, such a decarboxylation 
coupled to aromatization occurs in prephenate dehydratase (26) and 
in carboxy-S-adenosyl-L-methionine synthase (27). The unknown 
oxidant involved in step (i) probably has a high redox potential to 
oxidize the aromatic ring. The [4Fe–4S] clusters bound to UbiU and 
UbiV are functionally important (14, 15) and may serve as part of 
an electron transfer chain from the substrate to the yet unidentified 
electron acceptor. Remarkably, this role may be conserved in other 
U32 proteins as Fe–S clusters are likely to be a common feature of 
this family. Indeed, the function of TrhP and RlhA has been shown 
to depend either directly (18) or indirectly (16) on Fe–S clusters, and 
the four cysteine residues that coordinate the 4Fe–4S cluster in 
UbiU-V form a motif that is present in most U32 proteins (14).

The development of chemical analogs of prephenate as inhibitors 
of U32 proteins may be a promising antimicrobial strategy, consid-
ering that the aro pathway is found only in microorganisms and 
plants and that U32 proteins are not present in humans and are 
almost exclusively distributed in bacteria and to a lesser extent in 
archaea (17). UbiU-V has recently been implicated in the transition 
from chronic to acute infection in Pseudomonas aeruginosa (28), 
suggesting that inhibition of the anaerobic metabolism of this potent 
pathogen with prephenate analogs would affect its pathogenicity.

The existence of the O2-independent UQ biosynthetic pathway 
was documented in 1978 (29), and it took 45 y to identify pre-
phenate as the O-donor. Hydroxylation reactions occur in several 
other anaerobic pathways (30, 31), but the enzymes and O-donors 
involved remain largely uncharacterized. Of particular interest, one 
of the pathways for anaerobic microbial degradation of common 

aromatic pollutants, such as benzene and naphthalene, begins with 
hydroxylation of the aromatic ring with an unknown O-donor 
(32–34). Since about one-third of bacterial genomes show no evi-
dence for the use of the molybdenum cofactor required for 
H2O-dependent hydroxylation reactions (8, 35), these species must 
rely on other hydroxylation mechanisms under anaerobic condi-
tions. Given the high conservation of the aro pathway among 
microbes (36), we propose that prephenate acts as an O-donor in 
some of these hydroxylation reactions.

Materials and Methods

Strains and Plasmids Constructions. All the strains and plasmids used in 
this study are listed in SI Appendix, Tables S1 and S2, respectively. The knockout 
strains (SI Appendix, Table S1) were obtained by generalized Φ P1 transduction 
using donor strains from the Keio collection (37). For the generation of specific 
knockouts, PCR recombination with the λRed system was used (38). Alleles were 
combined in the same strain by generalized Φ P1 transduction. When necessary, 
the antibiotic resistance marker was removed using flippase (FLP recombinase 
expression from plasmid pCP20 as described previously (39). Cassette removal 
and plasmid loss were verified by antibiotic sensitivity and confirmed by PCR 
amplification.

Expression plasmids for pheA and ubiIH were constructed using primers listed in 
SI Appendix, Table S3. DNA fragments obtained by PCR on genomic DNA from the 
MG1655 strain were cloned in EcoRI/XhoI restriction sites of the pTet vector (15). 
The compatible plasmid pACYC-pBAD-ubiUV was constructed by transferring the 
EcoRV/HindIII fragment from pES232 into the pACYC184 vector digested by the 
same enzymes.

Media and Growth Conditions. Strains were grown in lysogeny broth (LB) 
medium (10 g/L of tryptone, 10 g/L of NaCl and 5 g/L of yeast extract) or MOPS 
(3- (N-morpholino)propanesulfonic acid, https://www.genome.wisc.edu/resources/
protocols/mopsminimal.htm) supplemented with 0.4% glycerol as the carbon 
source and 19 amino acids (10 mM Ser, 0.8 mM Ala/Gly/Leu, 0.6 mM Gln/Glu/Val, 
0.4 mM Arg/Asn/Ile/Lys/Phe/Pro/Thr, 0.2 mM His/Met/Tyr, and 0.1 mM Cys/Trp), 
5 vitamins (0.02 mM thiamine hydrochloride, 0.02 mM calcium pantothenate, 
0.02 mM 4-aminobenzoic acid, 0.02 mM 4-HB, 0.02 mM 2,3-dihydroxybenzoic 
acid) according to Sakai et al. (17). Ampicillin (100 µg/mL), kanamycin (50 µg/mL), 
chloramphenicol (35 µg/mL), 4-HB (10 or 100 µM), prephenate (1 mM) (Sigma-
Aldrich) and shikimate (10, 100, or 300 µM) (Sigma-Aldrich) or synthesized labeled 
18O-shikimate (10 µM) were added when needed from aqueous stock solutions 
sterilized by filtration through 0.2-µm filters. PheA and PheA-CM expression from 
pTet in ΔpheAΔtyrA strain was induced by promotor leak.

Aerobic cultures were performed in glass tubes (15 cm long and 2 cm in 
diameter) at 37 °C, with 180 rpm shaking. 5 mL of fresh medium was inoculated 
with 100 µL of an overnight culture and the culture was grown overnight.

Anaerobic cultures were performed in Hungate tubes as previously described 
(14), using LB or MOPS media. LB medium was supplemented with 2.5 mg/L 
resazurin as an anaerobic indicator, with 100 mg/L L-cysteine (adjusted to pH 6 
with NaOH) in order to reduce residual dioxygen, and with anti-foam (Sigma Life 
Science, 0.5 mL/L). Then, 5 or 13 mL of this medium was distributed in Hungate 
tubes and deoxygenated by bubbling high-purity argon for 40 min. The Hungate 
tubes were sealed and autoclaved. The resazurin was initially purple, it turned to 
pink after deoxygenation and become colorless after autoclaving. The resazurin 
remained colorless during culture indicating anaerobic conditions. The sterile 
MOPS medium was supplemented with 100 mM sterile KNO3 as the final elec-
tron acceptor and 5 mL of this medium was distributed to the Hungate tubes and 
deoxygenated under sterile conditions by bubbling high-purity argon for 40 min. 
The tubes were sealed and were then used for cultures. The precultures were per-
formed overnight at 37 °C in Eppendorf tubes filled to the top with either LB or 
MOPS media. The Hungate tubes were then inoculated through the septum with 
disposable syringes and needles with 100 μL of precultures and incubated at 37 °C  
without agitation. For Hungate tubes containing LB medium, the shikimate, the 
prephenate, and the antibiotic were added after autoclave and at the same time 
as the preculture. In contrast, for the Hungate tubes containing MOPS medium, 
the supplements were added before deoxygenation.D
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For testing complementation of the ΔpheA ΔtyrA ΔubiH mutant by ubiUV, 
in the presence or absence of the PheA CM activity and for testing complemen-
tation of the ΔaroD or ΔaroD ΔubiIH or ΔubiIH mutants by ubiUV, in the 
presence or absence of shikimate, strains were transformed and selection was 
performed in −O2. Precultures were done in −O2 in LB at 37 °C. The cultures 
were diluted in series (10-fold dilution at each step) in an M9 medium and 
5 μL drops were plated on a minimal medium with 50 mM succinate and 
incubated at 37 °C in +O2 or with 0.1% glucose and incubated in the absence 
of O2. Arabinose was added at the concentrations indicated in figure legends 
for inducing expression of ubiUV genes.

Lipid Extraction and Quinone Analysis. First, 5 mL of each culture was cooled 
on ice for at least 30 min before centrifugation at 3,200 g at 4 °C for 10 min. Cell 
pellets were washed in 1 mL ice-cold phosphate-buffer saline and transferred 
to preweighted 1.5-mL Eppendorf tubes. After centrifugation at 12,000 g at  
4 °C for 1 min, the supernatant was discarded, the cell wet weight was determined 
and pellets were stored at −20 °C until lipid extraction, if necessary. Quinone 
extraction from cell pellets was performed as previously described (40). The dried 
lipid extracts were resuspended in 100 µL ethanol, and a volume corresponding 
to 1 mg of cell wet weight was analyzed by HPLC electrochemical detection—mass 
spectrometry with a BetaBasic-18 column (Thermo Scientific) at a flow rate of  
1 mL/min with a mobile phase composed of 50% methanol, 40% ethanol, and 
10% of a mix [90% isopropanol, 10% ammonium acetate (1 M), and 0.1% formic 
acid]. When necessary, MS detection was performed on an MSQ spectrometer 
(Thermo Scientific) with electrospray ionization in positive mode (probe temper-
ature, 400 °C; cone voltage, 80 V). Single-ion monitoring detected the following 
compounds: UQ8 (M+H+), m/z 727 to 728, 6 to 10 min, scan time of 0.2 s; 
18O-UQ8 (M+H+), m/z 729 to 730, 6 to 10 min, scan time of 0.2 s; 2(18O)-UQ8 
(M+H+), m/z 731 to 732, 6 to 10 min, scan time of 0.2 s; 3(18O)-UQ8 (M+H+), 
m/z 733 to 734, 6 to 10 min, scan time of 0.2 s; 4(18O)-UQ8 (M+H+), m/z 735 to 
736, 6 to 10 min, scan time of 0.2 s; UQ8 (M+ NH4

+), m/z 744 to 745, 6 to 10 min, 
scan time of 0.2 s; UQ10 (M+NH4

+), m/z 880 to 881, 10 to 17 min. MS spectra 

were recorded between m/z 600 and 900 with a scan time of 0.3 s. ECD and MS 
peak areas were corrected for sample loss during extraction on the basis of the 
recovery of the UQ10 internal standard (40). The absolute quantification of UQ8 
based on the m/z 744 to 745 signal at 7.8 min was performed with a standard 
curve of UQ8 ranging from 6.25 to 50 pmol UQ8.

Synthesis of C4[18O]-Shikimate. The synthesis of C4[18O]-Shikimate is described 
in SI Appendix, Supplementary text. To determine the percentage of labeled shi-
kimate, 3 or 9 µL of an aqueous solution of the synthetized product (0.34 mg/
mL) was analyzed by HPLC–MS with a BetaBasic-8 column (Agilent C8 (4.6 × 
150 mm; 5 µm) at a flow rate of 0.7 mL/min with a mobile phase composed of 
0.1% formic acid in water. MS detection was performed on an MSQ spectrom-
eter (Thermo Scientific) with electrospray ionization in negative mode (probe 
temperature, 450 °C; cone voltage, 60 V). Single-ion monitoring detected the 
following compounds: 16O-shikimate (M-H), m/z 172.5 to 173.5, 0 to 6 min, scan 
time of 0.2 s; 18O-shikimate (M-H), m/z 174.5 to 175.5, 0 to 6 min, scan time 
of 0.2 s. MS spectra were recorded between m/z 150 and 300 with a scan time 
of 0.3 s. The percentage of C4[18O]-Shikimate was calculated as a ratio (A175/
(A175+A173))*100 in which A175 and A173 correspond to the peak area of 
the SIM signals at m/z 175 and m/z 173, respectively. The value obtained (64 ± 
1.2%) corresponds to the average of the values measured for the two injections.

Data, Materials, and Software Availability. All data are available in the main 
text or the SI Appendix.
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