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Abstract 15 

Mitochondria are double membrane-bound organelles whose network morphology in cells is 16 

shaped by opposing events of fusion and fission executed by dynamin-like GTPases.  17 

Mutations in these genes can perturb the form and functions of mitochondria in cell and animal 18 

models of mitochondrial diseases.  An expanding array of chemical, mechanical, and genetic 19 

stressors can converge on mitochondrial shaping proteins and disrupt mitochondrial 20 

morphology. In recent years, studies aimed at disentangling the multiple roles mitochondrial 21 

shaping proteins play beyond fission or fusion have provided insights into the homeostatic 22 

relevance of mitochondrial morphology.  Here, I will review the pleiotropy of mitochondrial 23 

fusion and fission proteins with the aim of understanding whether mitochondrial morphology 24 

is important for cell and tissue physiology. 25 
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Mitochondrial form and function 28 

Mitochondria are double membrane-bound organelles that perform an armada of 29 

metabolic, biosynthetic, and signaling functions to control the life and death of the cell [1,2]. 30 

Over 125 years ago, Karl Benda coined the term mitochondria (an amalgamation of the Greek 31 

words for thread and granules), which still today aptly describes the morphology this essential 32 

organelle adopts in most cell types.  Landmark electron microscopy studies by Palade and 33 

Sjóstrand in the 1950s provided insights into the ultrastructure of mitochondrial membranes 34 

and depicted mitochondria as isolated and independent organelles within cells[3,4].  Recent 35 

convergent advances in cell biology have allowed us to image cells with unprecedented 36 

spatiotemporal resolution[5–7], allowing us to appreciate that mitochondria can modulate their 37 

morphology and establish interconnected networks that span across the cell, contacting and 38 

communicating with other organelles in a dynamic fashion and in ways that vary across cell 39 

types, tissues, and organisms[8,9].  The opposing events of mitochondrial membrane fission 40 

and fusion that are executed by dynamin-like GTPases: DRP1 performs fission at the outer 41 

mitochondrial membrane (OMM) upon recruitment from the cytosol to specific OMM receptors 42 

while Mitofusins (MFN1/2) perform OMM fusion, and OPA1 catalyzes inner mitochondrial 43 

membrane (IMM) fusion[10].  The discovery of the first mitochondrial shaping proteins in yeast 44 

in the 1990s[11] provided a molecular framework to understand how the genetic, chemical, 45 

and mechanical lesions that disrupt their mammalian counterparts impact diverse 46 

mitochondrial and cellular functions [2,10].   47 

The spatial compartmentalization of mitochondrial functions, the maintenance of 48 

cellular homeostasis over time, and the integration of adequate responses to stress relies on 49 

the organization of the IMM and OMM.  The OMM interacts with other subcellular organelles 50 

such as the endoplasmic reticulum (ER), trans-Golgi network (TGN), lipid droplets (LD), 51 

lysosomes, and cytoskeleton to regulate complex homeostatic and signaling processes[8,9].  52 

The IMM delimits the matrix, where mitochondrial DNA (mtDNA) is replicated and expressed, 53 

and extends internally to form cristae, which are convoluted invaginations that harbor essential 54 

macromolecular complexes such as the machinery of oxidative phosphorylation (OXPHOS) 55 

that synthesizes the bulk of cellular ATP. As such, cristae structure and density direct the 56 

bioenergetic capacity of mitochondria[12] and insults that perturb their ultrastructure can lead 57 

to reduced OXPHOS activity[13].  Similarly, chemical and genetic perturbations that tip the 58 

balance of fission and fusion (Figure 1) often correlate with altered OXPHOS output leading 59 

to the notion that hyperfused mitochondria increase bioenergetic capacity while shorter, 60 

fragmented mitochondria are bioenergetically impaired[14–16].  More recently, self-supervised 61 

deep learning studies were used to revisit the mitochondrial morphology changes triggered by 62 

well-known mitochondrial poisons, which revealed intercellular and intracellular diversity of 63 



mitochondrial shapes well-beyond what has been classified with simpler, supervised 64 

approaches [17].   65 

Beyond ATP synthesis, mitochondria also act as signaling organelles by orchestrating 66 

multi-layered homeostatic cellular responses to a wide array of stressors in ways that have 67 

been proposed to depend on mitochondrial morphology, membrane integrity and 68 

composition[1,9]. An ample of body of literature has led to the inference that elongation of the 69 

mitochondrial network confers protection against cell death signaling and mitophagy while 70 

fragmented mitochondria facilitate these processes[10,18,19].  Here, we will revisit the 71 

conventional wisdom that the overall network morphology of mitochondria is paramount for 72 

metabolism and signaling at the level of the organelle, cell, and tissue.   73 

 74 

The relationship between mitochondrial form and function – cause or consequence? 75 

The long-standing notion that mitochondrial function is inextricably linked to the overall 76 

network morphology in ways that are relevant for cellular and tissue homeostasis originated 77 

from the interpretation of two separate groups of observations.  The first involves situations 78 

where targeted disruption the mitochondrial shaping proteins (such as OPA1, MFN1/2, DRP1 79 

and its receptors) correlate with impairment of one or more mitochondrial functions, often with 80 

negative repercussions at the level of the cell, tissue or organism[2,10,18].  The second arises 81 

in cell or animal models in which genetic, chemical, mechanical, or infectious lesions trigger a 82 

perturbation of mitochondrial morphology that can be ameliorated or fully corrected through 83 

additional genetic or chemical interventions targeting mitochondrial dynamics[13,20–29].  For 84 

the latter, improved mitochondrial form and function often correlates with rescued cell and 85 

tissue functions, but this does not per se constitute formal proof of a causal role of imbalanced 86 

mitochondrial dynamics in disease.  In both situations, it is becoming increasingly evident that 87 

the pleiotropic function of mitochondrial shaping proteins and the questionable specificity of 88 

the chemical inhibitors designed to modulate their individual activities make it challenging to 89 

draw definitive conclusions regarding the functional relevance of mitochondrial network 90 

morphology.  91 

 92 

Pleiotropic functions of mitochondrial fusion factors 93 

OPA1 94 

OPA1 encodes a dynamin-like GTPase that localizes to the IMM where it executes 95 

mitochondrial fusion[30,31].  OPA1 ablation or mutation prevents IMM fusion, leading to a 96 

fragmentation of the mitochondrial network due to unabated division[32–34].  Pathogenic 97 

variants in OPA1 are primarily associated with Dominant Optic Atrophy (DOA) and DOA “plus”, 98 

which is a more severe, syndromic version of DOA involving extra-ocular symptoms, but also 99 

Behr syndrome, familial forms of Parkinson’s Disease (PD) and rare forms of infantile 100 



encephalomyopathy[35–40].  Hypomorphic OPA1 patient-derived primary fibroblasts 101 

generally show impaired mitochondrial fusion rates and a fragmented mitochondrial 102 

network[13,34].  In mice, whole-body genetic deletion of Opa1 is incompatible with embryonic 103 

development and deletion in the skeletal muscle, nervous system, retina, heart, and immune 104 

cell compartments triggers deleterious organ sequelae, highlighting the physiological 105 

relevance of OPA1[41–48].  However, not all tissues appear to depend as heavily on OPA1 106 

for function, as evidenced by hepatocyte-specific deletion studies that yield mice in seemingly 107 

perfect health despite an absence of OPA1, mitochondrial fragmentation, and cristae loss 108 

[49,50].  Indeed, physiological profiling of Opa1 mutant mice carrying mutations akin to those 109 

causing human diseases show peculiar tissue-specific defects, rather than organism-wide 110 

dysfunction[47,51–55]. 111 

Disrupting OPA1 function triggers fragmentation of the mitochondrial network and 112 

deleterious effects on cell and tissue health, which has been used as an argument for the 113 

central role of OPA1 in mitochondrial fusion in safeguarding normal cell and animal 114 

physiology[19]. However, OPA1 exercises pleiotropic functions within mitochondria that 115 

extend beyond mitochondrial fusion, which include the shaping of the IMM into cristae[13,56–116 

58], the maintenance of mtDNA[39,59,60], maintenance of mitochondrial phospholipids such 117 

as cardiolipin[13], assembly of OXPHOS complexes[13,61–63], ROS signaling[41,64–67], the 118 

restriction of mitochondrial outer membrane permeabilization (MOMP)[68,69], and the release 119 

of mtDNA to the cytoplasm that drives overactive innate immune signaling and 120 

inflammation[41,42,70].   121 

The role of OPA1 in mitochondrial fusion and network morphology regulation can be 122 

separated from its other functions under certain experimental conditions[49,65,71].  For 123 

example, synthetically suppressing mitochondrial division in OPA1-deficient cells through the 124 

genetic ablation of DRP1 leads to a complete re-establishment of tubular mitochondrial 125 

morphology in cultured cells without correcting IMM fusion defects[13,23,72–74]. This 126 

correlates with an improvement OXPHOS activity, and mitochondrial membrane potential and 127 

tumor cell growth in vitro (but not in vivo)[71,75].   However, repressing DRP1 in OPA1 128 

deficiency does not fully rescue normal mitochondrial morphology in hepatocytes of mice[23] 129 

nor in muscle of nematodes[76], highlighting a more complex in vivo situation.  In neurons, 130 

OPA1-dendent mitochondrial morphology and distribution defects can be restored via DRP1 131 

ablation, but this does not rescue neuronal viability and function[74]. It is important to consider 132 

that DRP1 ablation alone impairs mitochondrial and peroxisomal fission[77] and is associated 133 

with altered bioenergetic efficiency[78,79], fatty acid oxidation[80], calcium buffering[79,81], 134 

mitophagy[23,82,83], mitosis[27,84], impaired tumor growth[85], initiation of the integrated 135 

stress response (ISR)[86] and cell death sensitivity[87,88], making it challenging to interpret 136 

the phenotypic outcome of cells and tissues deficient for both OPA1 and DRP1.  Inhibition of 137 



mitochondrial fission in OPA1-deficient cells can also be achieved through the suppression of 138 

PGS1, which encodes a phosphatidyl glycerophosphate (PGP) synthase in the IMM that 139 

catalyzes the synthesis of PGP, a phospholipid precursor of cardiolipin (CL)[13]. In OPA1 140 

mutant human and mouse fibroblasts, PGS1 ablation slows down mitochondrial fission to 141 

rescue tubular mitochondrial morphology, yet this does not rescue OPA1-dependent cristae 142 

disruption and these double mutant cells still manifest apoptotic sensitivity, mtDNA depletion, 143 

and bioenergetic defects[13], consistent with the early observations that deletion of Opa1 144 

disrupts apoptosis-induced cristae remodeling independently of mitochondrial fusion[56].  On 145 

the other hand, in OPA1 knockout mouse fibroblasts, re-expression of wild type and GTPase-146 

dead OPA1 variants can ameliorate cristae structure, cell death sensitivity, and bioenergetic 147 

efficiency without rescuing mitochondrial fusion and tubular network morphology[57].  In lung 148 

adenocarcinomas, the ablation of either OPA1 or Mitofusins drives mitochondrial 149 

fragmentation through impaired fusion, yet only OPA1 ablation is sufficient to alter tumor 150 

growth[71], pointing to a role of OPA1 in tumorigenesis that goes beyond mitochondrial fusion. 151 

In line, human fibroblasts derived from patients carrying pathogenic variants in OPA1 that 152 

compromise GTPase activity do not necessarily lead to mitochondrial fragmentation or cristae 153 

dysfunction[13,34] but still manifest other mitochondrial and cellular dysfunctions[34,38].  154 

Collectively, these studies reveal that it is possible to functionally uncouple the fusion roles of 155 

OPA1 from other mitochondrial functions and reveals that counteracting mitochondrial 156 

fragmentation is not necessarily sufficient to rescue organellar and cellular dysfunctions 157 

caused by OPA1 loss. Therefore, given our current knowledge regarding its many 158 

mitochondrial functions, it appears imprudent to attribute aberrant cellular dysfunction caused 159 

by OPA1 deficiency to an impairment of mitochondrial network morphology per se.   160 

 161 

Mitofusins 162 

The Mitofusin fzo, whose fuzzy onion namesake reflects mitochondrial dysmorphology 163 

observed in mutant drosophila spermatids, was the first mitochondrial fusion protein identified 164 

in metazoans[89].  In mammals, OMM fusion is executed by two paralogs, Mitofusin 1 (MFN1) 165 

and Mitofusin 2 (MFN2), which are dynamin-like GTPases anchored into the OMM that 166 

coordinate membrane tethering and subsequent fusion[90,91]. OMM fusion activity, which is 167 

crucial for maintaining an interconnected mitochondrial network in cells[90,92], occurs through 168 

both homo- and heterotypic interactions and requires GTP hydrolysis. Deletion of either Mfn1 169 

or Mfn2 or inhibition of GTPase activity inhibits OMM fusion in cells, resulting in the 170 

fragmentation of the mitochondrial network due to unopposed mitochondrial fission. In vivo, 171 

homozygous deletion of either Mitofusin leads to embryonic lethality[92] and tissue-specific 172 

ablation or expression of pathogenic variants in the central nervous system, heart, muscle, 173 



liver, and immune cells impair organ function, underscoring physiological significance of 174 

Mitofusins[93–98].   175 

In vivo, studies comparing the phenotypic consequences of tissue-specific ablation of 176 

MFN1 versus MFN2 have revealed markedly different phenotypic outcomes, which could 177 

reflect the tissue-specific expression patterns of MFN1 and MFN2 and/or the distinct and 178 

specialized roles they have evolved to play in organelle biology[95,97–107].   In humans, 179 

pathogenic variants in MFN2 (but not MFN1) cause Charcot-Marie-Tooth type 2A (CMT2A) 180 

disease, a peripheral neuropathy characterized by axonal degeneration and distal muscular 181 

atrophy[108]. Beyond OMM fusion, MFN2 interacts with OMM adapter proteins MIRO1 and 182 

MIRO2 (encoded by RHOT1 and RHO2, respectively) [10], which are required for the 183 

trafficking and distribution of mitochondria along microtubules.  It is therefore not surprising 184 

that peripheral nerve axons are particularly sensitive to MFN2 deficiency. More recently, 185 

pathogenic MFN2 variants were discovered in patients suffering from multiple symmetric 186 

lipomatosis (MSL) with or without peripheral neuropathy (a hallmark of CMT)[109,110], thus 187 

expanding the clinical heterogeneity of Mitofusin dysfunction.  No pathogenic variants in MFN1 188 

have yet been attributed to human genetic diseases, but studies correlating decreased MFN1 189 

expression with heart failure in patients manifesting idiopathic dilated cardiomyopathy suggest 190 

that MFN2 expression alone may be insufficient to ensure tissue homeostasis in certain 191 

contexts[111].  In a surprisingly large proportion of CMT2A and MSL patient-derived fibroblasts 192 

deficient for MFN2, mitochondrial network morphology and fusion rates were not found to be 193 

impaired[109,112–115], which points to either cell type-specific effects of MFN2-dependent 194 

mitochondrial fusion and/or fusion-independent dysfunctions of mutant MFN2 contributing to 195 

pathology[116].  196 

Indeed, MFN2, but not MFN1, has been found to localize both to the endoplasmic 197 

reticulum (ER) surface as well as the OMM[117,118].  The dual localization of MFN2 gene 198 

products facilitates the process of ER-mito tethering and the formation of mitochondrial ER 199 

contact sites (MERCs), which are critical for inter-organellar metabolite and lipid exchange, 200 

autophagy, mitochondrial fission, and cell death signaling[9].  Genetic deletion of MFN2 201 

disrupts MERCs and also triggers the activation of an ER stress response[95,119,120].  In 202 

addition to these defects organellar defects, ablation of MFN2, but not MFN1, impairs 203 

ubiquinol synthesis[121], reduces bioenergetic efficiency [121,122], and energy 204 

expenditure[102].  In macrophages MNF2, but not MFN1, is required for the reactive oxygen 205 

species (ROS) signaling and cytokine production independently of mitochondrial fusion[123]. 206 

In Purkinje cells, MFN2, but not MFN1, is required for dendritic outgrowth, spine formation, 207 

and cerebellar function[124], although whether this is due impaired OMM fusion and/or altered 208 

mitochondrial trafficking is unclear. While both Mitofusins are required to maintain tubular 209 

mitochondria under basal conditions in mouse embryonic fibroblasts (MEF) cells[92,125], 210 



MFN2, and not MFN1, is dispensable for stress-induced mitochondrial hyperfusion (SiMH), 211 

which is characterized by an elongation of the mitochondrial network that can be triggered by 212 

nutrient starvation, amino acid deprivation, and translation inhibition [14,15,126].  The notion 213 

that mitochondrial elongation protects against cell death is attributed in part to the fact that 214 

genetic ablation of critical proteins required for SiMH (e.g. SLP2 and MFN1) sensitize cells in 215 

culture to programmed and regulated cell death[14,15,126] which mirrors the observation the 216 

ablation of DRP1, which promotes mitochondrial elongation, protects against apoptosis[87].  217 

However, it there appears to be far less known regarding SiMH and cell death protection in 218 

vivo. 219 

Given their partially overlapping roles in mitochondrial fusion, genetic deletion of both 220 

Mfn1 and Mfn2 was initially conceived to unequivocally block OMM fusion to drive 221 

mitochondrial fragmentation.  Double knockout (DKO) cells show more dramatic disruption of 222 

mitochondrial morphology than single Mitofusin mutants [92], highlighting cooperativity in 223 

OMM fusion. In mice, tissues devoid of both MFNs generally exhibit more severe 224 

mitochondrial, cellular, and physiological defects[28,120,122,124,127,128], although there is 225 

no evidence this is a direct result of impaired OMM fusion.  Double MFN1/MFN2 knockout 226 

(DKO) in skeletal muscle, but not cardiac muscle[128], drives the accumulation of mtDNA 227 

mutations and deletions[127], sustaining the prevailing theory that mitochondrial fusion is 228 

required to ensure matrix content mixing, maintain mtDNA copy number, and prevent the 229 

accumulation of pathogenic mtDNA variants[19].  This theory is predicated on the observation 230 

that promoting mitochondrial elongation through the inhibition of DRP1 in heteroplasmic cells 231 

carrying supra-threshold levels of pathogenic mtDNA can modulate mtDNA 232 

heteroplasmy[129]. As previously mentioned, DRP1 ablation alone induces pleiotropic cellular 233 

defects, including disruption of nucleoid dynamics[130,131], cristae structure[71,78,131], 234 

mitophagy[132], and mitosis[133] (Figure 4), making it difficult to ascribe heteroplasmic shifts 235 

exclusively to changes in mitochondrial morphology.  Moreover, OPA1 ablation, which also 236 

impairs mitochondrial fusion, does not trigger the same defects in mtDNA nucleoid dynamics 237 

as the ablation of Mitofusins[128].  Therefore, given the multiple roles of Mitofusin beyond 238 

fusion, particularly those linked to mitophagy, transport, and bioenergetic efficiency, there is 239 

insufficient evidence to support the hypothesis that defective mitochondrial membrane fusion 240 

is responsible for defects in mtDNA stability. 241 

The chemical toolkit to manipulate Mitofusin function has expanded in the last years.  242 

First, medium-throughput chemical screening identified Leflunomide as an MFN1/MFN2-243 

dependent inducer of mitochondrial fusion, which acts through the mitochondrial de novo 244 

pyrimidine synthesis pathway to boost MFN1 and MFN2 transcription and, consequently, 245 

mitochondrial fusion[134].  Leflunomide, a clinically-approved drug used in the management 246 

and treatment of rheumatoid arthritis, inhibits dihydroorotate dehydrogenase (DHODH), which 247 



is the IMM enzyme that catalyzes oxidation of dihydroorotate into orotate using ubiquinone as 248 

co-substrate electron acceptor. Leflunomide can dampen doxorubicin-induced cell death in 249 

wild type but not DKO MEFs, which is reminiscent of the increased cell death resistance 250 

conferred upon induction of SiMH[14].   Yet, whether cell death resistance by Leflunomide is 251 

caused by mitochondrial elongation or is related to the inhibition of pyrimidine synthesis and/or 252 

the transfer of electrons to ubiquinone (whose biosynthesis is also under the control of 253 

MFN2[121]) has not been determined. An independent chemical screening campaign 254 

identified mitochondrial fusion inducer hydrazone M1[135] as an inducer of mitochondrial 255 

elongation acting in an MNF1/MFN2 and OPA1-dependent manner.  In cells, M1-induced 256 

mitochondrial elongation correlates with reduced cytochrome c release and increased 257 

apoptotic resistance, yet this drug also affects the levels of Complex V, which is critical for 258 

cristae remodeling and cell death signaling via OPA1[64] and mitochondrial motility[135]. M1 259 

provides remarkable benefits against insults that damage mitochondria both in vitro and 260 

vivo[29,136], but until its mechanism of action and target(s) have been clarified, this molecule 261 

provides limited additional insights into the relevance of OMM fusion.  Finally, the most 262 

promising new tools to dissect the relevance of OMM fusion for cellular health emerged from 263 

the creation of rationally-designed HR1 mini-peptide therapies, which aimed to rescue 264 

mitochondrial dysfunction caused by CMT2A mutations.  These peptides were able to restore 265 

inter-mitochondrial tethering and fusion activities that are disrupted by pathogenic MFN2 266 

variants, effectively rescuing mitochondrial fragmentation, trafficking, and depolarization and 267 

significantly improves physiological outcomes in MFN2 cell and mouse models[137,138].  268 

Altogether, the cellular and organismal consequences that derive from the chemical and 269 

genetic manipulation of Mitofusins has highlighted their biological relevance and their 270 

importance in organellar dynamism.  271 

Recently, the discovery that ER and mitochondrial functions of MFN2 can be 272 

functionally and physically uncoupled provided new ground to explore the relevance of OMM 273 

fusion.  Alternative splicing of the MFN2 gene yields distinct ER resident proteins ERMIT2 and 274 

ERMIN2, which resemble truncated versions of MFN2 yet lack a fully competent GTPase 275 

domain[139].  ERMIT2 and ERMIN2 are expressed in various mouse and human tissues, with 276 

only the former being required to mediate ER-mito tethering by anchoring into the 277 

mitochondrial associated membranes (MAM) of the ER[139]. ERMIT2 and ERMIN2 278 

expression in MFN2-deficient MEFs was unable to rescue mitochondrial morphology however 279 

MFN2 or ERMIN2 expression could ameliorate aberrant ER morphology[139].  Synthetic 280 

rescue of calcium homeostasis and lipid transfer defects by ERMIT2 in MFN2-deficient cells 281 

and liver-specific knockout mice highlights the functional relevance of the ER-mito tethering 282 

function of Mitofusins[9], which can be uncoupled from their OMM fusion activities.  283 

Determining whether this paradigm holds true in other tissues and whether other signaling 284 



and biosynthetic defects caused by MFN2 ablation (Figure 3) rely primarily on ER-related 285 

functions of the MFN2 gene will provide significant insights into the functional importance of 286 

organellar contacts and OMM fusion alike. 287 

 288 

Pleiotropic functions of mitochondrial fission factors 289 

DRP1 290 

Dynamin-related protein 1 (DRP1) is a highly conserved protein of the Dynamin family 291 

that is required for mitochondrial fission in yeast, nematodes, and mammals[10].  DRP1, 292 

encoded by the DNM1L gene, is a cytosolic protein that dynamically localizes to both 293 

mitochondrial and peroxisomal membranes, where it oligomerizes and drives membrane 294 

constriction in a GTP-dependent manner[10]. Drp1-mediated mitochondrial fission occurs at 295 

membrane contact sites with the endoplasmic reticulum (ER)[140], the trans-Golgi network 296 

(TGN)[141], and the actin cytoskeleton[142] and is regulated by post-translational 297 

modifications on DRP1 at the OMM[10] and is by replication of mtDNA at the IMM[143] (Figure 298 

4).  Membrane recruitment of DRP1 in mammals is mediated by membrane-anchored OMM 299 

proteins that act as receptors mitochondrial fission factor (MFF)[144], mitochondrial dynamics 300 

protein of 49 kDa (MID49, encoded by MIEF2)[145],  MID51 (encoded by MIEF1) and 301 

mitochondrial fission 1 protein (FIS1)[146].  The relative contribution of these four DRP1 302 

receptors to mitochondrial division has been judged by the impact their individual and 303 

combinatorial ablation have on overall mitochondrial network elongation, DRP1 recruitment to 304 

mitochondria, and protection against stress-induced mitochondrial fission (SiMF)[147].  In 305 

MEFs, equivalent and dramatic alterations of mitochondrial morphology were observed in both 306 

MFF/MiD49/MiD51 triple KO (TKO) and quadruple MEFs lacking all 4 proteins, which 307 

suggested that MFF, MiD49, and MiD51, but not FIS1[144,147], execute cooperative roles in 308 

mammalian mitochondrial division. Despite their namesakes, both MFF and FIS1 are also 309 

involved in peroxisomal division and their ablation leads to peroxisomal and mitochondrial 310 

elongation[148,149] while MiDs are exclusively mitochondrial.   MiDs contain a 311 

nucleotidyltransferase domain, and MiD51 necessitates ADP as a co-factor to stimulate both 312 

DRP1 oligomerization and GTPase activity. Although these receptors co-localize with DRP1 313 

at ER-constriction sites in distinct foci[73,150], MFF and MiD49/51 can independently 314 

influence DRP1 recruitment and activity[147]. This has led to the notion that MFF and MiDs 315 

have distinct yet complementary roles in mitochondrial fission: MiDs recruit the GTP-bound 316 

state of DRP1 to facilitate oligomerization, whereas MFF selectively recruits oligomeric and 317 

active forms of DRP1 [151]. Intriguingly, genetic disruption of MFF[152] or MiD49[153] in 318 

humans triggers mitochondrial elongation that can be observed in patient-derived fibroblasts 319 

and is associated with a severe neurodevelopmental disorder in the case of MFF[152,154] 320 

and a pure myopathy in the case of MiD49 (encoded by MIEF2)[153].    321 



Recently, time-lapse imaging studies performed with unprecedented spatiotemporal 322 

resolution allowed for the tracking individual membrane scission events along the 323 

mitochondrial network, which revealed that under physiological conditions, DRP1-dependent 324 

mitochondrial division occurs either in the mid-zone, requiring MFF, or at the periphery, where 325 

FIS1 is required[155].  Resulting daughter mitochondria borne of mid-zone fission had on 326 

average, higher metabolic activity and quality and were more likely to engage in subsequent 327 

mitochondrial fusion events compared to daughter mitochondria generated from peripheral 328 

fission, which typically yielded smaller, more fragmented mitochondria harboring higher 329 

damage and lower mitochondrial membrane potential.  Hence, the molecular composition of 330 

the fission machinery on the OMM impacts where, when and how mitochondria divide, 331 

although it remains to be determined whether such dichotomous mitochondrial division 332 

decisions occur in vivo. Beyond organelle division, DRP1 was found to be required for the 333 

formation of mitochondrial derived vesicles (MDVs, reviewed elsewhere[156]); an intercellular 334 

vesicular transport system of specific cargo originating at mitochondria implicated in cell 335 

signaling and quality control[157].  While both MDV formation and peripheral mitochondrial 336 

fission depend on DRP1, the vesicle composition, size and molecular adapters involved 337 

appear to be different[155,157]. DRP1 and its receptors are subject to various layers of post-338 

translational regulation that can modulate mitochondrial division rates under physiology and 339 

pathological conditions and perturbation of these upstream regulators can negatively impact 340 

the proliferation, identity, and fate of cells[133,158–162] (Figure 4). 341 

DRP1 ablation in various cellular contexts and animal models results in notable 342 

elongation of both mitochondria and peroxisomes[163,164] and leads to a wide range of 343 

pleiotropic defects in cells and animal models.  In humans, patients harboring pathogenic 344 

variants in DNM1L typically present with a devastating encephalopathy due to defective 345 

mitochondrial and peroxisomal fission (EMPF1) [77,78,165] with a minority of patients 346 

manifesting more minor neurological symptoms[166,167].  In mice, homozygous deletion of 347 

Dnm1l is embryonically lethal[168] and heterozygous mutant mice carrying loss-of-function 348 

variants exhibit peroxisomal and mitochondrial dysfunction, reduced lifespan, and 349 

multisystemic defects including cardiac failure[169].  Surprisingly, short-term ablation of DRP1 350 

in the heart appears benign under basal conditions. In fact, the genetic deletion in post-natal 351 

cardiomyocytes[170] or chemical inhibition using Drpitor1a (a Drp1 GTPase inhibitor), mdivi-352 

1 (an inhibitor of yeast Dnm1)[171], P110 (an inhibitor of DRP1-FIS1 interaction)[172], or 353 

hydralazine (an anti-hypertensive heart failure medication purported to inhibit GTPase 354 

activity)[173] all promote mitochondrial elongation and cardioprotective advantages against 355 

surgically-induced ischemia-reperfusion (IR) or pressure-overload injury[170–173]. 356 

Dampening DRP1 activity is associated with improved injury outcome and effectively curtails 357 

the deleterious effects on oxidative damage, MOMP, calcium retention capacity, and cell 358 



death.  On the other hand, long-term DRP1 ablation in cardiomyocytes causes irreparable 359 

damage to cardiac function[28,174], promoting MOMP, mitophagy, and cardiomyocyte cell 360 

death.  Despite a key role of DRP1 in peroxisomal fission, the form and function of this 361 

organelle were not evaluated in any of these studies, and so it remains to be determined how 362 

DRP1 influences cardiac function.  363 

Inhibition of DRP1 in the brain is associated with adverse neurological and behavioral 364 

effects, with heterogeneous effects depending on the region or cell type of the brain that is 365 

targeted [163,175,176] and some of these effects appear to be independent of mitochondrial 366 

fission[177].  DRP1 ablation has deleterious effects on the axonal trafficking of mitochondria 367 

(but not other organelles) and synaptic function, yet but whether these defects are caused by 368 

alterations in mitochondrial morphology or due to defects in OXPHOS and/or calcium buffering 369 

remain elusive [175,178,179] . On the other hand, in vivo chemical inhibition of DRP1 has 370 

been proposed to alleviate neurotoxicity in mouse models of neurodegeneration[180–182], 371 

although the inadequate target specificity (e.g., mdivi1)[183,184], limited efficacy (e.g. 372 

P110)[185], and limited solubility (e.g., Drpitor1a)[186] have complicated the interpretation of 373 

in vivo studies, however spectacular the reported phenotypic improvements of drug-treated 374 

animals may be.  375 

In the liver, genetic deletion of Dnm1l in hepatocytes causes liver damage, impaired 376 

fatty acid metabolism, reduced weight gain, and protection against high fat diet (HFD)-induced 377 

dysregulation of glucose homeostasis.  DRP1 ablation promoted mitochondrial largening, ER 378 

stress, mitophagy, and activation of the integrated stress response (ISR)[23,187].  Silencing 379 

of Dnm1l in the liver of mice using N-acetyl galactosamine-siRNA conjugates had similar 380 

negative effects and promoted Metabolic Dysfunction-Associated Steatohepatitis (MASH, 381 

formerly NASH)[86].  Notably, inhibition of OPA1 in DRP1-deficient hepatocytes was sufficient 382 

to improve mitochondrial shape and rescue mice from liver damage and defective liver 383 

mitophagy.  However, these hepatocytes exhibited exacerbated cristae loss (relative to 384 

individual OPA1 or DRP1 knockouts) without any observable physiological dysfunctions, 385 

similarly to the knockout of Complex I of the ETC[188]. Unfortunately, none of these studies 386 

explored the impact of DRP1 ablation on the form nor function of peroxisomes, which are 387 

established as regulators of hepatic metabolism in health and disease[189].   388 

 389 

OMA1 390 

 OMA1, so called for its overlapping activity with the m-AAA protease, is a zinc-391 

dependent mitochondrial protease anchored in the IMM that is responsible for the proteolytic 392 

cleavage and degradation of substrates in the IMM and IMS[190,191].  The most well-studied 393 

substrate of OMA1 is OPA1, whose cleavage by at the S1 site by OMA1 converts L-OPA1 to 394 

S-OPA1 (Figures 2 and 5).  Under basal conditions, the modest proteolytic activities of OMA1 395 



and the i-AAA protease (encoded by YME1L1), which cleaves at S2 to yield similar isoforms 396 

of S-OPA1, strikes a balance between L-OPA1 and S-OPA1 to maintain tubular mitochondrial 397 

morphology in cells[33,192].  An armada of stress conditions can trigger the hyperactivation 398 

of OMA1 in vitro and in vivo, tipping the balance of S-OPA1 at the expense of L-OPA1, driving 399 

the mitochondrial network to fragment due to a combination of accelerated fission (S-OPA1) 400 

and reduced IMM fusion (L-OPA1)[18].  Ablation of OMA1 alone does not alter mitochondrial 401 

morphology yet protects against SiMF in a manner similar to the ablation of DRP1 or 402 

PGS1[13,193].  Unlike other mitochondrial shaping proteins, the whole-body ablation of OMA1 403 

yields healthy knockout mice in which the only phenotypes reported thus far are mild 404 

alterations in response to cold challenge or high fat diet feeding when knockout mice are bred 405 

on a mixed genetic background[20,21,192].  In vivo, whole-body or tissue specific ablation of 406 

OMA1 confers substantial protection against genetic, pharmacological, and surgical lesions 407 

that trigger mitochondrial fragmentation, cellular dysfunction, and organ failure, pointing to the 408 

restorative and therapeutic potential of rebalancing mitochondrial morphology in disease[20–409 

22,24,194].  Yet, other studies have demonstrated that OMA1 ablation is not the panacea for 410 

all disorders characterized by imbalanced OPA1 processing.  For example, in knockin mice 411 

carrying the pathogenic G58R mutation in the IMS protein CHCHD10, which causes a rare 412 

autosomal-dominant mitochondrial myopathy and cardiomyopathy characterized by 413 

imbalanced OPA1 processing and mitochondrial fragmentation, the additional ablation of 414 

OMA1 accelerated mortality and dysfunction of Chchd10G58R mice[195].  In the case of 415 

COX10, whose disruption in humans is responsible for congenital cardiomyopathy [196], 416 

cardiomyocyte-specific Cox10 knockout causes an early-onset cardiomyopathy that is 417 

accelerated, not diminished, by the additional ablation of OMA1[197]. Finally, deletion of 418 

YME1L1 in the central nervous system leads to the hyperactivation of OMA1 and 419 

fragmentation of axonal mitochondria, promoting neurodegeneration, paralysis, and 420 

death[198]. Inhibiting OMA1 in the CNS of these mice restores wild type mitochondrial 421 

morphology yet worsens the progression of the disease.  While ablation of YME1L triggers 422 

OMA1-dependent fragmentation of the mitochondrial network in both the CNS and heart[20], 423 

the beneficial effects of OMA1 inhibition exhibit tissue specificity that is independent of 424 

mitochondrial morphology, which could be explained either by the action of other OMA1 425 

substrates whose proteolytic cleavage is required for this activation (Figure 5).   Recently, a 426 

newly identified OMA1 substrate DELE1 (DAP3 Binding Cell Death Enhancer 1), emerged 427 

from CRISPR screens deployed to identify regulators of the integrated stress response 428 

(ISR)[199,200].  DELE1 is a nuclear-encoded IMM-associated protein whose OMA1-429 

dependent cleavage enables its export from mitochondria to the cytosol, where it triggers the 430 

engagement of the eIF2alpha and ATF4 signaling pathway (Figure 5)[201].  Ablation of either 431 

OMA1 or the cleavage of DELE1 blunts the ISR, which has shown to be detrimental or 432 



advantageous in various disease contexts, including in models of mitochondrial disease[202–433 

204].  Unfortunately, the multifaceted nature OMA1 and the incomplete cartography of its many 434 

substrates cast considerable doubt over the specific functional relevance of the OMA1-OPA1 435 

axis. Fortunately, new genetic tools that allow for the inactivation of proteolytic cleavage sites 436 

in OPA1 or ablate DELE1 altogether, while keeping OMA1 activity intact, hold the potential to 437 

help explain how these OMA1 substrates contribute to cellular homeostasis[205].  438 

 439 

Mitochondrial transport and distribution 440 

Mitochondrial dynamics is often synonymously employed to refer to mitochondrial 441 

membrane fission and fusion events, but it also encapsulates the dynamic movement and 442 

motility of mitochondria. In mitotic cells, mitochondrial fragmentation and fission at metaphase 443 

is a pre-requisite for the appropriate segregation of individual mitochondria to daughter cells 444 

following cytokinesis.  Interfering with the mitochondrial fission disrupts cell cycle progression 445 

and instigates mitotic   spindle   defects,  chromosomal   instability,  replication stress and 446 

G2/M arrest (reviewed elsewhere[206]). 447 

 In post-mitotic cells, the intracellular trafficking and movement of mitochondria has 448 

been best studied in polarized cells such as neurons[207]. Neurons exhibit significant 449 

heterogeneity in mitochondrial morphology: axonal mitochondria are round, fragmented, and 450 

sparse, dendritic mitochondria are longer and more densely packed whereas the soma 451 

contains an interconnected network of mitochondria reminiscent of what is observed in 452 

epithelial cells. In neurons, transport is accomplished by latching mitochondria onto 453 

microtubules tracks through motor adaptor complexes that can walk mitochondria in the plus-454 

end (anterograde) or minus-end direction.  Anterograde movement of mitochondria is driven 455 

by kinesin-1 motor Kif5B while retrograde transport is directed by Dynein/Dynactin, both of 456 

which tether to the OMM through the motor-binding protein Milton (encoded by TRAK1/2) and 457 

the OMM-anchored adaptor MIRO1 and MIRO2, calcium-binding GTPases that physically and 458 

functionally interact with Mitofusins[207] and the neuron-specific mitochondrial protein 459 

syntaphilin (SNPH), which control mitochondrial motility and quality[208–210]. Anterograde 460 

trafficking of mitochondria from the soma throughout the axon serves to meet the metabolic 461 

and biosynthetic demands of the entire neuron while retrograde motility was initially proposed 462 

to facilitate recycling and degradation at the soma[211]. However, there are conflicting reports 463 

regarding the differential statuses and functionalities of mitochondria that move (or not) in 464 

different directions [212–214] as well as the true contribution of axonal organelle quality control 465 

that must be performed at the soma[207,215].  Nevertheless, the dynamic regulation of 466 

mitochondrial morphology appears to be molecularly and functionally connected to motility 467 

and transport. In healthy neurons, timelapse imaging of anterograde and retrograde trafficking 468 

show that mitochondria occur with organelles of a specific size range, suggesting that cargo 469 



size may be both rate-limiting and influenced by mitochondrial shape[216–219].  Indeed, 470 

fission and fragmentation are required to dissociate mitochondria from an extensively 471 

interconnected network in the soma and permit entry into the axon, suggesting that reducing 472 

mitochondria to a defined size is a prerequisite for axonal trafficking.  In cortical axons, 473 

mitochondria enter with a size of ~0.1 to 1μm and maintain these short, uniform lengths along 474 

the axon through continuous events of fusion and fission[219,220]. The conditional ablation of 475 

DRP1 in mouse dopaminergic neurons promotes mitochondrial elongation and compromises 476 

both anterograde and retrograde trafficking of mitochondria, leading to depletion of axonal 477 

mitochondria, neuronal cell death, and the manifestation of levodopa-responsive PD[178].   In 478 

flies, drp1 was identified in a forward genetic screen for genes required for the synaptic 479 

localization of mitochondria but not for their function in the soma, further underscoring the that 480 

elongated mitochondria disrupts their proper trafficking[179]. However, impaired the 481 

mitochondrial motility in DRP1-deficient mouse neurons can be partially rescued by 482 

exogenous addition of ATP, which suggests that bioenergetic and cristae defects resulting 483 

from DRP1 deficiency may also underlie improper axonal distribution of mitochondria [175].   484 

So, when it comes to mitochondrial trafficking does size really matter?  In the neurons 485 

of flies, the different lengths of individual mitochondria followed by timelapse imaging, ranging 486 

of ~0.1 to 1 μm, do not have an appreciable impact on run velocities[220–222].  Yet, 487 

suppression of MFF expression in mouse cortical neurons slows down mitochondrial fission 488 

rates, promotes mitochondrial elongation in axons (but not dendrites), and effectively hampers 489 

the axonal entry of mitochondria without impairing mitochondrial motility along the axon nor 490 

mitochondrial membrane potential, matrix ATP levels, or redox potential[219]. Hence, there 491 

appears to be compartment-specific dependencies of mitochondrial morphology for axonal 492 

entry but not necessarily for axonal transport.  Intriguingly, fragmentation of the mitochondrial 493 

network observed in primary retinal ganglion cell (RGC) neurites from an Opa1Q285STOP mouse 494 

model for DOA was associated with increased mitochondrial motility[223]. While OXPHOS 495 

capacity was also compromised in Opa1Q285STOP neurites, it is unlikely that this is responsible 496 

for the increased mitochondrial motility given that treatment of wild type mouse cortical 497 

neurons with mitochondrial poisons is sufficient to attenuate mitochondrial motility without 498 

altering mitochondrial morphology[218].  However, mitochondrial fragmentation is not 499 

necessarily associated with more rapid axonal trafficking.  Expression of pathogenic variants 500 

in MFN2 associated with CMT2A in of dorsal root ganglion cultures also trigger mitochondrial 501 

fragmentation yet reduce both anterograde and retrograde motility of mitochondria [224]. As 502 

MIRO2 ablation phenocopies the motility and distribution defects of MFN2-deficient 503 

mitochondria[74] but does not cause mitochondrial fragmentation, it is likely that mitochondrial 504 

trafficking defects in CMT2A reflect the key role of MFN2 as part of the adaptor complex 505 

between mitochondria, kinesin motors, and microtubules, rather than a consequence of 506 



impaired OMM fusion. In line, inhibition of mitochondrial fission via the suppression of Drp1 507 

can rescue motility and distribution of Opa1-deficient but not Mitofusin-deficient mitochondria 508 

in neurons[74].   However, restoring normal motility and distribution in Opa1/Drp1-deficient 509 

neurons did not rescue cell viability, cristae disruption, nor OXPHOS dysfunction, highlighting 510 

once again the separable bioenergetic and signaling functions of mitochondrial shaping 511 

proteins[13,74].  Altogether, these data argue that mitochondrial fragmentation observed in a 512 

variety of inborn and acquired neurological disorders may not be the primary cause of 513 

pathology. 514 

 515 

 516 

 517 

Concluding remarks 518 

  The field of mitochondrial dynamics has grown in leaps and bounds since the earliest 519 

pictorial hand-drawn representations of mitochondrial fission, fusion, and motility by Margaret 520 

Lewis[225].  The last years have seen significant advances in our understanding of the 521 

molecular machinery that is required to fuse, divide, and traffic mitochondria within mammalian 522 

cells[10].  High-throughput chemical and genetic screening are continuing to reveal complex 523 

networks and layers of molecular regulation that fine-tune these dynamic processes while 524 

advances in microscopy have helped mature our understanding of the function of membrane 525 

contact sites between mitochondria and other organelles including the endoplasmic reticulum, 526 

Golgi network, and lysosomes, each of which heralds different fates for the future sites of 527 

mitochondrial membrane remodeling and cell signaling[9].  These studies also have provided 528 

a foundation for our understanding of how mitochondria receive signals to modify their form 529 

and functions while also providing us with a finer appreciation for the tremendous 530 

heterogeneity in mitochondrial morphology that exists within single cells, which is a 531 

phenomenon whose biological significance we have yet to fully comprehend[1,2].  Moving 532 

forward, technological advances in super-resolution and event-driven microscopy, chemical 533 

probe development, artificial intelligence, and image analyses will be invaluable tools for the 534 

functional exploration of the intracellular heterogeneity of mitochondrial morphology, which, in 535 

turn, will help expand our visual vocabulary of mitochondrial structures and behaviors beyond 536 

the simplified classification schemes that have populated earlier reviews on the topic (Figure 537 

1).  In so doing, we can expect these explorations to yield exciting discoveries regarding the 538 

role of mitochondrial shaping proteins and provide a holistic understanding of how 539 

mitochondria respond to stress and broadcast signals to the rest of the cell to determine its 540 

fate and functions.  541 

 542 

Glossary 543 



Autosomal dominant optic atrophy (ADOA): inherited bilateral degeneration of the optic 544 

nerve caused by pathogenic variants in OPA1 and the most common autosomally inherited 545 

optic atrophy in ~80% of patients.  Approximately 20% of OPA1 patients manifest ADOA or 546 

DOA “plus”, a more severe, syndromic version of DOA involving extra-ocular symptoms. 547 

 548 

Behr syndrome: an autosomal recessive, early-onset optic atrophy accompanied by 549 

spinocerebellar degeneration resulting in ataxia, peripheral neuropathy, intellectual disability, 550 

and developmental delay associated with pathogenic variants in OPA1. 551 

 552 

Cardiolipin (CL): a non-bilayer-forming phospholipid unique to mitochondria required for the 553 

optimal function of various mitochondrial enzymes and macromolecular complex formation, 554 

mitochondrial fusion, and cristae formation.  555 

 556 

Charcot-Marie-Tooth type 2A (CMT2A): a hereditary motor and sensory neuropathy 557 

belonging to the most common class of inherited neurological disorders. Type 2A is caused 558 

by mutations in MFN2. 559 

 560 

Drpitor1a: a small molecule DRP1 inhibitor that was identified by in silico screening and 561 

validated by its ability to prevent mitochondrial fragmentation in cultured cells.  Drpitor1a 562 

exhibits greater potency that mdivi-1 and confers resistance against cardiac ischemia-563 

reperfusion injury and tumor growth in mouse models. 564 

 565 

Encephalopathy due to defective mitochondrial and peroxisomal fission-1 (EMPF1): a 566 

neurological disorder characterized by delayed psychomotor development, hypotonia and, in 567 

many cases, childhood mortality.  EMPF1 is caused by pathogenic variants in DNM1L, 568 

inherited in autosomal dominant or recessive fashion.  569 

 570 

Integrated Stress Response (ISR): is a stress-induced signaling pathway that can be 571 

triggered by mitochondrial and metabolic dysfunctions, proteotoxic stress, and pathogen 572 

infection.  Four distinct cytosolic kinases, PERK, PKR, GCN2, and HRI, can converge to 573 

phosphorylate the alpha subunit of translation initiation factor 2 (eIF2α) in response to distinct 574 

stimuli.  ISR signaling can be initiated by DELE1, whose cleavage by OMA1 inside 575 

mitochondria promotes DELE1 translocation to the cytosol where it activates HRI.    576 

 577 

M1 Hydrazone: a cell-permeable hydrazone compound that enhances mitochondrial fusion 578 

in a Mitofusin and OPA1-dependent manner.  M1 does not alter ER nor lysosomal 579 

morphologies. Its mechanism of action is unknown. 580 



 581 

Metabolic Dysfunction-Associated Steatohepatitis (MASH): previously known as NASH 582 

(Non-alcoholic Steatohepatitis) is a stage of fatty liver disease that is characterized by 583 

inflammation (hepatitis) and liver damage that can lead to cirrhosis, liver failure and 584 

hepatocellular carcinoma. 585 

 586 

Mdivi-1: first-in-class inhibitor of DRP1 identified in phenotypic synthetic rescue screen of 587 

yeast mutants defective for mitochondrial fusion (fzo-1) whose survival could be rescued by 588 

inhibiting mitochondrial fission.  Mdivi-1 attenuates mitochondrial fission in yeast and human 589 

cells but also interferes with Complex I activity in mammalian cells. 590 

 591 

Mitophagy: the selective, autophagic removal of defective or dysfunctional mitochondria. 592 

Several pathways exist, including the PINK1-PARKIN pathway in which dissipation of the 593 

mitochondrial membrane potential causes PINK1 to translocate to the OM, where it is 594 

recognized by the E3 ubiquitin ligase PARKIN that marks it for lysosomal degradation.  595 

Mitophagy receptors including NIX1, BNIP3, and FUNDC1 contain LIR domains that bind LC3 596 

proteins to promote mitochondrial degradation. 597 

 598 

Mitochondrial-Endoplasmic Reticulum Contact Sites (MERCs) : sites at which the OMM 599 

and the ER surfaces are juxtaposed at constant distances (usually <30 nm.). MERCs serve to 600 

facilitate the inter-organellar transfer of phospholipids and Ca2+ and act as nodes governing 601 

mitochondrial fission, cell death signaling, and autophagy. 602 

 603 

Mitochondrial Outer Membrane Permeabilization (MOMP): Regulated increase in OMM 604 

permeability through the oligomerization of Bcl-2 family proteins BAX and BAK to form pores 605 

that allow molecules typically sequestered inside mitochondria to escape to the cytosol to 606 

trigger apoptosis and/or innate immune signaling.  MOMP can be initiated by a variety of 607 

chemical, genetic, and infectious triggers. 608 

 609 

Oxidative phosphorylation (OXPHOS): electron transfer along the respiratory chain 610 

complexes (I–IV) in the IMM driving the accumulation of a proton gradient that is harnessed 611 

by ATP synthase (complex V) to produce ATP from ADP and inorganic phosphate 612 

 613 

P110: a seven amino acid peptide that is designed to inhibit pathological mitochondrial 614 

fragmentation by inhibiting the physical interaction between DRP1 and FIS1.  P110 peptide 615 

targets amino acids 49 through 55 in region 110 of DRP1 and does not affect interactions with 616 

other adaptors MiD51, MiD49, and MFF. 617 



 618 

Parkinson’s Disease (PD): neuromuscular disorder characterized by dopamine deficiency 619 

and basal ganglia degeneration. Pathogenic variants in PARK2 (which encodes PARKIN) and 620 

PINK1 are frequent causes of early-onset PD. Mutations in OPA1 have also been associated 621 

with PD. 622 

 623 

Peroxisomes: single membrane-bound organelles responsible for fatty acid oxidation, ether 624 

phospholipid biosynthesis, and ROS metabolism.  Mitochondria contribute to the de novo 625 

biogenesis of peroxisomes, which can also grow and divide from pre-existing peroxisomes.  626 

 627 

Purkinje cells: a type of neuron exclusive to the cerebellar cortex characterized by extensive, 628 

flat dendritic trees replete with intricate branching. Purkinje cells control and coordinate motor 629 

activity and their degeneration are associated with a variety of mitochondrial and 630 

neurodegenerative disorders.   631 

 632 

Stress-induced mitochondrial hyperfusion (SiMH): a protective response that constitutes 633 

the elongation of mitochondrial tubules in response to stress conditions including starvation, 634 

amino acid deprivation, UV irradiation, cytosolic translation inhibition, that would otherwise 635 

induce cell death. SiMH depends upon mitochondrial fusion and MFN2 (but not MFN1), SLP2, 636 

and L-OPA1. 637 

 638 

Stress-induced fission (SiF): mitochondrial network fragmentation triggered by various 639 

genetic, chemical, or infectious lesions that promote the excessive fission of mitochondria.  640 

SiF is characterized by the cleavage of L-OPA1 by the mitochondrial metalloprotease OMA1, 641 

causing a loss of profusion L- OPA1 and accumulation of the pro-fission S-OPA1, recruitment 642 

of DRP1 to the OMM, and mitochondrial fragmentation.  643 

  644 



 645 

 646 

Figure 1 –Membrane fission and fusion control the morphology of mitochondria 647 

Balanced mitochondrial membrane fusion events shape the morphology of mitochondria.  648 

Mitochondrial morphology exists on a multi-dimensional spectrum but can be arbitrarily 649 

classified into network morphologies corresponding to fragmented, tubular, and elongated 650 

classes that reflect the balance of mitochondrial membrane fusion and fission.   651 

 652 

  653 



 654 

Figure 2 – The multifaceted roles of OPA1 in mitochondrial biology 655 

Optic Atrophy 1 (OPA1) encodes a dynamin-like GTPase (green) translated on cytosolic 656 

ribosomes and imported into the inner mitochondrial membrane (IMM), where it is essential 657 

for IMM fusion.  OPA1 is proteolytically cleaved a membrane-anchored long (L-OPA1) form to 658 

a soluble, short (S-OPA1) form by the mitochondrial metallopeptidase OMA1 and the i-AAA 659 

protease YME1L.   In addition to the execution of IMM fusion, OPA1 is required for the 660 

formation of cristae, protection against the release of pro-apoptotic factors (e.g. cytochrome 661 

c), biogenesis of cardiolipin, maintenance of mtDNA levels, and oxidative phosphorylation 662 

(OXPHOS).   663 

  664 



 665 

Figure 3 –Intra and intraorganellar functions of Mitofusins  666 

Mitofusin 1 (MFN1) and Mitofusin 2 (MFN2) are paralogous genes encoding dynamin-like 667 

GTPases anchored into the outer mitochondrial membrane (OMM), where they execute 668 

partially overlapping functions.   MFN1 and MFN2 tether membranes through homo- and 669 

heterotypic interactions, executing OMM fusion through GTP hydrolysis.  Alternative splicing 670 

of the MFN2 gene yields ERMIN2 and ERMIT2, protein isoforms that localize to endoplasmic 671 

reticulum (ER) and Mitochondrial-ER contact sites (MERCs) at Mitochondrial Associated 672 

Membranes (MAMs), respectively.  Disruption of mitofusin-dependent ER-mitochondrial 673 

tethering (but not OMM fusion) is associated with impaired lipid and calcium trafficking. 674 

Genetic ablation or mutation of mitofusins is associated with defective mtDNA nucleoid 675 

dynamics and integrity,  ubiquinol (CoQ) biosynthesis, OXPHOS function, reactive oxygen 676 

species (ROS) and ER stress signaling.  Whether these defects arise from defects in OMM 677 

fusion and/or ER-mitochondrial tethering has not been determined. 678 

  679 



 680 

Figure 4 – The role of DRP1 in organellar membrane dynamics 681 

DNM1L encodes the cytosolic GTPase Dynamin Related Protein 1 (DRP1, green), which 682 

controls mitochondrial division, peroxisomal division, and formation of mitochondrial derived 683 

vesicles (MDVs, red) and downstream signaling through recruitment to membrane receptors 684 

MFF, MiD49, MiD51, and FIS1. Mitochondrial division occurs at contact sites with the 685 

endoplasmic reticulum (ER, blue) and actin cytoskeleton (green) and is triggered by the 686 

replication of mitochondrial DNA (mtDNA).  DRP1 deficiency can impair mitochondrial fission 687 

(midzone and peripheral), MDV formation, mitophagy, calcium (Ca2+) buffering, peroxisomal 688 

fission, oxidative phosphorylation (OXPHOS), mtDNA integrity, and mitotic checkpoint 689 

clearance.   690 

 691 

  692 



 693 

Figure 5 – The dual role of OMA1 in cellular homeostasis 694 

The inner mitochondrial membrane (IMM) metalloprotease OMA1 controls mitochondrial 695 

morphology and integrated stress response (ISR) signaling through substrate proteolysis.  696 

OMA1 cleaves the pro-fusion long OPA1 (L-OPA1) to soluble short OPA1 (S-OPA1), whose 697 

accumulation under stress conditions promotes mitochondrial fission and fragmentation.  698 

OMA1 also controls the ISR by cleavage at the IMM of DELE1 into a mature, short form that 699 

is exported to cytosol where it interacts with HRI to promote the phosphorylation of eIF2α 700 

kinase leading to a global reduction in cytosolic translation and upregulation of chaperones, 701 

proteases, and transport proteins through the action of stress response transcription factors 702 

CHOP, ATF4, and ATF5. 703 

 704 
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Outstanding Questions 

 Can we individually study the mitochondrial shaping functions of pro-fission and pro-fusion 

proteins separately from their other non-mitochondrial shaping functions?  

 What are the best tools to use to specifically modulate mitochondrial network morphology 

without modulating mitochondrial cristae and mtDNA integrity? 

 What is the pertinence of peripheral fission versus mid-zone fission in vivo? 

 What is the contribution of impaired mitochondrial fission versus impaired peroxisomal 

fission in cell and animal models in which DRP1 or its receptors are absent? 

 How do primary alterations in mitochondrial morphology alterations impact organelle 

contact site biology? 
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