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Abstract
DNA Stable Isotope Probing is emerging as a potent methodology for investigating host–virus interactions, based on the 
essential reliance of viruses on host organisms for the production of virions. Despite the anticipated link between host 
isotopic compositions and the generated virions, the application of stable isotope probing to viral DNA has never been 
evaluated on simple biological models. In this study, we assessed the efficacy of this method on the bacteriophage T4 and 
its host, Escherichia coli. Through the cultivation of E. coli cells on a 13C-enriched substrate and subsequent propagation of 
T4 bacteriophage, we examine the degree of isotopic enrichment in viral DNA. Our investigation reveals a strong correla-
tion between the proportion of 13C6-d-glucose in the growth substrate and the buoyant density in CsCl gradient of T4 DNA, 
confirming the validity of DNA SIP in viral ecology. These findings underscore the potential of DNA SIP as a robust tool 
for characterizing the diversity of viruses infecting hosts with specific metabolic activities and provide then a foundation for 
further exploration in viral ecology research.

Introduction

Stable Isotope Probing (SIP) [1] has been recently employed 
in viral ecology to identify viruses infecting hosts with spe-
cific metabolism (e.g. [2–7]), such as ammonia oxidation 
[3], methane oxidation [4], or methanogenesis [6]. This 
method is gaining recognition as a promising approach 
due to the inherent dependency of all viruses on host 
resources for virion production, suggesting a potential 
association between host isotopic composition and the iso-
topic signature of produced virions. This has been previ-
ously shown by NanoSIMS on simple biological models, 

namely cyanobacterial and eukaryotic algal–virus systems 
[7]. NanoSIMS is generally employed to acquire a map of 
the elemental and isotopic composition of a sample, at the 
nanoscale. In this previous study [7], hosts were grown on 
13C- or 15N-labeled substrates and individual viral particles 
enriched in these isotopes were visualized by NanoSIMS, 
showing the transfer from the hosts to the viruses.

In contrast, DNA SIP for the study of host-virus interac-
tions has been directly applied to microbial communities 
[2–5, 8], without validation on simple systems. DNA SIP 
relies on the use of a growth substrate labeled with a rare 
and stable isotope, such as 13C or 15N. After their extraction, 
the DNA fragments are separated by ultracentrifugation in 
caesium chloride (CsCl) gradient according to their buoyant 
density. The labeled DNA fragments, denser, can thereby 
be recovered and specifically characterized with classical 
molecular biology techniques, such as sequencing. In the 
few studies where DNA SIP was employed to decipher 
host–virus relationships, either total DNA [3, 4, 8] or cel-
lular DNA [6] has been used. In principle, the application 
of SIP to viral DNA alone should be feasible with sufficient 
material, potentially enhancing the detection sensitivity for 
a broader diversity of labeled viruses. Indeed, when DNA 
stable isotope probing is applied to the total DNA, cellular 
DNA is by far dominant, likely preventing the detection of 
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many low abundant viruses. Here, we validate viral DNA 
SIP on a simple biological model, using T4 bacteriophage 
DNA obtained by propagation on Escherichia coli cells. We 
therefore also provide some reference profiles of viral DNA 
density. Viral DNA SIP could be used in viral ecology to 
identify the range of viruses infecting hosts with a specific 
metabolism, with high sensitivity.

Materials and Methods

Culture Conditions and Virion Preparation

E. coli strain B (DSM 613) cells were grown during 30 h 
at 37 °C, under 400-rpm agitation, in 20 mL of M9 liquid 
minimal medium [M9, Minimal salts, 5X (Sigma-Aldrich), 
MgSO4 (1 mM), CaCl2 (0.3 mM), and d-glucose (10% m:v)], 
inoculated with 20 µL of an overnight culture in LB medium 
(Fisher Bioreagents, 25 g/L). The glucose was a mix of 
13C-labeled (d-Glucose-13C6, 99% 13C, Cortecnet) and non-
labeled (Sigma-Aldrich) d-glucose in various proportions, 
ranging from 0 to 100%, in order to evaluate the efficiency 
and the sensitivity of the proposed approach.

For infection with T4 (DSM 4505), the same conditions 
were employed except that minimal medium was supple-
mented with 20 µL of CaCl2 (0.5 M) and MgCl2 (1 M) 
solutions and T4 virions were added before incubation at 
a multiplicity of infection (MOI) of ~ 10–7. After 30 h of 
cultures were centrifuged at 5 000 g for 15 min at 10 °C. 
The supernatants were filtered at 0.22-µm pore size with 
PES filters (FisherBrand). The obtained virion suspensions 
were stored at 4 °C until further use. A low MOI combined 
with a long incubation time was employed, both to limit 
the input of unlabeled carbon and enable the occurrence of 
several viral infection cycles, resulting in the production of 
a high number of virions.

Isotope Ratio Mass Spectrometry

Non-infected cells were obtained as described in Sect. “Cul-
ture Conditions and Virion Preparation”. They were washed 
once in PBS and dried overnight at 55 °C. They were ana-
lyzed by EA-IRMS with FlashEA 1112 Series and a Delta 
V Plus (Thermo Fisher Scientific), as previously described 
[9], using 547 ± 171 µg of cells.

DNA Extraction

For T4 virions obtained as described in Sect. “Culture Con-
ditions and Virion Preparation”, T4 DNA was extracted 
according to the following procedure. Virions were firstly 
concentrated, either using Amicon Ultra-15 centrifugal Fil-
ter units (Meck Millipore) or by centrifugation at 20,000×g 

for 4 h at 4  °C, followed by pellet suspension in 1-mL 
supernatant. The concentrated T4 suspensions were incu-
bated with 10-µL DNase (DNase I THERMO, 1 Unite/µL) 
at room temperature for 20 min. The DNase was inactivated 
at 75 °C for 5 min. Viral DNA was subsequently extracted 
with the Phage DNA Isolation Kit (Norgen), with the fol-
lowing minor modifications. For proteinase treatment (pro-
teinase K from Tritirachium album, Sigma-Aldrich, 20 mg/
mL), samples were incubated for 15 min at 55 °C with 80 µL 
of virion suspension. For the final elution, either 2 elutions 
with 75 µL, or 3 elutions with 50 µL, elution buffer, were 
performed.

All DNAs were quantified with a Qubit fluorometer and 
the dsDNA HS kit (Thermo Fisher Scientific).

Separation of DNA in an Isopycnic Gradient

DNAs were separated according to their density by ultra-
centrifugation in an isopycnic CsCl gradient, as previously 
described [10]. Briefly, between 200 ng and 2 µg of DNA 
were added to a solution of CsCl and Tris–EDTA in each 
ultracentrifuge tube, to reach an average density of 1.725 g/
mL. The 2-mL Quick-Seal polyallomer tubes were centri-
fuged during 20 h at 120 000×g and 20 °C, using a TLA-
120.2 rotor (Beckman). After ultracentrifugation, fractions 
of 100 μL were recovered from the bottom of each tube by 
pumping water into the top of the tube with a constant flow 
(200 μL/min). The density of each fraction was assessed by 
measuring its refractive index (Reichert Arias 500 refrac-
tometer). The DNA concentrations were determined with the 
Qubit dsDNA HS Assay Kit, according to the manufacturer’s 
instructions.

The raw data are provided as Supplementary Information. 
The linear regression was calculated with the lm function 
from R 4.3.1 in R studio (2023.12.0 + 369).

Results and Discussion

The 13C Enrichment of Uninfected E. coli Cells 
is Consistent with the Isotopic Composition 
of the Growth Substrate

As a control, we first measured the isotopic composition 
of uninfected E. coli cells grown in minimal medium, by 
EA-IRMS (Fig. 1). The sole carbon source was d-glucose 
containing various proportions of 13C6-d-glucose. Overall, 
the measured 13C content of cells was slightly inferior to 
the theoretical 13C content of the substrate, with the rela-
tive difference varying between − 13.55 and 1.40%. Such 
difference cannot be explained by the addition of the inoc-
ulum, which contained LB medium, because a 1000× dilu-
tion was applied for inoculation. It could rather result from 
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the 13C content of 13C6-d-glucose being slightly inferior to 
100% (≥ 99% according to the supplier), combined with 
biases introduced during medium preparation and IRMS 
measurement. Despite these minor differences, a very 
strong correlation was obtained between the 13C content 

of substrate and cells, as expected (Fig. 1, R2 = 0.999). The 
replicates (N = 2) showed high reproducibility.

The buoyant Density of T4 DNA Correlates 
with the Isotopic Composition of the Substrate Used 
for Host Growth

Subsequently, E. coli cells grown on minimal medium with 
various proportions of 13C6-d-glucose were infected by T4 
bacteriophage. T4 DNA was extracted and separated on a 
CsCl gradient. A good reproducibility was observed among 
replicates, and small differences are visible across the two 
different experimental series. Overall, a strong correlation 
was obtained between the observed T4 DNA densities and 
the percentages of 13C6-d-glucose in the substrate (Fig. 2b, 
R2 = 0.952), resulting from the link between the isotopic 
composition of the host and the produced virions. Since we 
observed a correlation between the 13C content of the growth 
substrate and the isotopic composition of both the cells and 
T4 DNA, we can conclude that there is a correlation between 
the isotopic composition of the host and the virions they 
produce, as expected, although the correlation coefficient 
was not directly measured.

Observed T4 DNA Densities Are Greater 
than Expected from Empirical Models

We calculated the theoretical expected density for T4 DNA, 
by relying on a previously established empirical formula 
[11]:

Fig. 1   Isotopic composition of E. coli cells, as determined by EA-
IRMS, in function of the percentage of 13C6-d-glucose employed 
in the d-glucose substrate. There are 4 replicates by condition. The 
different shapes, circles, and triangles represent two distinct experi-
mental series. The dotted line and the equation shown in the plot are 
related to the linear regression

Fig. 2   Buoyant density of T4 bacteriophage DNA measured in CsCl 
gradient. aT4 DNA density as a function of the proportion of 13C6-
d-glucose employed in the d-glucose substrate for host growth. b 
T4 DNA density as a function of the theoretical density calculated 
according to the equation presented in the text [10]. The identity line 
is shown with red dots. The dashed line and equations shown on the 
plots are related to the linear regressions. The data originate from 2 

distinct experimental series. In experimental series A, 0% and 100% 
13C6-d-glucose proportions were tested, in biological triplicates. In 
experimental series B, 0%, 20%, 40%, 60%, and 80% 13C6-d-glucose 
proportions were tested, in biological triplicates. However, there was 
an experimental problem for one replicate of the 40% condition and 
one of the 60% condition, so that there are only duplicates shown in 
these cases
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where [G + C] is the GC content of the considered DNA 
(0.3530 for T4, NC_000866.4) and [13C] is its 13C content.

The obtained predicted densities were significantly lower 
than the measured ones (Fig. 2b). T4 DNA contains gluco-
sylated hydroxymethylcytosine (HmC) instead of cytosine 
[12], affecting its buoyant density: it was detected as heav-
ier than expected without DNA modification, in a previous 
study [13], with a value of 1.698 compared to 1.694 accord-
ing to the above formula. In the present study, an average 
value of 1.701 (± 0.004 STD) was obtained for unlabeled T4 
DNA, based on duplicates. For the fully labeled T4 DNA, 
the average density value was of 1.744, compared to an 
expected value of 1.731 according to the empirical model. 
Based on the linear regression from Fig. 2a, fully label T4 
DNA has a density increase of 0.042 (compared to 0.036 
in the above model). Models linking the GC content to the 
buoyant density would thus need to be adjusted for modified 
DNAs. Here, we do not suggest a new model, as it would 
require the analysis of DNA presenting the same modifica-
tions as T4, but with various GC contents.

Viral DNA SIP: Powerful Tool to Establish the Link 
Between Virus and Its Host

Several experimental methods are already available to 
identify hosts of viruses, including digital droplet PCR 
[14], proximity ligation [15], epicPCR [16], or viral tag-
ging [17]. To our knowledge, none of these methods are 
trivial to implement, each possessing distinct advantages and 
limitations. While some methods are targeted, such as those 
based on PCR, others require the cultivation of hosts, as is 
the case with viral tagging. Proximity ligation, conversely, 
is untargeted but necessitates meticulous design and data 
treatment to mitigate noise.

Experimental techniques utilizing stable isotopes, such as 
DNA Stable Isotope Probing (DNA SIP) or NanoSIMS, com-
plement the aforementioned approaches in host–virus interac-
tion studies, particularly as they relate to metabolic activity. 
This aspect is crucial for functional ecology, with these meth-
ods showing significant promise in elucidating the connections 
between viruses and major biogeochemical cycles. They are 
thus worth further developing and investigating. As mentioned 
in the introduction, DNA SIP has been successfully applied 
in viral ecology studies, using either cellular DNA [3, 4, 8] or 
total DNA [6]. We postulate that applying SIP to viral DNA 
separately, although challenging, would be complementary 
and would provide a different view on the viral diversity, with 
increased sensitivity and, likely, a better detection of purely 
virulent viruses. Compared to viral DNA, cellular DNA or 
total DNA is indeed expected to be enriched in temperate 
virus sequences, present in cellular genomes. Moreover, since 

�exp = 1.660 + (0.098 × [G + C]) + 0.036 ×
[

13C
]

, cellular DNA is dominant in the total DNA, one can expect 
a lower sensitivity for detecting DNA from low abundant, 
purely virulent viruses, compared to an approach focusing on 
the DNA directly extracted from virions.

However, in viral DNA SIP that targets a specific metabo-
lism, only a limited proportion of the microbial community 
is likely to be labeled, which poses a notable challenge. This 
technique requires a considerable amount of environmental 
viral DNA for analysis. Based on our experimental data, at 
least 400 ng of viral DNA from an environmental sample 
is required to reliably discriminate between the 12C and 13C 
buoyant density peaks. This requirement highlights the impor-
tance of careful experimental design and emphasizes the need 
for efficient viral DNA extraction and concentration techniques 
to meet the threshold for successful isotopic discrimination.

Conclusion

In this study, using a simple biological model, we observed 
a very strong correlation between the proportion of 13C6-d-
glucose in the substrate and T4 DNA buoyant density. We 
therefore validate for the first time the use of viral DNA SIP 
on a model system. Similar to DNA SIP applied to environ-
mental microbial communities, this approach could be used 
specifically in viral ecology to identify, with a high level of 
sensitivity, the range of viruses infecting hosts with a specific 
metabolism.
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