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Abstract 
Multivariate analysis is becoming central in studies investigating high-throughput molecular data, yet, some important features of these 
data are seldom explored. Here, we present MANOCCA (Multivariate Analysis of Conditional CovAriance), a powerful method to test for 
the effect of a predictor on the covariance matrix of a multivariate outcome. The proposed test is by construction orthogonal to tests 
based on the mean and variance and is able to capture effects that are missed by both approaches. We first compare the performances 
of MANOCCA with existing correlation-based methods and show that MANOCCA is the only test correctly calibrated in simulation 
mimicking omics data. We then investigate the impact of reducing the dimensionality of the data using principal component analysis 
when the sample size is smaller than the number of pairwise covariance terms analysed. We show that, in many realistic scenarios, the 
maximum power can be achieved with a limited number of components. Finally, we apply MANOCCA to 1000 healthy individuals from 
the Milieu Interieur cohort, to assess the effect of health, lifestyle and genetic factors on the covariance of two sets of phenotypes, blood 
biomarkers and flow cytometry–based immune phenotypes. Our analyses identify significant associations between multiple factors 
and the covariance of both omics data. 

Keywords: statistics; covariance; correlation; multivariate analysis; biomarkers 

Introduction 
Human cohorts commonly collect high-dimensional phenotypic 
data, including high-throughput omics, extended medical infor-
mation and biomarkers [1, 2]. A variety of multivariate approaches 
have been developed to leverage this wealth of data [3–6]. The 

joint analysis of multiple outcomes can increase statistical power 
to detect associations [7, 8], help in deciphering complex bio-
logical processes through clustering approaches [9] or improve  
the prediction accuracy of an outcome of interest [10]. Regarding 
association testing, existing methods and application have mostly
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focused on testing the impact of predictors of interest on the 
mean of a multivariate outcome, typically using a composite 
null hypothesis such as implemented in a multivariate ANOVA 
(MANOVA). Conversely, methods to investigate other components 
of multivariate outcomes remain sparse. One of such compo-
nents of multivariate outcomes is correlation, which is commonly 
present in omics data. Although methods to investigate predic-
tors associated with the correlation between multiple outcomes 
exist [11–14], their performance and robustness have not been 
assessed, and their efficiency in large-scale agnostic screenings 
remains unknown. Moreover, they carry substantial inherent lim-
itations, including restriction to binary factors and no adjustment 
for covariates. 

Here, we present a new approach, named MANOCCA (Mul-
tivariate ANalysis Of Conditional Covariance), that enables the 
identification of both categorical and continuous predictors 
associated with changes in the covariance matrix of a multi-
variate outcome while allowing for covariates adjustment. We 
first introduce the key principles and the main characteristics of 
the approach and demonstrate that, in most realistic scenarios, 
MANOCCA can outperform existing approaches showing stronger 
power and robustness. We then describe the challenges faced 
when analysing high-dimensional data and present a robust 
solution based on principal components analysis (PCA). We next 
investigate the power of MANOCCA conditional on alternative 
parametrizations, providing guidelines for real data application 
across various settings. Finally, we illustrate the method by 
studying health, lifestyle and genetic factors associated with 
variability of blood biomarkers and flow cytometry-based 
immune phenotypes using data from 1000 healthy subjects from 
the Milieu Intérieur (MI) cohort. 

Methods 
The MANOCCA approach 
Previous work [15] showed that variability in the correlation 
between two standardized outcomes Y1 and Y2 can be investi-
gated through the element-wise product of those outcomes. The 
Pearson correlation coefficient between Y1 and Y2 is expressed 
as ρY1Y2 = cov (Y1, Y2) /

(
σY1 σY2

)
, with  cov (Y1, Y2) = E [Y1Y2] − 

E [Y1] E [Y2]. For standardized outcomes and a sample size N, it  
can be re-expressed as the average of the element-wise product 
across individuals: ρY1Y2 = (∑

i=1...NY1iY2i
)
/N. It follows that 

the effect of a predictor X on cor (Y1, Y2) can be tested using a 
standard least-squares regression framework where X is treated 
as a predictor and the product Y1Y2 as the outcome. One can 
easily demonstrate that, under reasonable assumptions, this 
test is independent of mean and variance effect. Consider the 
following models: Y1 = α1U + β1X + ε1 and Y2 = α2U + β2X + ε2, 
where Y1 and Y2 are random variables correlated through an 
unmeasured normally distributed variable U, and depend linearly 
on a binary predictor X, inducing an effect on the means of Y1 

and Y2. The conditional covariance between Y1 and Y2 can be 
expressed as cov (Y1, Y2|X = x) = α1α2var(U) and does not depend 
on X. Consider the alternative models: Y1 = α1U + β1AX + ε1 and 
Y2 = α2U + ε2, where  Y1 and Y2 are correlated, and the variance 
of Y1 depends on the product of a latent continuous variable A 
multiplied by the binary predictor X. The conditional covariance 
can again be expressed as cov (Y1, Y2|X = x) = α1α2var(U) and 
does not depend on X. Finally, consider the models: Y1 = α1UX+ε1 

and Y2 = α2U + ε2, where  Y1 and Y2 are correlated, with 
the strength of the correlation depending on the predictor X. 
The covariance can now be expressed as cov (Y1, Y2|X = x) = 

α1α2x var(U) and does depend on X. Further details on those 
approximations are provided in the Supplementary Notes. 

The approach can easily be extended to more than two out-
comes by deriving  an  N × p matrix of products between centered 
outcomes, defined as P = P1, . . .  Pp, with  p, the number of products, 
equals k

(
k − 1

)
/2 where k is the number of outcomes and N the 

sample size. The association between a predictor X and P can then 
be derived by applying a standard two-way analysis of variance 
(MANOVA), that is P ∼ δX. While valid, this approach is limited 
to situations where the effective sample size N is substantially 
larger than the number of products p. When this criterion is not 
met, we use PC analysis to reduce the dimension of the product 
matrix and use the top m PCs to form an N × m matrix � used 
as input in our test. Given the independence between the PCs, we 
first considered using a sum of univariate PC tests to form a joint 
test; however, this approach was not calibrated (see Results and 
Figures S1 and S2). Instead, we used a MANOVA, that is, � ∼ βX. 
For fast computation, the joint effect estimates β̂ = β̂1 . . .  β̂m of 
association between each PC Ωii ∈ [1 . . .  m] and the predictor X 
are first derived using a single matrix operation: β̂ = (

XTX
)−1 XT�. 

The Wilks’ lambda statistics, W = det
(
�T� − βXTXβT

)
/ det

(
�T�

)
is derived in a second step. Under the null hypothesis of no asso-
ciation, W follows a Fisher distribution F (m, N − m − 1). Figure 1 
presents an overview of the steps for applying the approach. Note 
that the Wilk’s Lambda statistics can be sensitive to the nor-
mality assumption of the outcome data analysed [16]. However, 
as discussed further in the Results section, we implemented in 
the final version of MANOCCA a systematic rank-inverse normal 
transformation of the input data ensuring that the normality 
assumption is met. 

In a standard MANOVA, potential confounding factors C = 
(C1 . . . Cc) can be incorporated as covariate: � ∼ C + βX. Again, 
for fast computation, we used a two-step procedure that consists 
in adjusting a priori both the outcome and the predictor for the 
covariates: �∗ = �−∑

cγ̂iCi, where  γ̂i is a vector of estimated effect 
of Ci on �, and  X∗ = X − ∑

cτ̂iCi, where  ̂τi is the estimated effect 
of Ci on X, and applying the MANOVA on the residual variables:
�∗ ∼ βX∗. 

Type I error rate simulation 
The statistical robustness of any covariance test likely depends 
on the distributional assumptions of the multivariate outcome 
studied, including the distribution of the outcomes, the number of 
outcomes analysed jointly, the strength of the correlation across 
outcomes, the sample size over the number of outcomes ratio and 
the distribution of the predictors considered (binary or contin-
uous, etc.). We investigated the validity of both MANOCCA and 
other existing approaches conditional on these factors. 

We first assess the calibration under the null of MANOCCA and 
four existing approaches, the Mantel test [11], the Fisher method 
[12], the Jennrich test [13] and  the BoxM test [14], using fully 
simulated data and simple scenarios (Fig. 2). We drew a series 
of 10 000 replicates with a sample size of 1000, each including a 
multivariate outcome Y and a binary predictor X ∼ B(0.4) drawn 
independently of Y under two different models. Note that we used 
a binary predictor as the four existing approaches do not allow 
for the analysis of continuous predictors. In the first model, repli-
cates included five outcomes drawn from a multivariate normal 
with modest pairwise correlation. In the second model, replicates 
included 30 highly correlated non-normal outcomes drawn from 
a multivariate chi-square distribution. The overall calibrations 
of all tests were derived by testing for association between X
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Figure 1. Overview of the MANOCCA approach. Starting with a multivariate outcome matrix of N samples and k variables, the data are first centred. 
The pairwise product of each of the k outcomes is computed, generating a high-dimensional matrix of size N × k

(
k − 1

)
/2. If  N >> k

(
k − 1

)
/2, a joint 

test of all products can be derived; otherwise, the dimension of the product matrix is reduced using a PCA, to form a PC space of size N × m. The final 
test, including covariates, can be performed on the products or the top m PCs using a Wilk’s lambda test. 

and the correlation between Y variables and conducting a visual 
inspection of the P-value distribution. 

We next assessed the robustness of MANOCCA under a wider 
range of scenarios, while modifying some of the modelling param-
eters. We first compared performance when using a binary or 
a continuous predictor (Figure S3 available online at http://bib. 
oxfordjournals.org/). We simulated a series of 100 replicates, each 
including 1000 individuals and a multivariate outcome Y includ-
ing 400 variables drawn from a multivariate chi-square distribu-
tion with a point mass at 0 including 0–50% of the data. For each 
replicate, we drew 1000 predictors, either from a normal or binary 
distribution, and applied MANOCCA while varying the number of 
PCs used and applying no transformation, a rank-inverse normal 
transformation on the product matrix, the PC matrix or both. 
The validity of MANOCCA was assessed using a Kolmogorov– 
Smirnov test for deviation from a uniform [0,1] distribution of the 
P-values across the 1000 predictors tested. We then conducted 
simulations using real covariance matrices derived from the MI 
169 flow cytometry–based variables and for ranging sample sizes 
from 1000 to 5000 to draw guidelines on the parametrization of 
MANOCCA (Figures S6 and S7). For predictors, we considered not 
only binary predictors with frequencies in [0.01; 0.40] but also 
categorical ones mimicking genetic variants with minor allele 
frequency in [0.01; 0.40], both generated independently of the 
multivariate outcome Y. 

Power simulation 
To investigate power, we drew a series of 50 replicates with sample 
size of 1000 including a binary exposure X with frequency of 0.5 
and a multivariate outcome Y including 50–169 variables (Fig. 4). 
For each replicate, we used two covariance matrices, one for the 
exposed (C1) and the other for the unexposed (C2), and tested 
the association between X and Y using MANOCCA. We generated 
the outcome from a multivariate normal and real covariance 
matrix (C) derived from the MI flow cytometry data under three 

scenarios. In scenario (i), C1 = C and C2 = |C|γ × sign(C), inducing 
a covariance with similar pattern among exposed but variability 
in the magnitude of covariance. In scenario (ii), C1 = C and 
C2 = δC + (1 − δ)�, where � is a random covariance generated 
using the R randcorr package [17], thus inducing random noise 
between exposed and unexposed. In scenario (iii), we first drew 
C1 = C2 = C and then attenuated the covariance in an arbitrary 
chosen subset ω of C2, so  that  C2{ω} = ∣∣C{ω}

∣∣θ × sign
(
C{ω}

)
. We  

arbitrarily set γ to 1.5, δ to 0.2 and θ to 0.5, as it allowed for a 
similar average power across scenarios given the other simulation 
parameters. 

MANOCCA association screening in MI 
The MI Consortium is a population-based cohort initiated in 
September 2012 [18]. It comprises 1000 healthy volunteers from 
western France, with a 1:1 sex ratio. The cohort collected a 
broad range of variables, including genomic, immunological, 
environmental and clinical outcomes. We conducted systematic 
MANOCCA screenings for environmental effects on the covari-
ance of two sets of data: 169 flow cytometry–based immune 
cell phenotypes [19] and 33 health-related blood biomarkers, 
including 22 metabolites and 11 cell counts [18] (Tables S1 and S2 
available online at http://bib.oxfordjournals.org/). We focused on 
two types of predictors: health and lifestyle factors collected from 
questionnaires and genome-wide variants. Health and lifestyle 
factors included demographics, medical and vaccination history, 
psychological traits, socio-professional information, smoking 
habits, physiological measurements and nutrition measured as 
part of the Nutrinet [20] study  (Table S3 available online at http:// 
bib.oxfordjournals.org/). After the filtering of ancestral outliers 
individuals [21, 22], the genetic screening was conducted in 894 
participants for a total of 5 667 803 variants after filtering and 
imputation using IMPUTE2 [23]. Except when used as predictor, 
all analyses were adjusted for age, sex and body mass index (BMI). 
For blood metabolites, the number of products allowed for a
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Figure 2. Limitation of existing methods. We assessed the calibration under the null of four approaches representing the state of the art for covariance 
matrix comparison: the Fisher method (A, B), the Jenrich test (C, D), BoxM (E, F) and Mantel test (G,H), against the proposed MANOCCA approach (I, J). 
Note that we applied MANOCCA directly on the product matrix thanks to the high sample size compared to the number of products. We simulated a 
series of 10 000 replicates, with a sample size of 1000 each, under two different null models. In the first model (A, C, E, G, I), replicates included five 
outcomes Y drawn from a multivariate normal with modest pairwise correlation. In the second model (B, D, F, H, J), closer to the expected distribution 
of omics data, replicates included 30 non-normal outcomes with high correlation. Calibration was derived by splitting each replicate in two random sets 
according to a random binary variable X ∼ B(0.4) and testing for association between X and the correlation between Y variables. The panels present the 
distribution of the P-values, expected to be uniformly distributed under this null model, for the five approaches and the two models. 

direct analysis of the products without requiring the PCA step, 
and we considered both the products and the PCs as outcomes. 
For comparison purposes, we also conducted, for each screening, 
a standard MANOVA on the mean of the multivariate outcome 
(see Supplementary Notes). 

Human samples 
Samples came from the MI Cohort, which was approved by 
the Comité de Protection des Personnes—Ouest 6 (Committee 
for the protection of persons) on 13 June 2012 and by French 
Agence nationale de sécurité du médicament (ANSM) on 22 June
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2012. The study is sponsored by Institut Pasteur (Pasteur ID-
RCB Number: 2012-A00238-35) and was conducted as a single 
centre interventional study without an investigational product. 
The original protocol was registered under ClinicalTrials.gov 
(study# NCT01699893). The samples and data used in this study 
were formally established as the MI biocollection (NCT03905993), 
with approvals by the Comité de Protection des Personnes—Sud 
Méditerranée and the Commission nationale de l’informatique 
et des libertés (CNIL) on 11 April 2018. All donors gave written 
informed consent. All data used in this study are available at 
https://dataset.owey.io/. 

Results 
Method comparison and MANOCCA 
characteristics 
We identified four existing approaches allowing to test for the 
effect of a predictor on the covariance matrix of a multivariate 
outcome: (i) the Mantel test [11], which consists of deriving a dis-
tance metric between two square matrices of the same dimension 
and comparing this distance to an empirical distribution derived 
through permutation; (ii) the Fisher method [12], which builds a 
statistic based on the sum of the squared correlations over all 
cells from the covariance matrix; (iii) the Jennrich test [13], which, 
in its simplest form, consists of estimating the statistic based 
on the Hadamard product of a given correlation matrix and the 
inverse of a second matrix of the same dimension; and (iv) the 
BoxM test [14], which extends the Levene’s test of homogeneity 
of variance, an approach often used in human genetics [24]. 
Further description of each of the four approaches is provided in 
Supplementary Notes. We conducted a series of simulations to 
assess their statistical robustness under the null using a binary 
predictor and no covariates, as these approaches cannot handle 
continuous predictors and do not allow adjustment for covariates. 
Except for the Mantel test, all methods performed relatively well 
for a simple model with a few normally distributed outcomes. 
Conversely, they all displayed severe type I error rate inflation 
when confronted with non-normal correlated variables, mimick-
ing omics data (Fig. 2A–H). In comparison, when applied to the 
same simulated data, MANOCCA was correctly calibrated in all 
simulations (Figure 2I and J). 

The effect of the predictor on the covariance, the mean and 
the variance of a set of outcomes are expected to be statistically 
independent (see Supplementary Notes). We confirmed this 
orthogonality between mean (derived using a two-way MANOVA), 
variance (Levene’s test) and the proposed covariance tests 
through simulation. Figure 3 shows that, under realistic modelling 
assumptions, the MANOCCA test captures only effects on 
the covariance and can therefore identify effects missed by 
both mean and variance-based approaches. Figure 3D further 
illustrates bivariate data where a binary predictor X is associated 
with covariance but neither the mean nor the variance of the 
outcomes. Importantly, the independence of the three tests does 
not imply signal across the three approaches will necessarily be 
uncorrelated in real data. Indeed, one can easily draw scenarios 
with, e.g. effect of a predictor on both the mean and covariance 
of a multivariate outcome. Also, unless specified otherwise, we 
modelled the effect of a predictor on the covariance through an 
interaction with a latent variable associated shared across the 
outcomes tested (see Methods). Under this modelling, effects on 
the covariance can in general be transposed to effects on the 
correlation. However, when the predictor has an effect on the 
variance of either outcome, this equality is not valid anymore, as 

the correlation will depend on X, while the covariance will not 
(Supplementary Notes). 

Extension to high-dimension data 
MANOCCA is readily applicable to the matrix of outcome product 
in all scenarios where p, the number of products, is substantially 
smaller than the sample size N. When this criterion is not met, we 
used PCA to reduce the dimension of P, using the top PCs as the 
primary outcome. As for all linear models, the maximum number 
of PCs that can be analysed jointly remained bounded by the 
sample size. More generally, high-dimension outcomes data bring 
the question of the latent space dimension, that is, the number of 
PCs kept in the analysis to achieve maximum power while main-
taining a correct type I error rate. Moreover, by construction, both 
products and PCs tend to display kurtotic distributions, especially 
for omics-like data, which might also impact performance. We 
conducted a series of simulations to investigate the robustness of 
the MANOCCA conditional on these two components. Specifically, 
we measured the type I error rate while varying the number of 
top m PCs selected, and applying (i) no transformation, or a rank-
inverse normal transformation on (ii) the product, (iii) the PCs or 
(iv) both products and PCs. As shown in Figure S3a available online 
at http://bib.oxfordjournals.org/, if the predictor being tested is 
continuous, MANOCCA shows strong robustness conditional on 
the outcome’s distribution, remaining well calibrated regardless 
of the transformation applied and allowing for the use of a large 
number of PCs. Conversely, when analysing binary predictors, 
the test systematically requires a normalization of the PCs, only 
allowing a limited number of PCs to be analysed jointly (Figure 
S3b available online at http://bib.oxfordjournals.org/). Figures S4 
and S5 available online at http://bib.oxfordjournals.org/ further 
presents the results from extended simulations, providing guide-
lines to determine the number of PCs that can be analysed jointly 
conditionally on the predictor frequency and the cohort sample 
size. From an application perspective, when the predictors to be 
tested include both continuous and non-continuous variables, we 
recommend using a systematic rank-inverse normal transforma-
tion of the PCs, so that the results from either type of predictors 
can be interpreted on the same scale. 

We next evaluated the power of MANOCCA across different 
scenarios in which the true covariance depends on a binary 
predictor X with a frequency of 0.5. We tested up to 400 PCs, 
and normalized either the products and PCs or the PCs only, the 
two transformations that display a calibrated null distribution 
(Figure S3 available online at http://bib.oxfordjournals.org/). The 
optimal number of PCs varied substantially across the simulated 
scenarios. Figure 4 illustrates three complementary cases. When 
X acts as a global scaling factor of the covariance, the maxi-
mum power is observed when using a limited number of top 
PCs and decreases after reaching that optimum (Fig. 4A). When 
X affects only a subset of outcomes, the maximum power is 
reached when including a fairly large number of PCs and converge 
afterwards (Fig. 4B). As expected, when X induces random noise in 
the covariance matrix, the power increases continuously with the 
number of PCs (Fig. 4C). Among the scenarios we considered, the 
double normalization (on products and PCs) produced on average 
larger power, and this transformation was therefore used in all 
subsequent analyses. 

Efficient implementation 
The MANOCCA approach requires multiple steps that can be 
computationally expensive in large-scale data. The main limiting 
step is the computation of the product matrix followed by the PCA
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Figure 3. Orthogonality between MANOCCA and other tests. We simulated a series of datasets under three models where a binary predictor X influences 
orthogonally either the mean, the variance or the covariance of a bivariate outcome Y. In  model  (A), each outcome Yi is drawn from a standard additive 
model: Yi = U + βiX + εi, where  U is a normally distributed variable shared across Y. and εi are independent normal residuals. In model (B), each Yi is 
drawn from Yi = U + γiAiX + εi, where  Ai is normally distributed variables producing heterogeneity in the variance of Yi conditional on X. In  model  (C), 
each Yi is drawn from the interaction model Yi = δiUX + εi, which produces heterogeneity in the correlation across Yi conditional on X. For each model, 
we derived the power at the P-value threshold of 0.05 for a joint mean effect test (MANOVA), a test of variance for a randomly selected Yi (LEVENE) 
and the proposed covariance test (MANOCCA). The parameters βi, γi and δi were chosen to maximize the power of the at least one of the three tests. 
The dashed line indicates the P-value threshold of 0.05. (D) shows an example of a bivariate distribution where X is not associated with the mean and 
variance of the two outcomes but with their covariance. 

transformation, but it is a one-time cost regardless of the number 
of predictors tested. With N the sample size, k the number of 
outcomes and q the number of predictors to test, the computation 
time is divided in O

(
Nk2

)
for the computation of the product 

matrix, O
(
max

(
N, k2

)2 ∗ min
(
N, k2

))
for the computation of the 

PCA and O(Nq) for the test of q predictors (Fig. 5). Most steps were 
implemented with limited usage to exterior libraries, but ground-
proofed against multiple existing tools. The approach is imple-
mented in a Python package with dependencies to numpy, scipy 
for the fisher distribution, scikit-learn for the PCA and pandas for 
dataframe integration, but all computations are performed under 
numpy array to increase performance. Each step was optimized 
to minimize computational time and, given that most steps are 
independent, especially the product matrix, the python version 
allows for a user-friendly parallel computing implementation if 
multiple cores are available. An R version, though less optimized, 
is also available and was used to verify our results. 

Application to MI omics data 
We applied MANOCCA in 1000 healthy individuals from the 
MI cohort to screen for factors associated with changes in the 
covariance of 33 blood biomarkers and 169 flow cytometry–based 
immune phenotypes (Tables S1–S3 available online at http:// 
bib.oxfordjournals.org/). Both datasets display high correlation, 
ranging from −0.71 to 0.99 for the flow cytometry data and from 
0.08 to 0.98 for the biomarkers (Figure S6 available online at 
http://bib.oxfordjournals.org/). We first investigated the effect 
of 49 health-related and lifestyle factors using a subset of 992 

participants with complete data. We applied the proposed PCA 
reduction and investigated power when using 5–200 top PCs 
with a step of 5, resulting in 40 tests per variable. As shown in 
Fig. 6A and B, multiple features were associated at a stringent 
Bonferroni-corrected significance level (P < 2.5 × 10−5 accounting 
for 1960 tests). Flow cytometry–based phenotypic covariance was 
associated with age (P < 6.0 × 10−9) and all smoking variables: 
smoking status (P < 2.1 × 10−12), smoking frequency (P < 1.2 × 
10−11), number of years smoked (P < 3.8 × 10−10) and number of 
years since last smoke (P < 7.5 × 10−9). Likewise, blood biomarkers 
covariance was strongly associated with age (P < 3.5 × 10−33) and  
sex (P < 1.3 × 10−30), and to a lesser extent with BMI (P < 1.6 
× 10−7) and smoking variables (minimum P < 5.5 × 10−12, for  
smoking status). Except for the age–flow cytometry association, 
the maximum association signal was almost reached when 
including the top 50 PCs and display only modest improvement 
when including more PCs (Fig. 6). 

Thanks to a limited number of outcomes, the blood biomarker 
dataset could also be analysed by applying MANOCCA directly 
on the 528 pair-wise products. To investigate the value of using 
the PCA in such situations, we applied MANOCCA on the product 
and compared results against the PCA-based approach. Note that 
the product-based test should be approximately equivalent to the 
test of all PCs, which was confirmed for these data (Figure S7 
available online at http://bib.oxfordjournals.org/). Comparing the 
minimum P-value across the 40 PCA-based test (PPCA) against the 
P-value from product-based test (Pprod), we observed a substantial 
gain for the PCA-based approach, even when accounting for the 
multiple testing cost of the PCA approach. The product-based
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Figure 4. Impact of transformation and number of PCs on statistical power. Power of MANOCCA as a function of the number of PCs retained in the 
joint test (2–400), while applying two different pre-processings: a rank-inverse normal (rkv) on the PC only or a rank-inverse normal on the PCs and 
the products. We drew series of 50 replicates with sample size 1000, including a binary exposure with frequency of 0.5 and 30–169 outcomes. For each 
replicate, we drew two covariance matrices, one for the exposed and one for the unexposed. We generated the outcome under three scenarios using a 
multivariate normal and covariance derived from real data. In (A), the two matrices are similar but with attenuated covariances among exposed. In (B), 
random noise is added to the covariance of the exposed group. In (C), the two matrices are equal, except for a subset of outcomes where the covariances 
have been attenuated. Left panels show the average over the 100 replicates of the −log10(P-value) derived using MANOCCA for the two pre-processings. 
Right panels present the matrix produced for each scenario using data from an arbitrarily chosen replicate, with upper and lower triangles showing the 
true covariance in unexposed and exposed, respectively. 
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Figure 5. Computational efficiency. Computational time for running MANOCCA on varying sample sizes, numbers of outcomes and numbers of predictors 
tested. Over 1000 simulations each time, we simulated multivariate normal distributions of various sizes and computed the product matrix > rank 
transform > PCA > rank transform using sequential computation. (A) displays the running time to transform the outcome matrix into the reduced 
covariance matrix for the test, as a function of the number of outcomes (10, 100, 150, 200, 300, 400) and sample size (100, 1000, 5000 and 10 000). Y-axis 
is in log10-scale. (B) displays the running time for the testing part for a ranging number of sample sizes (100, 1000, 5000 and 10 000) and ranging number 
of predictors (1000, 10 000, 100 000). 

test identified only five of the seven signals from the PCA-based 
approach ( Fig. 7). For the strongest signals, the association P-value 
from the best PCA-based test was several orders of magnitude 
larger than for the product-based test (e.g. for age, P = 3.5 × 
10−33 and 2.6 × 10−11, respectively). These results have three 
implications. First, it confirms the relevance of using PCA when 
the dimensionality of the data does not allow the analysis of the 
product matrix. Using only a subset of top PCs can capture a 
substantial fraction of the variance of the raw products (e.g. we 
observed a correlation of 0.85 and higher between the products-
based test and the PC-based test, even when using a minimum 
of 5 PCs, Figure S7). Second, this suggests that, despite the sample 
size allowing for the full analysis of the product matrix, using PCA 
remains relevant, with the potential for notable power increase. 
Third and last, the benefit of testing multiple sets of PCs to search 
for an optimal threshold can strongly outpace the statistical cost 
of multiple testing. 

When comparing the MANOCCA results to a standard 
MANOVA applied to both datasets, MANOVA identified significant 
associations (P < 1.0 × 10−3 to account for the 49 tests conducted) 
with 8 and 13 predictors associated in the flow cytometry data and 
the blood biomarkers data, respectively (Table S4 available online 
at http://bib.oxfordjournals.org/). These associations included 
all associations detected by MANOCCA. More generally, while 
the two tests are expected to be independent, we observed 
a strong correlation between association signal as measured 
by the −log10(P-value) (ρbiomarkers = 0.88, ρcytometry = 0.65), 
suggesting that many of the predictors are associated with 
effects on both the mean and variance of the outcome studied 
(Figure S8 available online at http://bib.oxfordjournals.org/). 
However, several predictors display discordant associations, with 
a significant effect on the mean but no effect on the covariance. 
This includes, for example, systolic blood pressure (PManova = 2.6 
× 10−11, PMANOCCA = 0.14) and heart rate (PManova = 4.9 × 10−24, 
PMANOCCA = 0.001) effect on blood biomarkers. On the other hand, 
one predictor, the number of years of second-hand smoking, 
displays suggestive significance with MANOCCA on the flow 

cytometry data, but did not display the mean effect (PManova = 
0.31, PMANOCCA = 3.0 × 10−5). 

Finally, we conducted genome-wide association studies 
(GWASs) for both blood biomarkers and flow cytometry datasets, 
testing 5 699 237 genetic variants with a minor allele frequency 
(MAF) > 5% in up to 894 samples where both genetic and 
phenotypic data were available. All tests were adjusted for 
age, sex, BMI and the 10 first genetic PCs of the genotyping 
matrix. Note that for this genetic screening, we only applied 
the adjustment on the outcomes. Two-sided adjustment has 
already been used for mean effect tests in GWAS to account 
for relatedness [21], but would require further investigation to 
be extended in the MANOCCA test. Following the results from 
our simulations for genetic variants with an MAF 5% or larger, 
the type I error will remain robust only for up to 50 PCs (Figure 
S4c available online at http://bib.oxfordjournals.org/), resulting in 
10 GWASs per dataset. MANOCCA did not detect any genome-
wide significant signals at a stringent Bonferroni-corrected 
threshold (P = 5  × 10−9, Figure S9 available online at http:// 
bib.oxfordjournals.org/). Yet, 46 genetic variants from 11 loci 
show suggestive significance association (P = 5  × 10−7, Table S5 
available online at http://bib.oxfordjournals.org/). We conducted 
a phenome-wide association study on each variant using the ieu 
database API [25]. Most variants showed strong association with 
multiple phenotypes from this database (Table S6 available online 
at http://bib.oxfordjournals.org/). In particular, 4 out of the 11 loci 
harboured genetic variants that were expression quantitative trait 
loci (eQTL) for one or multiple genes (Table S7 available online at 
http://bib.oxfordjournals.org/), suggesting that our covariance-
based approach might capture variants involved in the regulation 
of gene expression. 

Perspective on future applications 
Covariance is a feature that is expected to arise commonly in 
large multidimensional data, including in particular molecular 
and biomarker data. In general, the relevance of our approach to 
assess the effect of predictors on such data depends on the a priori
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Figure 6. Screenings for host factors screenings for effect of 49 health and lifestyle factors on the covariance of 169 flow cytometry-based immune 
phenotypes (A) and 33 blood biomarkers (B) using the MANOCCA approach. We ran each screening using 5−200 PCs with a step of 5. Variables with 
a P-value below the adjusted Bonferroni threshold (2.6 × 10−5, dashed line) for each screening are displayed in colour: age, sex, body mass index and 
smoking. (C) presents the list of predictors considered and displays the number of PCs corresponding to the minimum P-value observed. 
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Figure 7. Comparison of PCA-based and product-based MANOCCA screening comparison for covariance signal using MANOCCA on the 33 blood 
biomarkers as outcomes and using the health and lifestyle electronic case report form (eCRF) questionnaire data as predictors. We ran the MANOCCA 
screening using the full 528 pair-wise biomarkers products (left) and the PCs derived from the product matrix (right). For the latter, we kept the min(P-
value) out of 40 models including 5–200 PCs with a step of 5 PCs. The corresponding Bonferroni correction threshold (dashed line) was derived for each 
approach based on the number of tests conducted (P-value threshold of 1.0 × 10−3 and 2.6 × 10−5, respectively). 

assumptions of the underlying causal model. To help guiding 
future applications, we showcase in Figure S10 different models 
prone to induce or not covariance signals. For clarity, in these sim-
ulations, we simply derived the covariance between two outcomes 
Y1 and Y2 across fixed ranged of values of a given predictor X. In  
general, when the generative model involves the mediation effect, 
the pleiotropic effect with or without a latent shared factor, the 
predictor is not expected to produce an effect on the covariance 
(Figure S10a–c). All models producing a variability of the covari-
ance between Y1 and Y2 conditional on X involved some form 

of interaction (Figure S10d–f), impacting the association between 
a latent variable and either ones or both of the outcomes or 
impacting the association between the two outcomes. The latter 
generative models can be easily connected to known biological 
mechanisms. For instance, the model from Figure S10f is fairly 
appropriate to describe an enzymatic or transporter effect, where 
X acts as a catalyzer of the transformation between an outcome 
Y1 into Y2. The model from Figure S10d and e can correspond 
to scenarios where the relationship between a factor or resource 
shared by both Y1 into Y2 is impacted by X. There is increasing
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work in the field of microbiology [26, 27], metabolites [28] and  
gene expression [29] investigating such relationships and where 
the proposed MANOCCA approach might be of interest. 

Finally, for most statistical models, the relationship between a 
predictor and an outcome is expected to vary when non-linear 
transformations are applied to either variable. Here, we devised 
a pre-processing pipeline that includes some non-linear trans-
formation in order to ensure the statistical robustness of our 
approach whatever the input outcomes that are analysed. Con-
versely, the transformation of the raw outcome before deriving the 
product terms, which might impact both the results and the inter-
pretation of the proposed covariance, remains at the discretion 
of the user. As for any statistical test, including assessing mean, 
variance or covariance effect, such transformations will depend 
on the investigator knowledge about which scale is most relevant 
to describe the potential underlying biological mechanisms. 

Discussion 
Covariance is a fundamental feature of omics data. Covariances 
might be explained by multiple factors, including shared biolog-
ical mechanisms, shared environmental risk factors or causal 
effects between the outcomes measured. However, our under-
standing of the factors involved in covariance has been very 
limited, partly due to the lack of adapted methodologies and 
software allowing for systematic screening of large-scale omics 
datasets. Here, we present MANOCCA, a robust and computation-
ally efficient approach for the identification of predictors asso-
ciated with the covariance of a multivariate outcome. We show 
that MANOCCA outperforms existing covariance methods and 
that, given the appropriate parametrization, it can maintain a cal-
ibrated type I error in a range of realistic scenarios when analysing 
highly multidimensional data. The application of MANOCCA to 
the MI dataset demonstrates the validity and relevance of our 
approach, identifying multiple health-related and lifestyle factors 
significantly associated with the covariance of blood biomarkers 
and immune phenotypes. 

The results from our screenings are in agreement with the 
existing literature suggesting a role of age, sex, BMI and smok-
ing on the outcomes studied. The marginal association between 
molecular and cellular biomarkers and ageing has been stud-
ied for years and remains topical [30]. There are extensive evi-
dence from clinical and epidemiology studies in healthy individu-
als that demonstrated associations between age and circulating 
metabolites [31–33], blood count [31, 33–35] and flow cytome-
try−based immune phenotypes [36–38]. Association of biomark-
ers with smoking habits [39] and BMI [40] have been widely 
described, showing, for example, an impact on platelets glyco-
protein [41] and platelet function [42]. Several studies using the 
same biomarker in MI data have also been conducted, deciphering 
the short- and long-term effects of smoking on immunity-related 
biomarkers [43] and describing sexual dimorphism of immunity-
related flow cytometry phenotypes [44]. Finally, and more directly 
related to our work, a recent study suggested association of age 
and sex with plasma metabolite association networks in healthy 
subject using correlation approach technics [45]. 

The MANOCCA approach has four main limitations. First, we 
used PCA to address situations where the number of covariance 
terms is larger than the sample size. We defined guidelines that 
constrain the maximum number of PCs that can be used to 
ensure the validity of the test when analysing binary or cate-
gorical predictors. Regarding power, both simulation and empir-
ical data analyses show that the optimal number of PCs to be 

included to maximize power can vary substantially conditional on 
the true covariance association pattern. Here, we use systematic 
screenings testing a range of PCs and corrected the association 
results for multiple testing. Our analyses suggest that the benefit 
of this strategy largely overcomes its statistical cost. Note that 
this correction strategy might be further improved as it does 
not account for correlation between each PC test. Second, our 
extensive simulation analyses show that when reaching high 
dimensions, the validity of the test relies on a strong data pre-
processing to circumvent the non-normal distribution of products 
and PCs. Future work is required to identify a refined modelling 
of these non-normal distributions and avoid this pre-processing. 
Third, we investigated the performance of our approach on two 
types of omics data (blood flow cytometry and metabolites) and 
confirmed its validity and power in these data. Omics data from 
other sources (e.g. RNAseq) might carry additional complexity 
that would have to be investigated by simulations before con-
ducting real data applications. Fourth, though applicable to any 
type of ordinal predictor, MANOCCA is currently restricted to 
continuous outcomes and unstructured observations. Other fields 
of application interested in changes in outcome relationships, 
such as the study of mutation mechanisms in genomic sequences 
[46], the study of longitudinal data (changes of covariances across 
different timepoints) or covariances across related individuals, 
would require further work to be studied using MANOCCA. 

Given the increasing number of high-dimensional omics data 
available in existing human cohorts, our approach provides oppor-
tunities to investigate multivariate outcomes from a new perspec-
tive. Because MANOCCA is built on a standard linear framework, 
the approach can be extended in many directions, including the 
derivation of the individual contribution of outcomes and the 
development of predictive models. Altogether, we expect 
the application of our method to produce novel insights on the 
complex structure linking highly intertwined omics data. 

Key Points 
• There exist many methods and software to assess the 

effect of a predictor on the mean and the variance of 
omics data. Conversely, there is a lack of methodology 
and tools to assess the effect of predictors on the covari-
ance of multivariate outcomes. 

• Under reasonable assumptions on the data distribution, 
covariance signal is expected to be orthogonal to mean 
and variance signals and thus can be missed by such 
approaches. 

• MANOCCA provides a robust and scalable test to evalu-
ate the effect of a predictor on the covariance of a mul-
tivariate outcome that outperforms the state of the art. 

• Our approach identified several significant associations 
for covariance signal of human metabolites and blood 
biomarkers with regard to environmental factors. 
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Supplementary data are available online at http://bib.oxford 
journals.org/. 
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