N
N

N

HAL

open science

A machine learning approach to distinguish different
subdiffusive dynamics in particle tracking

Giacomo Nardi, Matheus Santos Sano, Anne Brelot, Jean-Christophe
Olivo-Marin, Thibault Lagache

» To cite this version:

Giacomo Nardi, Matheus Santos Sano, Anne Brelot, Jean-Christophe Olivo-Marin, Thibault Lagache.
A machine learning approach to distinguish different subdiffusive dynamics in particle tracking. In-
ternational Symposium on Biomedical Imaging (ISBI), IEEE, May 2024, Athens (Greece), Greece.
pasteur-04626746v2

HAL 1Id: pasteur-04626746
https://pasteur.hal.science/pasteur-04626746v2
Submitted on 16 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://pasteur.hal.science/pasteur-04626746v2
https://hal.archives-ouvertes.fr

MOTION CLASSIFICATION BASED ON GEOMETRICAL FEATURES OF TRAJECTORIES

M. Santos Sano*, A. Brelot!, J.-C. Olivo-Marin*, T. Lagache*, G. Nardi*

* Institut Pasteur, Universite de Paris Cité, CNRS UMR 3691, Biolmage Analysis Unit, Paris, France

1 Institut Pasteur, Université de Paris Cité, CNRS UMR 3691, Dynamics of Host-Pathogen Interactions Unit, Paris, France

Corresponding author: giacomo.nardi @pasteur.fr

ABSTRACT

This paper proposes a novel approach for motion clas-
sification based on geometrical features computed on tra-
jectories. The method follows a machine learning approach
trained and validated on synthetic datasets simulating several
stochastic models. The resulting model enables, in particular,
the recognition of different subdiffusive behaviors, offering a
finer classification than the standard method based on mean
square displacement. The method is assessed on a biological
dataset containing trajectories of CCRS cell receptors.

Index Terms— Motion classification, subdiffusive pro-
cesses, machine learning, geometric features.

1. INTRODUCTION

Fluorescence microscopy coupled with tracking algorithms
enables the dynamic observation of different cellular particles
(like proteins or receptors). Motion classification represents
an essential task to understand their dynamic and the influ-
ence of drugs on them. The classical approach for motion
classification is based on the polynomial fitting of the func-
tion of mean square displacement. This function accounts for
the variance (in time) of time-constant displacements along
the trajectory. Based on its linearity for Brownian motion, a
criterion has been established for classifying motion into three
large categories: subdiffusive, Brownian, and superdiffusive
[1]. An alternative criterion has been proposed in [2, 3] via
a hypothesis test on the maximal distance from the starting
point of the trajectory. This method is more suited to short
trajectories but still performs a classification into the three
classes cited above. However, a three-class classification ap-
proach can be very restrictive and unrealistic for many bio-
logical applications. In reality, at the subcellular scale, many
phenomena reveal coexisting subdiffusive dynamics with in-
trinsically different behaviors corresponding to different en-
vironmental constraints. Then, a finer description of subdif-
fusive motions is a primary challenge for classification algo-
rithms.

Some methods have already been proposed to character-
ize several subdiffusive behaviors. [4, 5] introduce mathe-
matical quantifiers differentiating generalized diffusion (Frac-

tional Brownian Motion, FBM) from motion with trapping
(Continuous Time Random Walk, CTRW). [6] explains how
to combine statistical tests to distinguish between confined
(Ornstein-Uhlenbeck process, OU) or FBM, Brownian (BM),
and directed (DIR) trajectories. Finally, [7] develops a ma-
chine learning method that distinguishes confined, anoma-
lous, and diffusive motions. Although these works propose
ad-hoc features for specific subdiffusive processes, no work
establishes, to our knowledge, a unified method to distinguish
all main types of motion widely studied in the literature.

This work proposes a novel unified approach for motion
classification. We create a large dataset of trajectories simu-
lating the principal processes (BM, OU, DIR, FBM, CTRW)
and associate each with geometric features. Then, we train
a machine learning supervised method to learn the original
stochastic model based on the features defined on the trajec-
tories. Features consider the angle between successive dis-
placements along the trajectory or Ripley’s indices on grow-
ing balls around the starting points of trajectories. These fea-
tures discriminate confined or trapped motion from more dif-
fusive paths via a five-class classification method. Compared
to related methods, the proposed approach works with a more
prominent family of movements based on fewer features, rep-
resenting its main advantage regarding explicability and reli-
ability. After validation of synthetic data, the method is as-
sessed on a biological dataset of trajectories of cell receptors
(CCRS5) obtained from fluorescence microscopy videos via a
tracking algorithm.

2. MOTION MODELS

This section presents the main stochastic processes com-
monly used to model particle dynamics. We also recall the
standard criterion for motion classification; this enables the
classification of motion into three main classes (subdiffusive,
Brownian, and superdiffusive) based on the mean square
displacement (MSD) function.

We define a trajectory as a set of successive positions
over time X = (Xy,,..., X¢, ), where X; € R? with inde-
pendent components and the time interval between succes-
sive positions is constant. Discretizing 2-dimensional contin-



uous stochastic processes can generate examples of trajecto-
ries with different dynamical behavior.

2.1. Brownian motion and superdiffusion

Brownian motion (BM) is a Gaussian stochastic process, de-
noted by B;, with stationary and independent increments ver-
ifying (B; — Bs) ~ N (0, (t — s)I) for every ¢t > s where
I, denotes the 2-dimensional identity matrix. Brownian mo-
tion describes particles freely moving in the space whose dis-
placement amplitude can be amplified by a factor o, called
the diffusion coefficient, considering the process X; = o B;.

Brownian motion also helps describe objects driven by ac-
tive motors. The so-called Directed Brownian (or directed)
motion (DIR) verifies

dXt = /,Ldt + O'dBt

where the drift component ;1 € R? gives a constantly oriented
input to the motion. Of course, depending on the ratio ||u|| /o
the trajectory will have a more linear (||| >> o) or Brown-
ian (||u]] << o) behavior.

2.2. Subdiffusive processes

This section introduces the principal stochastic processes
modeling different subdiffusive behaviors. These types of
motion reveal different environmental interactions (like trap-
ping or viscoelastic constraints) and help understand the
influence of exterior agents on particle mobility.
Ornstein-Uhlenbeck process (OU). This process suits parti-
cles with limited mobility due to an external force attracting
them toward an equilibrium point. The continuous process
verifies

dXt = —)\(Xt —9)dt+0’dBt (1)

where 6 is the equilibrium point and \ represent the drift term.
In the following, we consider # = (0,0). We note that if
A << o, the motion will present a Brownian behavior, while,
for larger A\, we obtain more confined trajectories.
Fractional Brownian Motion (FBM). It is a generalization
of Brownian motion characterized by Gaussian increments
that are stationary but not independent. This enables the mod-
eling of particles moving in constrained or crowded environ-
ments. The correlation between increments is given by

B((Xy - X,)°] = |t = s]*"

where H is the Hurst parameter. For H = 1/2, this process
reduces to Brownian motion, while for H close to 0 or 1, it
describes more confined or directed trajectories, respectively.
Continuous-Time Random Walk (CTRW). This process
helps describe objects often trapped in an obstacle and having
trajectories alternating jumps and waiting times [8]. Jumps
follow a Gaussian distribution N (0, 0?), while the waiting
times follow a power law distribution on 1 (¢) = t~7~! with

v € [0,1] and ¢t > 1. After every jump, the trajectory X
maintains the same position for a duration equal to the related
waiting time. This makes CTRW a Gaussian process with in-
dependent but non-stationary increments. Moreover, for large
v, large waiting times are less likely to occur, and CTRW is
more similar to Brownian motion.

2.3. Mean square displacement criterion

The mean squared displacement function is defined as :

1 N—-At
MSD(At) = m Z ||th+At - th ||2a (2)
k=1

and it holds that M SD(At) o At if X is a Brownian motion,
and MSD(At) « At®* with o > 1 if X is a directed motion.
These properties define a widely used classification criterion
for trajectories based on the fitting of the MSD function with
a polynomial function At®. The case @ < 1 corresponds to
subdiffusive motion, including several stochastic models. The
MSD criterion has two many drawbacks. First, it is very sen-
sitive to the trajectory length, which influences the precision
of the fitting. Secondly, in the case o < 1, the MSD criterion
enables their classification as local and restricted evolutions
but does not give any information about their intrinsic behav-
ior. This paper addresses the second issue and proposes a
novel method to distinguish the family of subdiffusive pro-
cesses presented in the previous section.

3. GEOMETRICAL FEATURES

This section defines the main features used to train the ma-
chine learning approach. They account for the directional-
ity and amplitude of movement and summarize the intrinsic
properties of previous processes.

The directionality of a movement can be studied by analyzing
the turning angle of a displacement compared to the previous
one [1]. For every three consecutive points of the trajectory
(X, X+ Xt , we consider the angle

i+10 71+2)

Qx(ti) =TT — lthXt Xt,;+2-

i1
To consider the motion direction, we define counterclockwise
(with respect to Xy, , — Xy,) angles as positive. In the case
of CTRW, most angles are null since the particle often re-
mains stationary at the same point. Therefore, non-null angles
are computed between triplets of not necessarily consecutive
displacements. The histogram of angles {6x } defines the re-
lated probability density pg, . Numerical simulations in Fig. 1
show that the analytical shape of the pg, depends on the pro-
cess. This indicates a uniform-like distribution for Brownian
motion, while directed motion exhibits a Gaussian distribu-
tion centered at zero. On the other hand, confined dynamics
reveal a predominance of the largest angles.
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Fig. 1. Histograms for angles 6x for different models: BM (o = 1),
FBM (H = 0.35), O0U (¢ = land A\ = 1), DIR (¢ = 1 and
= (1,1)).

To estimate the shape of the angles distribution, the fol-
lowing fitting is performed:
Poy (T) o< az?. 3)
The value of a defines a geometrical feature of the trajectory
linked to its directional variability.

Moreover, similarly to [1], we consider the index of direc-
tionality P;(X) defined as

FPy(X) = P(|0x| <m/2) =P(|0x| > 7/2). (4

This feature highlights the existence of a preferred motion di-
rection along the trajectory. In particular, a null P; corre-
sponds to random motion.

Finally, to detect trapped motion, the following feature is
also taken into account :

Pstop(X) = P(GX = O) . 5)

The last feature considers how the particle unfurls in space.
To this end, we consider the Ripley’s index K, in a ball
B(Xy,,r) of radius r centered at the starting point:

Ky = [{ X, € X| Xy, € B(Xi,,7)}[/ N

This allows the definition of a feature describing the behavior
of the trajectory through balls of increasing radius. Using the
reference radius R = % Ef\!ll | X¢,., — Xy, || we compute
the vector Kx = (Kg,..., Kn«r). The vector Kx can be
seen as a sampling of a function depending on r, and using
the fitting

Kx x1—e?r (6)

the corresponding feature b is defined. Fig. 2 shows the val-
ues of this feature for different models. These values indicate
that the K'x graph will be more linear (b small) for diffusive
trajectories. In contrast, larger values hold for more confined
trajectories due to plateaus appearing in the Kx graph since
small values of 7.
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Fig. 2. Fitting coefficient for the vector K'x computed on the dataset
used for synthetic simulation in Section 4.

4. MACHINE LEARNING METHOD AND RESULTS

Synthetic dataset. For each model presented in Section 2,
we simulated 1000 trajectories of the same length but using
different parameters (BM with ¢ = 1; OU with ¢ = 1 and A
uniformly distributed between 0 and 2; DIR with ¢ = 1 and
p = ux(1, 1) with u uniformly sampled on [0.3, 2]; FBM with
H between 0.1 and 0.8 but different of 0.5; CTRW with
uniformly sampled between 0 and 1). Parameters are chosen
to avoid generating the same dynamical behavior by different
processes (for example, Brownian trajectories, either by BM
or by FBM with H = 0.5).

For each trajectory, the features dataset collects the pa-
rameters defined in (3), (4), (5), and (6). The dataset is split
into training and test sets following the ratio of 70%-30% in
a balanced way to models and parameters. A Random Forest
model (10 trees) is trained using the model’s name as labels
and validated on the test set. In Fig. 3, we present the results
of the method for different trajectories lengths. Most misclas-
sifications concern short FBM trajectories (classified as OU or
BM) due to the variability of their dynamic behaviors depend-
ing on H. This error decreases significantly with increasing
length, proving that FBM describes an intrinsically different
dynamic fully characterized by these features. On the other
hand, CTRW behavior is easily learned, also for short trajec-
tories, due to successive waiting times and the limit config-
uration of py, and Kx. Finally, Fig. 4 shows the features’

Length | Acc. | BM OU DIR FBM CTRW

50 87 | 873 893 &9 70 100
100 953 | 95 97 957 887 100
300 98.8 | 99.3 100 98.7 96 100

Fig. 3. Accuracy and Sensitivity per class obtained via the Random
Forest model depending on the trajectory length.

importance for each class based on the mean decrease accu-
racy method. For each feature, a random permutation of its
values is performed, and the trained model is applied to the



new dataset. For each class, the difference between the orig-
inal and the new sensitivity estimates how that feature dis-
criminates the class (because of randomness, we average the
results of 10 independent permutations). The computation is
made on the training set for the model with a length of 100.
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Fig. 4. Feature-specific mean decrease accuracy per class.

Biological dataset. The previous method is used to study
the dynamic of the cell membrane receptors CCRS, involved
in HIV infection. Receptors can be images using TIRF mi-
croscopy and acquired videos (33 frames per second) are an-
alyzed via the Spot tracking plugin of the Icy software [9].
We get trajectories of approximately 100-time points and con-
sider the receptor immobile at ¢ if || X';41 — X¢|| is smaller than
a fixed threshold. The model previously trained for length 100
points out various types of motions within the family of re-
ceptors. The results in Fig. 5 indicate several subpopulations
whose dynamic properties reflect environmental constraints
and receptor fate. Thanks to motion analysis, it is possible
to understand better the behavior of these groups of receptors
and their response to drugs.

Frequency

BM ou DIR FBM CTRW
Types of motion

Fig. 5. Motion classification for the trajectories of cell receptors
CCRS.

5. CONCLUSION

This paper introduces a novel approach to motion classifica-
tion based on geometric features describing how the trajectory

occurs in space. The proposed method, trained on synthetic
data, enables the correct classification of trajectories simu-
lated from the principal stochastic processes used for mo-
tion analysis. The obtained scores prove that these features
describe these processes’ intrinsic properties, supporting the
method’s explicability. In particular, this method is reliable
in distinguishing different subdiffusive behaviors, making it
suitable for biological applications.
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