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Abstract

This paper presents a novel supervised features-based learning method to classify particle dynamics in
biological imaging. To this goal, we consider geometric features computed on trajectories and encoding their
intrinsic geometrical characteristics. The method is validated on a dataset simulating different processes:
Brownian motion, directed Brownian motion, Orsntein-Ulhenbeck process, fractional Brownian motion, and
Continuous-Time Random Walk. The presented approach allows for distinguishing these five dynamical
behaviors in a unified framework with high accuracy, and its strength lies in distinguishing several subdiffusive
dynamics from free or superdiffusive ones. The robustness to image noise and trajectory length variation
is proven, showing the flexibility and reliability of the method in terms of variability due to acquisition
techniques. Distinguishing different subdiffusive behaviors strongly impacts particle analysis in biology, and
an application is shown to the motion classification for receptors (CCR5) at the cell membrane.

1 Introduction
In the field of biological imaging, the analysis of sub-cellular processes is generally achieved through real-
time fluorescence imaging of particles of interest (for instance, molecules, viruses, or organelles) and their
automatic tracking over time. To deal with imaging noise and the stochastic motion of imaged particles,
elaborate tracking algorithms have been developed over the past two decades [1]. These algorithms automat-
ically detect fluorescent spots in the various images of the sequence and then link the detections into coherent
trajectories. The type of stochastic motion associated with the tracked particle is a highly instructive feature
to take into account, as it reflects certain biophysical principles underlying the observed biological process.
For example, a particle diffusing freely without obstacle or chemical interaction will follow a standard Brow-
nian motion, while chemical binding or trapping in cellular microdomains will lead to subdiffusive motion.
In contrast, the active transport of biological particles is characterized by superdiffusive dynamics.

The classical approach to motion classification allows for the distinction of three diffusion classes: local
and confined (subdiffusive), free (coinciding with Brownian motion (BM)), and directed and propagated
(superdiffusive). The standard method to perform this three-class classification is based on the mean square
displacement (MSD) function, describing the mean displacement of the particle as a function of the time
interval. The MSD method is based on the seminal work [2] proving the linear dependence of the MSD on
time for BM. Then, as initially proposed in [3, 4], a polynomial fitting of the empirical MSD function allows
for distinguishing three classes (subdiffusive, free, superdiffusive) based on a sublinear, linear, or superlinear
(respectively) dependence of the MSD function. However, the MSD criterion has many drawbacks. Accurate
diffusion estimation requires very long trajectories, which are difficult to obtain in biological applications,
because of particle internalization, or crowded environments preventing reliable tracking over time.

In addition, to distinguish free movements based on the linearity of the MSD function, a confidence
interval around the fitting power coefficient must be defined introducing an arbitrary parameter in the
statistical analysis.

This has encouraged the introduction of other analytical features to characterize the free motion (BM) of
the tracked particles, such as the radius of gyration [5] or the evolution in a bounded domain [6]. [7] analyses
features related to the Gaussianity of displacement distribution (moments, trajectory self-similarity, and
directional persistence) for diffusion classification. Moreover, to go beyond the MSD criterion and robustly
characterize BM, statistical hypothesis tests have been introduced based on specific trajectories features,
such as the standardized longest distance traveled by a particle (from its starting point, in a given time
interval) [8, 9, 10]. In [11] those hypothesis tests are compared to MSD fitting coefficient and p-variation.

Although these approaches facilitate a more precise analysis of motion diffusion, they do not allow for
characterizing the different types of subdiffusive dynamics, a key point for a finer analysis of biological
processes. Indeed, several subdiffusive dynamics can coexist at the subcellular scale, with intrinsically
different behaviors corresponding to different environmental constraints. The class of subdiffusive motion
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gathers different families of motion corresponding to different interactions with the related environment and
ways to unfurl the space [12]. A more detailed description of subdiffusive movements is, therefore, a major
challenge for classification algorithms.

Three main types of subdiffusive processes modeling different biophysical mechanisms are generally used:
the Orsntein-Ulhenbeck process (OU) describes confined motion due to the attraction towards an equilibrium
point; the fractional Brownian motion (FBM) models motion in a constrained or crowded environment based
on its non-independent successive displacements; the Continuous-Time Random Walk (CTRW) describes
the motion of particles trapped by an obstacle over some time interval.
Previous work has been devoted to devising suitable features for characterizing subdiffusive processes. For
example, [11] used p-variation to distinguish between FBM and CTRW. Various features proposed in the
literature, including quantifiers for ergodicity and stationarity, are reviewed in [13], where a theoretical de-
cision tree is also proposed to distinguish subdiffusive motion and fractal constraints. Numerous machine
learning approaches that combine different trajectory characteristics to classify subdiffusive movements au-
tomatically have recently been developed. In [14], statistical properties of trajectories (Asymmetry and
Gaussianity of displacement distribution, fractal dimension, trappedness) are added to MSD, within a su-
pervised ML method for nanoparticle dynamics classification. In [15], an ML approach is developed based
on the features proposed in [11] for dynamically classifying G protein-coupled receptors and G proteins. In
[16], a supervised ML method is trained using the trajectory itself (as a set of points) to distinguish normal
or anomalous (sub- or super-diffusion). However, these approaches follow the standard three-class diffusion
classification framework [15] or allow distinguishing a set of specific dynamics [11, 14, 16].

Deep-learning approaches have been developed in parallel to alleviate the need for the user-defined se-
lection of trajectory features. [17] proposes a method based on neural networks to predict the anomalous
exponent (MSD fitting coefficient) from single trajectories. [18] develops a deep-learning method to distin-
guish BM, FBM, and CTRW behavior. Although achieving a higher accuracy than features-based methods,
deep-learning approaches, especially on raw trajectories, suffer from standard interpretability issues limiting
the understanding of studied phenomena.

The proposed method develops a five-class supervised learning method to classify the previous subdiffu-
sive motion types (OU, FBM and CTRW), standard BM and superdiffusive directed motion (DR). To our
knowledge, this is the first method proposed in the related literature, enabling the detection of five motion
types in a unified framework. To ensure the explicability of classification, the method is based on geometric
features. Four features are collected for every trajectory and a supervised learning method is trained on
them. The considered features account for directionality, histogram of angles between successive position
triplets, and Ripley’s indices on growing balls around the starting points of trajectories. The method has
an overall accuracy of 93.6% on trajectories of length 100 (time interval equal to 1/30), meaning that the
features reflect the intrinsic geometric properties of previous processes. In particular, beyond the problem
of process classification, this enables the method to describe the different ways particles deploy in space. Fi-
nally, robustness to noise and length variability is proven. This ensures the method’s reliability in biological
applications where estimating the noise level and collecting paths of the same length is often difficult. The
robust and explainable characterization of subdiffusive behaviors improves the analysis of related environ-
mental constraints on tracked particles under different conditions. This is particularly useful for trajectory
analysis in biological imaging, which has as its main goal the description of protein dynamics under different
conditions [19, 9, 8]. After validation with synthetic data, we assessed our method on a biological dataset
of cell receptor (CCR5) trajectories obtained from fluorescence microscopy videos via a tracking algorithm.
We compare the basal state to the PSC-RANTES treatment (inhibiting HIV-1 infection), proving that the
latter strongly impacts the receptors’ dynamics.

The paper is organized as follows. Section 2 presents the main properties of the five processes considered
in this work (BM, DIR, OU, FBM, CTRW). Section 3 presents the geometrical features used to set the
supervised learning method. Section 4 describes the proposed method on a simulated dataset composed of
trajectories following the five processes considered in this work; the impact of noise and trajectory length
variability is studied, and a comparison is performed with a statistical test approach. Application of the
method to the classification of cellular receptors (CCR5) on real data is reported in Section 4.6. Finally,
Section 5 is dedicated to discussing results and possible improvements.

2 Stochastic processes and their classification
This section recalls stochastic processes’ main definitions and properties, presenting their main classification
into subdiffusive, free (Brownian), and superdiffusive. We discuss the standard classification method, based
on the mean square displacement criterion, and its drawbacks motivating the introduction of alternative ap-
proaches discussed in the Introduction. Finally, the rest of the section presents the main stochastic processes
widely used to model particle trajectories following different dynamics. A more extensive presentation of
these processes is given in the Appendix, intended to serve as a reference for their mathematical properties.

2



2.1 Standard classification of stochastic processes
General definitions. A stochastic process is a one-parameter family Xt of R2-valued random variables
defined on a probability space (Ω,F ,P) :

Xt : (t, ω) ∈ R+ × Ω 7→ Xt(ω) ∈ R2 .

We consider the two coordinates of Xt independent random variables in particle tracking. The parameter t
corresponds to the time and, for every ω ∈ Ω, the related trajectory is defined by the application :

t ∈ R+ 7→ Xt(ω) ∈ R2 .

The statistical properties of increments determine the main properties of stochastic processes. A process
is said to have stationary increments if increments distribution only depends on the time interval and not on
the current times (e.g., Xt −Xs and Xt−s −X0 follow the same probability distribution for every s < t ∈ R+).
Similarly, a process is said to be stationary if the distribution of Xt does not depend on t. On the other hand,
we say that a process has independent increments if Xt −Xs and Xs −Xw are independent random variables
for every w < s < t ∈ R+, implying that each displacement is not correlated to previous realizations. We
consider Gaussian processes in the following, meaning the increments follow a Gaussian distribution. Finally,
we recall that a process is said to be continuous if it has continuous trajectories t 7→ Xt with probability one
on Ω :

P({ω ∈ Ω | lim
s→t

|Xs(ω) −Xt(ω)| = 0}) = 1 .

The discrete version of a stochastic process can be defined by sampling the continuous paths on a finite
set of times t0, ..., tN ∈ R+, that defines a discrete-time stochastic process. A discrete trajectory is defined
as a set of successive positions over time

X = (Xt1 , ..., XtN ) ,

where Xi ∈ R2 with independent components and the time interval between successive positions is constant.

Mean square displacement criterion. The mean squared displacement (MSD) function estimates the re-
lationship between the increments average and the related time interval. Its definition involves the ensemble
average computed using the mean in the probability space [12]:

⟨X2
t ⟩ens = E(∥Xt+∆t −Xt∥2) =

∫
∥Xt −X0∥2 P (x, t)dx

where P (x, t) is the probability to find the particle at position x at time t.
This definition is adapted to study systems exhibiting independent realizations of the same stochastic

process. The ensemble average estimates the mean displacement related to ∆t of a set of particles. However,
in many biological contexts, several dynamical behaviors can co-exist within the observed trajectories, and
classification must be performed for single paths. Then, a time-average version of the MSD function is used,
quantifying increments average as a function of the time interval for a given trajectory Xt:

⟨X2
t ⟩T,∆t = 1

T − ∆t

∫ T −∆t

0
∥Xτ+∆t −Xτ ∥2 dτ . (2.1)

For computational applications (2.1) can be discretized as follows :

MSDtime(Xt,∆t) = 1
N − ∆t+ 1

N−∆t∑
k=1

∥Xtk+∆t −Xtk ∥2 , (2.2)

where N is the number of positions belonging to the trajectory X and ∆t is an integer.
In single-particle analysis, trajectories are classified using time-average mean square displacements via a

polynomial fitting of the MSD function (2.2) to t 7→ tα. This enables the definition of the following MSD
criterion [3, 4] for diffusion classification :

Diffusion class =

{ subdiffusive, if α < 1
free motion, if α = 1

superdiffusive, if α > 1
(2.3)

This criterion is used to detect confined, random, and directed motions (respectively), but this is often
an inadequate and limited framework for many biological applications, in particular, because of its main
drawbacks.

First, a precise estimate of the MSD coefficient needs very long trajectories, which are often unavailable
in single-particle tracking. Moreover, a confidence interval is needed to estimate the fitting coefficient α in
the case of Brownian motion.
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Secondly, in the case α < 1, the MSD criterion classifies every local and restricted trajectory as sub-
diffusive but does not give any information about its intrinsic behavior. As detailed below, subdiffusive
processes can reveal different dynamics, such as trapping or constraints, and a more precise classification
of subdiffusive behaviors is required. Moreover, beyond identifying the process governing the trajectory,
estimating trajectory geometrical parameters can also provide useful information on how the particle unfurls
in space (for instance, privileged directions, stopping times, or spreading radius).

The last critical point about the MSD criterion concerns its consistency with ergodicity. In ergodic
dynamical systems, particles visit every point of the space uniformly and randomly. This means that the
statistical properties of the system can be estimated from typical trajectories rather than ensemble averages.
The famous ergodic theorem [20, 21] states that for an ergodic process, ⟨X2

t ⟩ens and ⟨X2
t ⟩T,∆t exhibit the

same functional dependence on t and ∆, respectively. This implies that the MSD criterion based on time-
average gives a result consistent with the ensemble-average estimate. However, for non-ergodic processes,
time and ensemble-average MSD can exhibit different dependencies on time, making the MSD criterion
unreliable. As detailed below, this is the case of continuous-time random walk (CTRW), revealing that the
MSD criterion can be inadequate to detect non-ergodic behavior, even for long trajectories.

2.2 Main stochastic processes
This section briefly presents the main stochastic processes studied in this work. Brownian motion (BM) and
Directed Brownian motion (DIR) are the standard free and directed diffusion models, respectively. As purely
subdiffusive process, we consider the Ornstein-Uhlenbeck process (OU), and the Continuous-Time Random
Walk (CTRW), describing confinement and trapping, respectively. Finally, we also consider the fractional
Brownian motion (FBM), which can exhibit all types of diffusion depending on its Hurst parameter. This
is a very flexible model used in this work to model constrained subdiffusive and superdiffusive motions.

In the following, we expose the main properties of each process, and several examples corresponding to
different behaviors are shown in Figure 1.

Brownian motion (BM). Brownian motion, sometimes free or normal, is a continuous Gaussian
stochastic process historically used to model random motion [2]. It is denoted by Bt, with stationary
and independent increments verifying :

(Bt −Bs) ∼ N (0, (t− s)I2)

for every t > s, where I2 denotes the 2-dimensional identity matrix. However, this process is not stationary
as Bt follows a Gaussian distribution with a variance depending on t. Setting Xt = σBt we can vary the
displacement amplitude by a parameter σ, and we get

⟨X2
t ⟩ens = 2σ2t , ⟨X2

t ⟩T,∆t = 2σ2∆t

confirming the well-known Einstein’s result [2] that justifies the introduction of MSD criterion. In the related
literature, the MSD for BM in dimension two is written as ⟨X2

t ⟩ens = ⟨X2
t ⟩T,∆t = 4Dt where D is called

the diffusion coefficient. For Xt = σBt, we have the relationship σ2 = 2D and, with an abuse of language,
σ is also often called diffusion coefficient.

Superdiffusion (DIR). The main model for super-diffusion is the so-called Directed Brownian or Di-
rected motion, which verifies

dXt = µdt+ σdBt

where the drift component µ ∈ R2 gives a constantly oriented input to the motion. This model describes
particles driven by active motors [22], and depending on the ratio ∥µ∥/σ, the trajectory will have a more
linear (∥µ∥ >> σ) or Brownian (∥µ∥ << σ) behavior. Like Brownian motion, Xt is a non-stationary
continuous Gaussian process with stationary and independent increments.

As the mean of Bt equals zero, a direct computation gives

⟨X2
t ⟩ens = ∥µ∥2t2 + 2σ2t , ⟨X2

t ⟩T,∆t = ∥µ∥2(∆t)2 + 2σ2∆t

showing the superdiffusive behavior of Xt according to the MSD criterion.

Ornstein-Uhlenbeck process (OU). The continuous-time OU process [23] verifies

dXt = −λ(Xt − θ)dt+ σdBt (2.4)

where θ is the equilibrium point, σ the diffusion coefficient of Bt, and λ represent the drift term. In the
following, up to the change of variables Xt = Xt − θ, we consider θ = (0, 0). Assuming that stochastic
processes have independent components, the general results for dimension one apply. This process suits
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Figure 1: Examples of different types of motions (N = 50, ∆t = 1) : BM (σ = 1), OU (λ = 0.5, σ = 1),
DIR (∥u∥ = 0.7, σ = 1), FBM (FBM1 with H = 0.2, and FBM2 with H = 0.8), CTRW (σ = 1, γ = 0.01
for CTRW1 and γ = 0.9 for CTRW2.

particles with limited mobility due to an external force attracting them toward an equilibrium point [24].
The previous equation can be solved by variation of constants, obtaining

Xt = X0e
−λt + σ

∫ t

0
e−λ(t−s) dBs (2.5)

where X0 is the initial position and the integral term on right side follows the normal distribution N (0, σ2

2λ
(1−

e−2λt)I2). The covariance function [25] is

Cov(Xt, Xs) =
[(

Var(X0) − σ2

2λ

)
e−λ(t+s) + σ2

2λe
−λ|t−s|

]
I2 (2.6)

showing that the process properties strongly depend on the statistical properties of X0 (Var denotes the
variance of a process).

For example, when assuming that X0 ∼ N (0, σ2

2λ
I2) is independent of Bt, we get that Xt ∼ N (0, σ2

2λ
I2),

proving that Xt is a continuous Gaussian stationary process. The increments are also normally distributed
and

Cov(Xt −Xs, Xs) = −σ2

2λ (1 − e−λ(t−s))I2, ∀t, s ∈ R+ , t > s . (2.7)

(2.7) proves the increments are stationary but not independent because they are negatively correlated.
Otherwise, Xt is still a continuous Gaussian process with dependent increments, but (2.6) implies that

it is not stationary (Var(Xt) ∝ e−2λt) and its increments are stationary for t and s significantly larger than
1/λ. This situation corresponds to paths with the same starting point X0, as in the simulations performed
in this work.

In both cases, we note that the variance of Xt is bounded, confirming the OU process’s confined behavior:
if λ << σ, the motion will present a Brownian-like behavior, while, if λ >> σ, we obtain more confined
trajectories.

Finally, by a straightforward computation and using the independence of X0 and Bt, we obtain

⟨X2
t ⟩ens = 2Var(X0)(1 − e−λt)2 + σ2

λ
(1 − e−2λt) ,

⟨X2
t ⟩T,∆t = 2σ2

λ
(1 − e−λ∆t) + 2

(
Var(X0) − σ2

2λ

)
(1 − e−λ∆t)2 1 − e−2λ(T −∆t)

2λ(T − ∆t) ,

confirming the OU process’s subdiffusive and ergodic behavior [25].
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Fractional Brownian Motion (FBM). It is a generalization of Brownian motion characterized by
Gaussian increments that are stationary but not independent. This enables the modeling of particles moving
in constrained or crowded environments [26].

Formally [27, 28, 29], a fractional Brownian motion is a continuous Gaussian process with increments
verifying

(Xt −Xs) ∼ N (0, σ2|t− s|2HI2)
where H ∈ (0, 1) is the Hurst parameter which determines the intrinsic nature of this process. In particular,
for H = 1/2 the fractional Brownian motion reduces to Brownian motion.

For H ̸= 1/2, as the variance of increments depends only on the time interval and not on the current
time, the process has stationary increments. However, as the variance of Xt − X0 depends on t, it is not
stationary. Moreover, for t, s ∈ R+ with t > s, it holds

Cov(Xt, Xs) = σ2

2 [t2H + s2H − |t− s|2H ] , E[(Xt −Xs)Xs] = σ2

2 [t2H − s2H − |t− s|2H ]

showing that the increments are not independent and that the correlation of successive increments depends
on H (positive for H > 1/2, negative for H < 1/2).

Finally, similarly to Bt, we obtain

⟨X2
t ⟩ens = 2σ2t2H , ⟨X2

t ⟩T,∆t = 2σ2(∆t)2H

which points out the ergodicity of the process and the variety of dynamics represented by fractional Brownian
motion: superdiffusive for H > 1/2, and subdiffusive for H < 1/2.

Continuous-Time Random Walk (CTRW). This process has been introduced [30] to describe
trapping for random walks, exhibiting trajectories alternating jumps and waiting times; after every jump,
the trajectory maintains the same position for a duration equal to the related waiting time [31, 32].

Denoting by N(t) the number of jumps up to time t and by the {ti}N(t)
i=0 jumps times, the position of a

particle at time t is given by:

Xt =
N(t)∑
i=1

ξi

where ξi denotes the random jump and τi = ti − ti−1 defines the waiting time between the consecutive
jumps. We here assume that t0 = 0 and Xt0 = 0. Jumps {ξi}i are independent and identically distributed
(iid) random variables following a Gaussian distribution N (0, σ2I2), while the waiting times {τi}i are iid
random variables following a power law distribution on ψ(t) ∼ γ

Γ(1−γ) t
−γ−1 with γ ∈ [0, 1] and t ≥ 1 (see

[31]). Finally, we assume that the families {ξi}i and {τi}i are independent (uncoupled CTRW).
We note that, for large γ, large waiting times are less likely to occur, and CTRW is more similar to

Brownian motion.
CTRW is a Gaussian process with independent increments, as Xt is the sum of Gaussian independent

random variables. However, the variance of increments explicitly depends on the current time (see Chapter
4 in [31]), and it holds

E[(Xt+∆t −Xt)2] = σ2E[N(t+ ∆t) −N(t)] ∝ [(t+ ∆t)γ − tγ ] (2.8)

proving that the increments are non-stationary; for the same reason, the process is not stationary either.
Furthermore, because of jumps, a CTRW path is not continuous.

Finally, CTRW exhibits the following non-ergodic property [31, 33, 34, 35]:

⟨X2
t ⟩ens ∝ tα , ⟨X2

t ⟩T,∆t ∝ ∆t .

Ensemble and time averages point out different behaviors: the former indicates a subdiffusive trajectory,
while the latter suggests a normal diffusion.

MSD criterion is then unreliable for CTRW trajectories, classifying them as Brownian motion. Therefore,
CTRW is considered a subdiffusive process based on its qualitative dynamic properties rather than the MSD
criterion.

Finally, we point out that the properties of CTRW are strongly correlated to the distribution of waiting
times. For example, considering an exponential distribution ψ(t) = e−t, the process remains no stationary,
but its increments become stationary, and the ergodic property holds. This is because, in this case, E[N(t)] ∼=
t implies a linear dependence on ∆t in (2.8) (see Section 3.3 in [31]).

However, the power-law distribution for waiting times is more realistic for biophysical modeling. This is
due to its diverging first moment (E[N(t)] = ∞), implying its subdiffusive and non-ergodic behavior. For
these reasons, power-law distribution is preferred to exponential one for biophysical studies.
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Process Continuous Gaussian Stationary Stationary
Increments

Independent
Increments

Ergodic

BM, DIR × × × × ×
OU × × (×) (×) ×

FBM × × × ×
CTRW × (×) × (×)

Table 1: List of main properties for each stochastic process. Stationarity properties for OU process
depend on the initial state, and brackets hold if X0 ∼ N (0, σ2

2λ
I2); FBM refers to the case H ̸= 1/2;

CTRW properties depend on the distribution of waiting times, brackets hold for exponential distribution
and do not for a power-law distribution.

3 Geometrical features
This section defines the main features used in the proposed approach, which are computed on the entire
trajectory to summarize its intrinsic geometric properties. The considered features belong to two main
families.

The first set of features accounts for directionality, based on analyzing the distribution of angles be-
tween successive positions. Several works have already used directionality analysis [7] to characterize the
trajectory’s persistent, free, or antipersistent dynamic. This helps, in particular, to highlight the recall or
propagation behavior characterizing OU or FBM (H < 1/2) and DIR or FBM (H > 1/2), respectively. On
the other hand, a uniform-like angle distribution is associated with BM. Finally, CTRW shows a Dirac-like
angle histogram due to its characteristic stopping times.

The second set of features is based on Ripley’s ratio on concentric balls to describe how the particle
spreads in space. To our knowledge, this work is the first to use these features for motion classification.
Considering the ratio of trajectory points leaving in each ball, we can point out local or global (in time)
confined behavior. This is particularly important to highlight high propagation and strong confinement,
which characterize DIR and OU, respectively.

The results discussed in Section 4 show that these features are sufficient to characterize the intrinsic
properties of the processes previously discussed and enable the detection of different types of motion beyond
their diffusion classification.

We recall that a discrete trajectory is a set of N positions Xi ∈ R2 corresponding to different times
t1 < ... < tN ∈ R+:

X = (Xt1 , ..., XtN ) .
In particular, we consider a constant time interval between successive positions, and we suppose that the
components of each position are independent.

The directionality of a movement can be studied by analyzing the turning angle of a displacement
compared to the previous one [7]. For every three consecutive points of the trajectory (Xti , Xti+1 , Xti+2 ),
we consider the angle

θX(ti) = π − ∠XtiXti+1Xti+2 ,

that is considered as positive if Xti+1 − Xti rotates on Xti+2 − Xti in a counterclockwise way. In the case
of CTRW, most angles are null since the particle often remains stationary at the same point. Therefore,
non-null angles are computed between triplets of not necessarily consecutive displacements.

The histogram of angles {θX} defines the related probability density pθX , which exhibits a different
analytical dependence for different processes (Figure 2 ). Brownian motion has a uniform distribution of
angles, while directed motion exhibits a Gaussian distribution centered at zero, corresponding to a motion
with drift. The largest angles are the most probable for OU trajectories, revealing a confined and backward
recall dynamic. These examples suggest, in particular, the convexity of the angle distribution as a parameter
of interest for distinguishing different types of motions.

To estimate the analytical shape of the angle distribution the following fitting is performed:

pθX (x) ∝ ax2 . (3.1)

The value of a defines a geometrical feature of the trajectory linked to its directional variability.
To quantify the existence of a preferred motion direction along the trajectory, similarly to [7], we also

consider the following index of directionality

Pd(X) = P(|θX| < π/2) − P(|θX| ≥ π/2) . (3.2)

A positive Pd indicates a persistent movement corresponding to diffusive dynamics. In contrast, a negative
Pd indicates an anti-persistent movement corresponding to a confined dynamic due to a tendency to return
to an equilibrium point.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Examples of angle distribution for different processes (N = 1000, ∆t = 1): (a) BM (σ = 1); (b)
OU (λ = 0.5, σ = 1); (c) FBM with H = 0.2; (d) FBM with H = 0.8; (e) DIR (∥u∥ = 0.7, σ = 1); (f)
CTRW with σ = 1 and γ = 0.9.

As said above, the rest of the features relate to how the particle unfurls in space during its trajectory,
which can be described by analyzing its displacements through concentric balls.

We consider the Ripley’s index Kr in a ball B(Xt1 , r) of radius r centered at the starting point:

Kr = |{Xti ∈ X |Xti ∈ B(Xt1 , r)}| /N ,

accounting for the number of trajectory points living in that ball. To make this computation consistent with
the trajectory dynamic, we define the reference radius

R = 1
N

N−1∑
i=1

∥Xti+1 −Xti ∥

and we compute the vector
KX = (KR, ...,KkR, ...,KNR) .

Figure 3 shows the vector KX for different processes, suggesting that its analytical shape enables differen-
tiating different dynamic behaviors. The analytical shape of KX is characterized by an increasing function
reaching a final plateau. This characteristic plateau starts at the first radius larger than the maximum
distance the particle reaches from its starting point along the trajectory. It is reached since small radii for
confined trajectories, while, superdiffusive trajectories (DIR or FBM with H > 1/2) exhibit an initial slower
increase.

This suggests estimating the analytical law of KX, as a function of index k, using the following fitting:

KX ∝ 1 − e−br (3.3)

and considering b as the third feature of interest.
Moreover, beyond the global shape graph of KX, some local plateaus can appear, for instance between

radii kR and (k+ k0)N (k0 < N), depending on particle displacements after having passed the boundary of
B(Xt1 , kR). This reveals local (in time) confined evolutions or, on the contrary, sporadic long displacements.

Figure 3 shows several dynamic behaviors that can lead to local plateaus. For example, this can happen
for the CTRW process because of longer waiting times, which can lead to a path with no point inside
B(Xt1 , (k+k0)R)\B(Xt1 , kR). This can also happen for superdiffusive trajectories whenever a displacement
is larger than k0R, making the particle spread through the boundary of several successive balls.

The quantification of local plateaus allows describing these local irregularities. This can be estimated by
the ratio of points with non-null derivative:

Pp(X) = P(K′
X ̸= 0) , (3.4)

which defines the last feature considered in this work.
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Figure 3: Curves of Ripley’s indices for different processes (N = 300, ∆t = 1, radius is expressed in terms
of indices ks’): BM (σ = 1), OU (λ = 0.5, σ = 1), DIR (∥u∥ = 0.7, σ = 1), FBM (FBM1 with H = 0.2,
and FBM2 with H = 0.8), CTRW (σ = 1, γ = 0.01 for CTRW1 and γ = 0.9 for CTRW2).

4 Method and Results
This section presents a supervised motion classification method based on the previous section’s features.
The first part is dedicated to presenting the method on a simulated dataset. In this context, we study the
influence of image noise and trajectories’ length on the method’s accuracy. The second part applies the
method to biological data to study the dynamical behavior of receptors (CCR5) at the cell membrane.

4.1 Trajectory simulation.
The method is set on a dataset of trajectories simulating the stochastic processes presented in Section 2. A
dataset is generated for a fixed trajectory length, simulating 1000 trajectories per process.

The time interval ∆t between two consecutive points within the trajectory depends on the observed
phenomenon and the acquisition method. The choice of this parameter has to be consistent with the
acquisition process because it defines the statistical properties of several processes (for instance, the variance
and covariance of increments in BM, FBM, and OU). Then, it influences the related previously defined
features. This work considers ∆t = 1/30, a common value in confocal imaging in biology.

Brownian motion is generated by iterating random Gaussian data generation with σ uniformly sampled
between 0.1 and 10.

OU process is generated using σ between 1 and 10, and for each of them, we set λ = rσ/
√

∆t where r is a
ratio parameter uniformly sampled between 0.2 and 1. Trajectories are simulated using the DiffusionProcess
class available in the stochastic package of Python [36].

Similarly, directed trajectories are simulated by summing iteratively a Gaussian vector with the drift one.
The diffusion coefficient σ is uniformly distributed between 1 and 10, the drift vector has fixed direction
(1, 1), and its norm is defined by µ = rσ/∆t with r sampled between 0.2 and 1.

Considering ∆t in the parameter computation for OU and DIR motions ensures that r represents the
ratio of their deterministic component to the random one.

To simulate FBM trajectories, we use the Hosking algorithm [29], implemented in the fbm Python package
[37], with Hurst parameters H uniformly sampled on [0.15, 0.3] ∪ [0.7, 0.85]. This choice enables the analysis
of FBM trajectories with a behavior strongly distinct from a Brownian (H = 1/2), confined (H ∼ 0), or
superdiffusive (H ∼ 1) one.

Finally, CTRW trajectories are simulated using a Gaussian distribution for jumps with σ uniformly
sampled between 0.1 and 10. For each value, the waiting times are simulated according to an exponential
distribution with parameter γ uniformly sampled on ]0, 1[. In particular, waiting times are sampled on the
interval [1, N/5] to avoid too large times compared to the trajectory length. Once the set of parameters is
fixed, the path simulation is straightforward [32]. A sufficient number of waiting times and jumps must be
generated using the related distributions, and the desired path is defined by alternating obtained jumps and
waiting times.

4.2 Classification method
We develop a supervised learning method for classifying five processes described in Section 2.2 based on the
geometric features described in Section 3. For each trajectory, the features dataset collects the parameters
defined in (3.1), (3.2), (3.3), and (3.4). The dataset is split into training and test sets following the ratio of
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70%-30% in a balanced way to models and parameters. Then, a Random Forest model (ten trees) is trained
using the model’s name as labels (BM, OU, DIR, FBM, CTRW) and validated on the test set. Table 2 and
Table 3 present the method results for different trajectory lengths.

As expected, the method performance improves for larger lengths. This shows that the geometric char-
acteristics of movements need time to assert themselves distinctively, confirming the difficulty of the motion
classification problem for short trajectories. Most misclassifications concern short FBM trajectories (classi-
fied as OU or BM) due to the variability of their dynamic behaviors depending on H. This error decreases
significantly with increasing length, proving that FBM describes an intrinsically different dynamic fully
characterized by our features. On the other hand, CTRW behavior is easily learned, also for short trajec-
tories, due to successive waiting times and the limit configuration of pθX and KX. Figure 4 summarizes
the method’s accuracy against the trajectory length. Through this paper, the error bars shown in graphs
represent the related Binomial proportion confidence interval with confidence level set to 95%.

Length BM OU DIR FBM CTRW
N=40 82.7 80 80 60.7 99.6
N=70 89.9 89.7 90.2 80 100
N=100 94.2 92.3 92.5 89.1 99.9
N=200 98.9 98.2 97.4 96.3 100
N=300 98.8 99 99.6 98.6 100

Table 2: Results of the machine learning method: Recall by motion class is shown for different trajectory
lengths.

Length BM OU DIR FBM CTRW
N=40 69.9 81.5 81.7 70.6 100
N=70 82.3 89.3 90.9 87.8 100
N=100 88 92.9 94.1 93.5 100
N=200 95.8 97.6 99 98.5 100
N=300 98.4 98.2 99.5 99.9 100

Table 3: Results of the machine learning method: Precision by motion class is shown for different trajectory
lengths.

Figure 4: Method accuracy depending on trajectory length.

Finally, Figure 5 shows the features’ importance for each class based on the mean decrease accuracy
method. A random permutation of values is performed for each feature, and the trained model is applied
to the new dataset. For each class, the difference between the original and the new recall estimates how
that feature discriminates the class (because of randomness, we average the results of ten independent
permutations). The computation is made on the training set for the model with a length of N = 100.

Although the importance scores vary with the trajectory length, we can point out some common trends.
The fitting coefficient of Ripley’s curve is important to identify OU process; this is due to the confined
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behavior of OU paths resulting in a rapidly increasing Ripley’s curve. Ripley’s plateaux distinguish DIR
motions because, depending on the drift component, not each ball (used for Ripley’s indices calculation)
contains new points. CTRW is classified based on the angle histogram close to a Dirac distribution at zero
for this process. A more uniform mix of features identifies BM and FBM. In particular, FBM classification
is the most impacted by the directionality feature, confirming that it owns intrinsic geometric properties
compared to its confined and directed alter ego (OU, DIR).
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Figure 5: Features analysis on the train set for several trajectory lengths. Top : Feature-specific mean
decrease accuracy per motion class. Bottom : tSNE representation in 3D of the feature set.

4.3 Impact of noise and immobility threshold
The main problem in confocal movie analysis is dealing with the associated multi-source image’s noise. For
instance, electronic noise and intensity variation over time can affect the precision of particle detection. The
choice of particle barycenter as a related position also introduces a noise due to particle detection error. In
conclusion, tracking algorithms work with noisy estimations of particle positions, and classification methods
should be able to overcome this issue. To study our method’s noise robustness, we construct a noisy dataset
in which each trajectory position is perturbed by adding a Gaussian noise.

Following [15, 14], we consider a Gaussian noise with zero mean and variance σn verifying

Ln =

{ √
D∆t+µ(∆t)2

σn
for DIR

√
D∆t
σn

otherwise
(4.1)

where Ln denotes signal-to-noise ratio (SNR), D is the diffusion coefficient estimated via the fitting formula
for the MSD (∝ 4Dtα), and µ is the norm of the drift component used to simulate directed paths (DIR).
Ranging Ln from 1 (high noise) to 9 (low noise), the previous equation allows the computation of σn = σn(Ln)
and the generation of different noisy datasets to the impact on the model.

We test the noise robustness considering the model trained on pure trajectories of length 100 and col-
lecting its performances on the previously generated noisy data.

However, in our case, this standard approach to noise analysis needs a preliminary step. As mentionned
above, the estimation of particle barycenter can be affected by electronic noise or intensity variation, impact-
ing the immobility of particles, which is the main characteristic of CTRW paths. An immobility threshold
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should be applied to trajectory points to detect immobile particles over different time intervals. To do this,
we compare each point with the previous one, and if their distance is smaller than the given threshold,
its position is set equal to the previous one. This threshold is empirically estimated in biological applica-
tions and depends on the image resolution and particle size. For the simulated data, we perform tests with
two thresholds:

√
2σn(Ln) corresponding to the exact noise variance, and

√
2σn(7) representing an arbitrary

threshold corresponding to a low noise. The threshold is applied to each trajectory before performing motion
classification.

Figure 6 reports the noise analysis results with the previously defined immobility thresholds. In the
bottom panel, the arbitrary threshold

√
2σn(7) is applied, and a strong impact is observed on the detection

of highly noisy CTRW (SNR=1,2). These cases correspond to an analysis without immobility correction,
which strongly affects the CTRW classification. However, these results prove the model’s good noise ro-
bustness for the other motion classes. In the top panel, the exact threshold

√
2σn(Ln) is applied before

performing classification. This improves CTRW classification but, for highly noisy trajectories (SNR=1,2),
such a correction negatively affects the accuracy of the other motion classes. This is because, for SNR=1,2,
the diffusion coefficient used for pure trajectory simulation is similar to the noise variance, leading to the
overestimation of immobility in BM or FBM trajectories. The pure trajectory diffusion coefficient for lower
SNR becomes larger than the noise variance, avoiding immobility overestimation and improving performance
for the two immobility thresholds. Independently on the immobility criterion, starting at SNR=3, the accu-
racy becomes stable around the value obtained testing on pure trajectories, showing that the features used
by the proposed method are strongly robust to noise.

Figure 6: Analysis of accuracy, recall and precision for the method trained on pure trajectories (N = 100,
∆t = 1/30) and tested on noisy trajectories. Results show a different behavior depending on the immobility
threshold used to correct noisy trajectories. Top: the immobility threshold

√
2σn(Ln) depends on the noise

applied to the pure trajectory; Bottom: the threshold is arbitrary fixed to
√

2σn(7).

4.4 Impact of length inequality
Working with fixed-length trajectories is often difficult and results from post-processing routines. As our
method is trained on pure trajectories of a fixed length N , it is important to study how length inequality in
the test dataset can affect the method’s performance.

To do this, we trained the proposed method on the dataset of pure trajectories of length 100 and tested
it on several datasets of pure trajectories with lengths from 70 to 130. The results are reported in Figure 7.

For instance, using the model on shorter trajectories leads to misclassifying directed paths predicted as
FBM ones, whereas misclassified FBM trajectories are mostly labeled as OU. Surprisingly, BM motion is
the most sensitive to length variation and is mostly confused with the DIR class. OU and CTRW paths are
uniformly well classified on shorter trajectories.

On the other hand, results slightly improve if the model is tested on longer trajectories, suggesting that
it is convenient to underestimate the length used to train the model.
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Finally, by limiting the length variance to ∆N = 10 in the shortening sense (N > 90), we register a
maximum gap of the accuracy of 1.6% compared to accuracy on the dataset with the same length (N=100,
accuracy = 93.6%). This proves the good flexibility of our method, allowing particle tracking analysis based
on the collection on more paths, even with a slightly different length.

Figure 7: Results of accuracy, recall, and precision for the method trained on pure trajectories of length
100 and tested on pure trajectories with different lengths (∆t = 1/30).

4.5 Comparison to statistical test method
As detailed in the Introduction, alternative methods have been proposed in recent years to overcome the
drawbacks related to the MSD criterion. In particular, [8] develops a statistical test method for diffusion
classification (subdiffusive, free (BM), superdiffusive) based on the standardized maximal distance of the
particle from its starting point along its trajectory:

TN =
max

k=0,...,N
∥Xtk −Xt0 ∥[

1
2

∑N

i=1 ∥Xti −Xti−1 ∥2
] 1

2

Via the Monte-Carlo method, the distribution of TN is simulated for free motion (BM) of a given length
N . Then, the quantiles q2.5 and q97.5 of its distribution are computed allowing to set the following three-
hypothesis-test procedure:

Diffusion classification =

{ subdiffusive, if TN < q2.5,
superdiffusive, if TN > q97.5,
free motion, otherwise.

(4.2)

A similar approach is used in [9] to classify the motion of CCR5 receptors at the cell membrane.
We compare the proposed method, based on motion classification, to the hypothesis test (4.2), performing

diffusion classification. We consider the test dataset for trajectories of length N = 100, and predictions are
made both via our method (trained on pure trajectories of the same length) and via the three-decision-test
(4.2) (the quantiles are computed via Monte-Carlo simulation of 100001 Brownian trajectories of length
N = 100).

In Figure 8, we report the normalized (with respect to motion classes) confusion matrices of motion
classification versus motion or diffusion classes. BM, OU, and DIR are correctly classified in terms of
diffusion. FBM is correctly split into two classes of subdiffusive (H < 1/2) and superdiffusive (H > 1/2)
paths. However, compared to our method, a larger part of the FBM track is misclassified by the test
(4.2). Misclassified paths are labeled as free motion (BM), although they have been simulated with Hurst
coefficients far from 1/2 (H ∈ [0.15, 0.3]∪[0.7, 0.85]). Finally, the test (4.2) misclassifies the totality of CTRW
trajectories as free motion. Although this is consistent with the Gaussianity of the jumps distribution, this
shows that the (4.2) is unadapted to the detection of CTRW paths.
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Figure 8: Performance comparison of machine learning and three-hypothesis-test (4.2) [8] tested on pure
trajectories of length 100. Left: Normalized confusion matrix for the proposed model trained on pure tra-
jectories of length 100. Right: Normalized confusion matrix for the diffusion classification (4.2) compared
to motion labels.

4.6 Mixing motions
This section shows the method’s performance on trajectories mixing several types of motion. To construct
these trajectories we consider the pure trajectories of the test dataset with length N = 100 and mix them
according to several percentages. Let m1,m2 be two types of motions, and let Tm1 , Tm2 the sets of corre-
sponding paths (1000 for each motion) in the test dataset. For a given percentage p and for i = 1, ..., 1000,
we consider X1,i ∈ Tm1 , X

2,i ∈ Tm2 and define the following mixed trajectory

Xi
mixed =

(
X1,i

0 , ...,X1,i
p , X̃2,i

p+1, ..., X̃
2,i
N

)
where X̃2,i = X2,i + (X1,i

p − X2,i
p ).

Considering several percentages (from 10% to 90%), this defines, for each p, a set of 1000 trajectories
whose first p steps are governed by the m1 motion and the rest by the m2 motion.

For each pair of motions and each percentage, the corresponding mixing trajectories are analyzed using
the model trained on pure trajectories of length N = 100. This allows testing of how the detection of the
majority motion is influenced by the coupling association and the corresponding percentage. Figure 10 shows
the main results on trajectories mixing Brownian motion with other processes, while Figure 9 concerns the
other couples of motions.
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Figure 9: Trajectories mixing subdiffusive and directed motions are analyzed with the model trained on
pure trajectories (N = 100). The prediction performance is shown for each couple of motions depending
on the mixing percentage.
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Figure 10: Trajectories mixing Brownian motion with the other types of movement. The mixed trajec-
tories are analyzed with the model trained on pure trajectories. The prediction performance is shown for
each couple of motions depending on the mixing percentage.

4.7 Application to biological data
Motion classification algorithms are widely used in biology to study the dynamic behavior of sub-cellular
particles. In this work, we are interested in analyzing the cell membrane receptors CCR5, which are involved
in HIV infection. Images are acquired using confocal microscopy, enabling visualization of a thin outer layer
of the cell membrane (200 nm). We collected movies with 30 fps (which is consistent with the developed
method with ∆t = 1/30) by imaging several entire cells. The images are processed using the Spot Detector
and Spot Tracking plugins of the Icy software [38], which allows the detection of the receptors and the
reconstruction of related trajectories. Figure 11 shows the different steps of the tracking analysis on Icy. As
the receptor size corresponds to three pixels (equivalent to three microns), the immobility threshold of one
pixel is applied to correct trajectory position and highlight immobility.

To track CCR5 on long trajectories without ambiguities, we worked with cells expressing a low receptor
level at the cell surface. We used cells expressing CCR5 under the control of the RUSH system (retention
using selective hooks) developed in [39, 40]. It allows the synchronization and the study of proteins, which
follow the biosynthesis/secretion pathway. It is based on the intracellular retention of a protein of interest
(here CCR5) and its release by induction (using biotin). RUSH-CCR5 expressing cells, even if not biotin-
induced, express CCR5 at a very low level, which corresponds to a leak from the system but which is ideal
for our monitoring. The RUSH-CCR5 construct allows the cell surface expression of a CCR5 protein fused
to the fluorescent protein GFP. Then, the presence of GFP-CCR5 at the cell surface is detected by labeling
the cells with an anti-GFP-AF647 booster. This labeling overcomes the background noise linked to the
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(a) (b) (c)

Figure 11: Different steps of tracking algorithm: (a) original image, (b) spot detection, (c) trajectory
reconstruction (scale bar = 5 µm).

presence of GFP-CCR5 along the secretion pathways.
This experimental technique allows imaging receptors in a low-density environment, facilitating detection

and trajectory reconstruction. This enables both the minimization of tracking errors and the collection of
longer trajectories. We can finally collect a dataset of a thousand trajectories with lengths between 90 and
120 time steps. According to the previous analysis on the impact of length inequality and noise, the dataset
can be analyzed using a model trained on pure trajectories of length 100.

In the following, we perform motion classification to compare the basal state to the treatment by PSC-
RANTES, which displays potent anti-HIV-1 activity. The exceptional capacity of PSC-RANTES to inhibit
infection is related to its ability to increase CCR5 down-regulation. PSC-RANTES acts as a superagonist
by recognizing a larger array of CCR5 conformational states than native chemokines [41].

The results in Figure 12 reveal several motion subpopulations governed by different processes highlighting
that several groups of receptors coexist, facing different environmental constraints and fates. Moreover, these
results show the strong impact of the PSC-RANTES stimulation on the nature of the receptors’ dynamic.

In the case of cellular receptors, subdiffusive processes correspond to different situations: OU allows
describing attraction between receptors, implying confined evolutions; FBM describes constraint movement
across the cell membrane, which is viscoelastic and inhabited by other protein assemblies; CTRW refers to
the case where receptors are immobilized because a ligand or a temporary change of their polymerization
state.

Figure 12 shows that CCR5 dynamics are governed by CTRW and FBM dynamics. In the basal state,
the majority of tracks exhibit either intermittent motion (CTRW) or dynamics with constrained increments
(FBM). In particular, this analysis reveals that free motion is better described by CTRW than by pure
BM, as is often assumed. On the other hand, after stimulation by PSC-RANTES, CTRW dynamics are less
represented in favor of FBM motion. This highlights the impact of PSC-RANTES stimulation on receptors’
behavior, prompting them to move from free movement, characterized by jumps and pauses, to constrained
spreading at the cell membrane.

5 Discussion
This paper addresses the problem of motion classification for particle tracking and related applications
in biology. Instead of looking at the trajectory in terms of diffusion, as in the standard approach, the
proposed method performs motion classification based on stochastic processes. This work presents a unified
framework to recognize the five standard dynamics used in particle dynamic modeling (BM, OU, DIR,
FBM, CTRW), which is a step forward in the field, especially in distinguishing different behaviors in the
subdiffusive regime. This is particularly useful for studying the dynamics of cell receptors, which essentially
hold subdiffusive dynamics, to distinguish different subpopulations responding to different environmental
and biological constraints.

The proposed method follows a features-based supervised approach (Random Forest) to guarantee the
geometrical characterization of trajectories and the explicability of predictions. The results on simulated
data are proven for trajectories of length 100 with a time interval ∆t = 1/30, a common frame-per-second
rate in TIRF microscopy, obtaining an overall accuracy of 93.6%. As discussed in Section 4.2, the method
accuracy strongly depends on the length of trajectories. This confirms that a specific motion needs time
to deploy its intrinsic properties to be described by statistical estimators. This reaffirms the difficulty of
short-trajectory classification and encourages novel observation techniques to avoid them. This is the main
reason for the choice of Rush system for imaging receptors in Section 4.7: this enables imaging receptors
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Figure 12: Results of motion classification for CCR5 trajectories of length approximatively equal to 100
time steps (∆t = 1/30). Comparison between the basal state (a) and after PSC-RANTES stimulation (b).

in less dense environments, leading to fewer tracking errors and, finally, longer trajectories. Although
this acquisition technique allows the collection of reliable trajectories, our method performs analysis at a
fixed time scale without addressing the complex question of dynamic change over time. Particle dynamics
can vary along their trajectories in response to environmental constraints, and switching times represent
useful information for biological studies. Classification methods using fixed-length trajectories can lose this
information, as motion switching can happen within the fixed temporal window. Detecting dynamic changes
remains a difficult problem involving the definition of estimators for different behaviors to test over time. We
strongly believe that the features-based approach developed in this work represents a preliminary framework
to analyze dynamic consistency at different time scales.

The robustness to image noise appearing because of several experimental constraints (for instance, fluo-
rescence variability inducing localization errors) is studied in Section 4.3. The results prove that the selected
features represent an intrinsic signature of motion that resists low noise levels. In this context, the impact of
an immobilization threshold, used to correct detected position and highlight immobility, is studied, showing
its impact on accuracy results.

Moreover, the impact of length inequality for test trajectories is discussed in Section 4.4. Considering
that trajectories have, at most, ten steps less, with respect to the length used for training, the method
keeps performing in the same range. This guarantees, in particular, flexibility and reliability in biological
applications. Finally, as shown in Section 4.5, our approach produces a motion classification consistent with
the diffusion-based one, in addition to distinguishing CTRW that would be classified as BM otherwise.

In conclusion, our method defines an accurate and explicable approach to observing trajectories at a
given temporal scale and recognizing their evolutions. Beyond stochastic process recognition, the approach
distinguishes different ways to unfurl in space using geometric features encoding the intrinsic geometrical
properties of particle dynamics. The robustness to noise and length inequality makes it an ergonomic and
reliable approach for dynamical classification and related application to biological imaging.

References
[1] N. Chenouard, I. Smal, F. De Chaumont, M. Maška, I. F. Sbalzarini, Y. Gong, J. Cardinale, C. Carthel,

S. Coraluppi, M. Winter, et al., “Objective comparison of particle tracking methods,” Nature methods,
vol. 11, no. 3, pp. 281–289, 2014.

[2] A. Einstein et al., “On the motion of small particles suspended in liquids at rest required by the
molecular-kinetic theory of heat,” Annalen der physik, vol. 17, no. 549-560, p. 208, 1905.

[3] H. Qian, M. P. Sheetz, and E. L. Elson, “Single particle tracking. analysis of diffusion and flow in
two-dimensional systems,” Biophysical journal, vol. 60, no. 4, pp. 910–921, 1991.

[4] M. J. Saxton and K. Jacobson, “Single-particle tracking: applications to membrane dynamics,” Annual
review of biophysics and biomolecular structure, vol. 26, no. 1, pp. 373–399, 1997.

18



[5] J. Rudnick and G. Gaspari, “The shapes of random walks,” Science, vol. 237, no. 4813, pp. 384–389,
1987.

[6] M. J. Saxton, “Lateral diffusion in an archipelago. the effect of mobile obstacles,” Biophysical journal,
vol. 52, no. 6, pp. 989–997, 1987.

[7] N. Gal, D. Lechtman-Goldstein, and D. Weihs, “Particle tracking in living cells: a review of the mean
square displacement method and beyond,” Rheologica Acta, vol. 52, pp. 425–443, 2013.

[8] V. Briane, C. Kervrann, and M. Vimond, “Statistical analysis of particle trajectories in living cells,”
Physical Review E, vol. 97, no. 6, p. 062121, 2018.

[9] F. Momboisse, G. Nardi, P. Colin, M. Hery, N. Cordeiro, S. Blachier, O. Schwartz, F. Arenzana-
Seisdedos, N. Sauvonnet, J.-C. Olivo-Marin, et al., “Tracking receptor motions at the plasma membrane
reveals distinct effects of ligands on ccr5 dynamics depending on its dimerization status,” Elife, vol. 11,
p. e76281, 2022.

[10] K. Hubicka and J. Janczura, “Time-dependent classification of protein diffusion types: A statisti-
cal detection of mean-squared-displacement exponent transitions,” Physical Review E, vol. 101, no. 2,
p. 022107, 2020.

[11] A. Weron, J. Janczura, E. Boryczka, T. Sungkaworn, and D. Calebiro, “Statistical testing approach for
fractional anomalous diffusion classification,” Physical Review E, vol. 99, no. 4, p. 042149, 2019.

[12] V. Briane, M. Vimond, and C. Kervrann, “An overview of diffusion models for intracellular dynamics
analysis,” Briefings in bioinformatics, vol. 21, no. 4, pp. 1136–1150, 2020.

[13] Y. Meroz and I. M. Sokolov, “A toolbox for determining subdiffusive mechanisms,” Physics Reports,
vol. 573, pp. 1–29, 2015.

[14] T. Wagner, A. Kroll, C. R. Haramagatti, H.-G. Lipinski, and M. Wiemann, “Classification and segmen-
tation of nanoparticle diffusion trajectories in cellular micro environments,” PloS one, vol. 12, no. 1,
p. e0170165, 2017.

[15] J. Janczura, P. Kowalek, H. Loch-Olszewska, J. Szwabiński, and A. Weron, “Classification of particle
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