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ARTICLE

Trait selection strategy in multi-trait
GWAS: Boosting SNP discoverability

Yuka Suzuki,1,* Hervé Ménager,2 Bryan Brancotte,2 Raphaël Vernet,3 Cyril Nerin,1 Christophe Boetto,1

Antoine Auvergne,1 Christophe Linhard,3 Rachel Torchet,2 Pierre Lechat,2 Lucie Troubat,1

Michael H. Cho,4,5 Emmanuelle Bouzigon,3 Hugues Aschard,1,* and Hanna Julienne1,2,6,*
Summary
Since the first genome-wide association studies (GWASs), thousands of variant-trait associations have been discovered. However,

comprehensively mapping the genetic determinant of complex traits through univariate testing can require prohibitive sample sizes.

Multi-trait GWAS can circumvent this issue and improve statistical power by leveraging the joint genetic architecture of human pheno-

types. Althoughmanymethodological hurdles of multi-trait testing have been solved, the strategy to select traits has been overlooked. In

this study, we conductedmulti-trait GWAS on approximately 20,000 combinations of 72 traits using an omnibus test as implemented in

the Joint Analysis of Summary Statistics. We assessed which genetic features of the sets of traits analyzed were associated with an

increased detection of variants compared with univariate screening. Several features of the set of traits, including the heritability, the

number of traits, and the genetic correlation, drive the multi-trait test gain. Using these features jointly in predictive models captures

a large fraction of the power gain of the multi-trait test (Pearson’s r between the observed and predicted gain equals 0.43, p < 1.6 3

10�60). Applying an alternative multi-trait approach (Multi-Trait Analysis of GWAS), we identified similar features of interest, but

with an overall 70% lower number of new associations. Finally, selecting sets based on our data-driven models systematically outper-

formed the common strategy of selecting clinically similar traits. This work provides a unique picture of the determinant of multi-trait

GWAS statistical power and outlines practical strategies for multi-trait testing.
Introduction

Despite the increasing sample size of genome-wide associ-

ation studies (GWASs), many genetic variants underlying

human complex traits and diseases remain undetected.

To increase statistical power and detection of associations

at low cost, investigators have developed various multi-

trait approaches based on GWAS summary statistics.1–6

Few studies investigated how the choice of phenotypes im-

pacts the gain in the power of multi-trait approaches. In

the standard univariate GWAS, statistical power mostly de-

pends on minor allele frequency, sample size, the size of

genetic effect, and polygenicity (the number of causal var-

iants).7 In the multi-trait GWASs, it additionally depends

on complex characteristics of the set of traits, including

their shared etiology, their genetic correlation, and the

number of traits in the set. As previously described, the

increased power of multi-trait test partly comes from ad-

justing for the correlation across GWASs due to sample

overlaps and genetic relationships across phenotypes.4,8,9

Previous works explored this question using simulated

data.8,9 However, simulations are limited in their scope

and can overlook existing constraints in real data. Large-
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scale studies on real data are needed to better characterize

scenarios increasing the gain of multi-trait tests.

Here we empirically examined how trait characteristics

impact the statistical power of multi-trait GWAS. We per-

formed our analyses on 72 curated GWAS summary statis-

tics and analyzed the impact of 11 genetic features

describing both individual and collective characteristics

of sets of GWAS. Among available multi-trait methods,

we conducted our primary analysis using a standard k-de-

gree of freedom joint test (the omnibus test) as imple-

mented in the Joint Analysis of Summary Statistics

(JASS).2 The JASS package and its associated tools solve all

practical issues commonly encountered in multi-trait

GWAS analyses, including missing data and computa-

tional efficiency, allowing for a large-scale power analysis

on real data. We inspected the association between a range

of features (heritability, polygenicity, genetic correlation,

number of traits analyzed, etc), and the gain in association

detection in multi-trait GWASs over univariate GWASs. We

then assessed how well these features predict the gain. We

further compared JASS and Multi-Trait Analysis of GWAS

(MTAG),4 an alternative multi-trait approach, in terms of

absolute power gain and features that impact the gain.
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Material and methods

Ethics approval and consent to participate
Not applicable.
Database of curated summary statistics
We assembled a database of 72 GWAS summary statistics of quan-

titative traits and diseases conducted in European ancestry popu-

lation pulled from the GWAS catalog10 and a variety of publicly

available meta-analyses. We cleaned, harmonized, and imputed

each study using our previously developed pipeline.2 In brief,

the process includes the following steps. (1) Alignment of each

GWAS to the 1000G GRCh37 reference panel, removal of strand

ambiguous SNPs, and SNPs with low sample size.11 (2) Imputation

of missing summary statistics using robust and accurate imputa-

tion from summary statistics.12 (3) Computation of the heritabili-

ty, genetic, and residual covariance matrices, referred further as

h2
GWAS, Sg and Sr , using linkage disequilibrium (LD)-score regres-

sion.13 (4) Aggregation of curated GWAS in a unique entry file

used as input for JASS. We filtered all GWASs with negative herita-

bility, resulting in a total of 72 traits (Table S1). Curated GWAS

summary statistics used in the analysis are available at https://

zenodo.org/records/10876029 and can be interactively explored

on the JASS webserver https://jass.pasteur.fr/.
Joint test and association gain
Multi-trait analyses were conducted using the omnibus test imple-

mented in the JASS package.2,8 For a set of k GWAS, the omnibus

statistics is defined as Tomni ¼ ztSr z where z is the vector of Z-

scores across traits z ¼ ðz1.zkÞ and Sr is the residual Z score

covariance derived using the LD-score regression.13 Under the

null hypothesis of no association with any of the k phenotypes,

Tomni follows a c2 distribution with k degree of freedom. To maxi-

mize data use, the default setting of JASS uses all variants, even

those with missing association statistics. In this case, JASS returns

association p values based on the subset of Z-scores available. In

contrast, the –remove-nans option removes variants with incom-

plete data. Here, we used the –remove-nans option as the primary

analysis for a better characterization of trait sets and for a fair com-

parison with the default setting of MTAGs4 that do not allow for

missing statistics, whereas we also provide some results from the

default setting of JASS as additional information.

All power comparisons were conducted at a locus level. The

entire genome was split into a total of 1,703 quasi-independent

loci defined based on LD-independent blocks, as proposed by Be-

risa and Pickrell.14 For both multi-trait and univariate analyses,

we obtained the minimum p-value across variants in each locus.

The gain of the multi-trait test was derived as the fraction of loci

whose p-values were smaller than corresponding p-values in uni-

variate GWASs corrected for the number of traits jointly analyzed:

gain ¼ fmulti< univ ¼
X

i
ðPmulti:i < Puni:i$k =RÞ; (Equation 1)

where R is the number of loci (R ¼ 1,703), k is the number of traits

(the number of GWASs) jointly analyzed, Pmulti:i is the minimum p

value of themulti-trait test in region i, and Puniv;i is the minimum p

value of the univariate tests across all GWASs analyzed in locus i.
Estimated and derived genetic features
We investigated the effect of both single and multi-trait features.

Single GWAS features include the effective sample size (Neff ), linear
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additive common variants heritability (h2
GWAS), polygenicity, mean

genetic effect sizes (MESs), and the proportion of uncaptured

linear additive common variants heritability (%h2u). Multi-trait

GWAS features include the number of traits in a trait set (k), the

average of the off-diagonal of genetic covariance, and the residual

covariance (Sg and Sr , respectively), condition numbers of genetic

covariance matrix and residual covariance matrix (kg and kr,

respectively) across traits, and the average distance between the

genetic and residual correlation matrices (DS). All parameters

were aggregated to form a vector of 11 features per trait set. For

the single GWAS parameters, MES, polygenicity, Neff , h
2
GWAS, and

%h2u, we calculated mean values across each set of traits.

Polygenicity and heritability (h2
GWAS) were estimated using

MiXeR,15,16 with the 1000 Genomes Phase3 reference panel pro-

vided along the MiXeR package containing approximately 10

million common variants.11 Following the authors recommenda-

tion, we defined the parameter for effective sample size as Neff ¼
1 =ð1 =Ncase þ1 =NcontrolsÞ. For comparison purposes, we also esti-

mated h2GWAS using the LD-score regression,13 and the twometrics

were consistent (Pearson r ¼ 0.86) (Figure S1). The estimated poly-

genicity by MiXeR showed a dependency on the GWAS sample

size, with approximately a 10-fold increase of the polygenicity for

an increase of 500,000 of the sample size (Figure S2).We, therefore,

adjustedpolygenicity by taking the residuals of linear regressionbe-

tween log10 polygenicity and Neff : log10 polygenicity ðadjustedÞ ¼
log10 polygenicity ðmixerÞ � aNeff ,whereawas estimatedby a linear

regression log10 polygenicity ðmixerÞ � aNeff þ ε. We obtained the

‘‘adjusted polygenicity’’ as 10½log10 polygenicity ðadjustedÞ�. We computed

MES as
h2
GWAS

polygenicity ðadjustedÞ.

The proportion of uncaptured linear additive common variants

heritability (% h2
u) was derived as ðh2

GWAS � h2
GWAS�hitsÞ=h2

GWAS,

where h2
GWAS�hits denotes the heritability accounted by the univar-

iate GWAS association loci. It was derived using the lead variants

from each locus reaching genome-wide significance (p < 5 3

10�8): h2
GWAS�hits ¼ P

i˛ Ib
2
i , where bi ¼ zi=

ffiffiffiffiffiffiffiffiffi
Neff

p
. We excluded

loci with lead variant whose absðbÞ > 0.19, because h2
GWAS�hits

tended to become larger than h2
GWAS.

The mean genetic covariance and mean residual covariance

were defined as the mean of the absolute value of the upper off-di-

agonal elements of the genetic and residual covariance mat-

rices (Sg and Sr), i.e., sg ¼ P
i;j;i< jsgij=

P
i;j;i< j1, and sr ¼P

i;j;i< jsrij=
P

i;j;i< j1, respectively, where sgij and srij are ij elements

of Sg and Sr , and k is the number of traits. The condition numbers

of genetic and residual covariance matrices were computed as:

kg ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðlg;iÞ=min ðlg;iÞ

p
and kr ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxðlr;iÞ=min ðlr;iÞ
p

, where

lg;i and lr;i are the eigenvalues of the genetic and residual covari-

ance matrices. We used numpy.linalg.eig17 for the eigen decompo-

sition and assigned an infinite value to k when the minimum

eigenvalue was negative or close to zero. The average distance DS

was defined as themean over the absolute values of pairwise differ-

ence between the corresponding upper off-diagonal elements in

genetic and residual correlation matrices DS ¼ P
i;j;i< j

��rgij �
rrij

��=Pi;j;i< j1, where rgij and rrij indicate the ij elements in the ge-

netic and residual correlation matrices.
Assessment of features associated with multi-trait

association gain
The contribution of features to multi-trait gain was estimated us-

ing a 5-fold cross-validation (CV). For each round of CV, the 72
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GWASs were randomly split into a training and validation data,

each including 36 GWAS. Within each CV, we generated 1,980

unique random trait sets, containing 2–12 traits, for each of the

training and validation data: random sampling out of the 36 traits

(660 sets generated), random sampling out of traits with common

SNP heritability below the median (330 sets) and above the me-

dian (330 sets); random sampling out of traits with MES below

the median (330 sets) and above the median (330 sets). For this

stratification of traits by the median of MES, we used polygenic-

ity/h2
GWAS estimated by MiXeR without adjusting for the effective

sample size. For each set, we ran JASS and derived the 11 features

of interest (Fi; i ¼ 1; .; 11) and the multi-trait gain. We used

19,793 trait sets out of the total 19,800 (¼ 1,9803 23 5) sampled,

for which the whole analysis process completed without error. Er-

rors include cases where there was no association detected by

either the univariate or the joint tests.

Moving to the multivariate regression analysis, we selected 6 of

the 11 features based on collinearity analysis (as described below).

The six features and the multi-trait gain were standardized into a

range between 0 and 1 using MinMaxScaler in scikit-learn.18 This

standardization was applied at once on the entire dataset

including training and validation data across the 5-fold CV sets.

We used the training data to estimate the joint effect bdi of each
feature i from a multiple regression: gaintrain � P

idi Ftrain;i. This

was conducted using theOLS function in statsmodels in Python.19

We report Pearson’s correlation coefficients as a metric of predic-

tive power.
Collinearity and selection of features
We observed collinearity among some of the 11 features of traits

across 19,266 unique trait sets. Log10 kr , log10 kg , log10 Sr , and

the number of traits were highly correlated (Pearson r > 0.65).

Likewise, the mean%h2u, mean log10MES, and mean log10polyge-

nicity were highly correlated (abs(r) > 0.8). These correlated fea-

tures capture redundant characteristics of traits. Thus, we selected

one of each of the correlated features: the number of traits and

mean %h2u. We chose the number of traits because it had the

smallest p value in a multivariate linear regression with all the fea-

tures included, where inf values in condition number were re-

placed with their non-inf max value. We chose the mean(%h2u)

because it captures both mean(log10MES) (r ¼ �0.90) and mean

(log10polygenicity) (r ¼ 0.84). The estimation of the mean(%h2u)

is also more straightforward than the mean(log10MES) and mean

(log10polygenicity). After this pre-selection, we built models with

the remaining six features as described in the previous section.
Non-linear models
We considered two alternative non-linear models for prediction

purposes: support vector regression (SVR), and random forest

regression (RFR). SVR and RFR are regression approaches that allow

for non-linear relationships. The goal of SVR is to find a hyper-

plane (or line, in the case of two-dimensional data) that best fits

the data. It is effective at handling non-linear and complex data

by using the kernel trick—mapping data with a kernel function

into a higher-dimensional space where it is easier to find the

best-fit hyperplane. SVR also penalizes the complexity of the

model and gives the flexibility in how much error is acceptable.

RFR performs a regression using decision trees. It generates multi-

ple trees, fits each to a random subset of training data, and aver-

ages the predictions across trees as the final prediction. While

the random sampling and averaging supposedly makes the model
Hu
robust to outliers, RFR’s performance relies on a high quality of

training data; the training data need to cover a wide range, as

RFR does not work well for extrapolation, and RFR leads to biased

predictions when the training data are sampled in a biased way.20

In contrast, SVR is suggested to be capable of extrapolation.21

We used the scikit-learn18 python implementation of RFR and

of the SVR. We fitted SVR and RFR models to the gaintrain inclu-

ding hyperparameters. Hyperparameters were tuned using Ran-

domizedSearchCV in scikit-lean across the following range: SVR’s

kernel ¼ [linear, rbf, sigmoid, poly], C ¼ [1,10,50,100], epsilon ¼
[10�3,10�2,10�1,1], degree ¼ [2,3,4], and RFR’s n_estimators ¼
[5,20,50,100], max_features ¼ [‘auto’,’sqrt’], max_depth ¼ [12

values ranging from 2 to 100], min_samples_split ¼ [2,5,10],

min_samples_leaf ¼ [1,2,4], bootstrap ¼ [True, False].
MTAG analyses
For comparison purposes, we repeated the multi-trait test and the

prediction analyses with the MTAG approach.4 MTAG uses a

weighted sum of Z score (Note S1). Trait weights are derived using

the generalized method of moments, as ðbbj
bb0
j � U � SjÞ ¼ 0 ,

where U is the genetic covariance matrix to be estimated for the

weights, and Sj is the genetic covariance matrix estimated using

the LD score regressions by Bulik-Sullivan et al.13 The model as-

sumes that the genetic covariance matrix is homogeneous across

variants. We usedMTAGwith its default setting, which considered

only complete cases. We ran MTAG for the same trait sets used for

the analysis with JASS (all data used in the 5-fold CV). MTAG out-

puts p values for each trait in each trait set, whereas JASS gives a

single p value for a trait set. To account for the number of tests

run by MTAG for one set, we obtained minimum p values by

MTAG across traits and variants in each locus and multiplied the

minimum p values by the number of traits in the set. For the com-

parison of the association gain between MTAG and JASS, we used

both theminimum p values with and withoutmultiple test correc-

tion (Figures 5 and S3).
Simulation studies on the calibration and statistical

power of the MTAG and JASS tests
To assess the statistical power and type 1 error of the JASS and

MTAG tests, we designed the following simulation scenarios. We

simulated N ¼ 50K individuals with five outcomes Y ¼ ðY1, Y2,

., Y5Þ:

Y ¼ Mbþ ε;

whereM is the genotypematrix,b is thematrix of genetic effects and

ε is the matrix of residuals. M is a matrix 1,000 3 50k representing

1,000 independent SNPs drawn from a binomial distribution (mi-

nor-allele frequency uniformly distributed between 0.05 and 0.95).

The b matrix was set according to two scenarios: ‘‘null hypothesis,’’

b ¼ 0 and h2 ¼ 0; ‘‘alternative hypothesis,’’ the b matrix was

drawn from a centered multivariate with a covariance matrix set

to

0
@ 1 . 0:3

« 1 «
0:3 . 1

1
A3 0:25=1000. The vectors of residuals

ε ¼ ðε1; ε2; ε3; ε4; ε5Þ were drawn from a multivariate normal with

means of 0, a covariance matrix with diagonal elements equal to

1 � h2 , and non-diagonal elements re varying between 0 and 0.5

across simulations. For each simulation (scenario 3 the number of

environmental covariances considered), we derived the Z score for

each of the m variants as Z ¼ � bb1

ffiffiffiffi
N

p
; bb2

ffiffiffiffiffiffi
N;

p bb3

ffiffiffiffi
N

p
; bb4

ffiffiffiffi
N

p
;
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bb5

ffiffiffiffi
N

p �
. Then, the JASS andMTAG tests were applied to the Z score

matrices.
Comparison of strategies for trait selection
To compare the performances of trait selection strategies, we clas-

sified the 19,266 unique sets into clinically homogeneous, low

heterogeneity, high heterogeneity, or high predicted gain accord-

ing to our predictive model. To assess clinical homogeneity, we

first classified the 72 traits into clinical groups using the broadest

categories in theMeSH Tree Structures.22 The grouping was further

refined based on clinician’s insights (Table S1). We labeled each set

of traits as ‘‘homogeneous’’ if all the traits are in the same clinical

group, ‘‘low heterogeneity’’ if trait belonged to two to four clinical

groups, and ‘‘high heterogeneity’’ if traits spanned five or more

clinical groups. For the data-driven method, we selected 100 sets

of traits by CV fold that had the largest gains predicted by the

linear model with aggregated coefficients across CV folds (Table 1).

We used the Welch’s t test to evaluate the differences in gain and

the number of new associated loci. We used a two-sided Welch’s t

tests to determine whether the data-driven method achieves a

greater association gain than other methods, and whether jointly

analyzing clinically heterogeneous traits achieves a greater associ-

ation gain than jointly analyzing clinically homogeneous traits.

For this test, we used a pair of training data and validation data

that are mutually exclusive to ensure independence.
Evaluation of the relevance of new association
To evaluate the relevance of new associations detected by JASS

(i.e., if most of them were true positive), we attempted to predict

loci discovered in a recent large meta-analysis on body mass index

(BMI) (sample size of 683,365 on average across �2.3 million var-

iants23) from the results of multi-trait GWAS applied on 1,776 trait

sets containing a smaller study of BMI (sample size of 339,224)

(Table S1). First, we compared loci detected by JASS (after a Bonfer-

roni correction to account for the number of sets) and in the larger

GWAS using the standard genome wide significance threshold of

5 3 10�8. Second, we fitted a logistic regression to predict associ-

ated loci in the larger GWAS by combining JASS p value and

the number of sets where the loci was considered associated

with JASS. We use odd number chromosomes to fit the logistic

regression and evaluated its performances on even number

chromosomes.
Results

Study overview

We conducted a series of analyses to identify features that

influence the gain in association detection of multi-trait

GWAS relative to univariate GWAS. The key principles

and main steps of the study are depicted in Figure 1. We

used 72 curated GWAS summary statistics spanning a

range of clinical domains (Table S1) and considered 11 fea-

tures describing the univariate and multivariate character-

istics of the GWASs analyzed. Single GWAS features are

MES, polygenicity, effective sample size (Neff ), linear addi-

tive heritability of common variants (h2
GWAS), and the pro-

portion of uncaptured linear additive heritability of com-

mon variants (%h2
u). The multi-trait GWAS features are
4 Human Genetics and Genomics Advances 5, 100319, July 18, 2024
the number of GWAS analyzed jointly and five metrics

related to the genetic (Sg) (Table S2 and Figure S4) and re-

sidual (Sr) (Table S3 and Figure S5) covariance matrices,

where the latter represents the covariance between the Z

score statistics of twoGWAS in the absence of genetic effect

at the loci (due to sample overlap and phenotypic correla-

tion). Those five features are the mean of the off-diagonal

terms denoted as Sg and Sr ; the conditional numbers of

Sg and Sr denoted as kg and kr , which we used as a measure

of multi-collinearity; and the average difference between

the two matrices DS. Previous works highlighted DS as a

key driver of the power of multi-trait test8,9 (Notes S1, S2,

and S6).

Given the 72 traits, there are more than 4.7 3 1021

possible sets of 2–72 traits. In this study, we used 19,266

unique random sets of 2–12 GWAS. The maximum num-

ber of traits included in sets was constrained by two re-

quirements: (1) dividing the data in two to form a training

and a validation set, and (2) avoiding drawing sets that are

nearly identical combinations (e.g., 2 sets of 35 traits

selected from an ensemble of 36 traits share 34 traits).

For these reasons, we fixed the maximum number of traits

(12 traits) to a relatively small number compared with the

total number of traits in the study (72 traits). Sets were

drawn using a stratified sampling conditional on mean ef-

fect size, heritability, and the number of traits, in order to

maximize the range of the genetic features studied (see Ma-

terial and methods and Note S3). For each set, we derived

the average of the single GWAS feature (polygenicity,

MES, Neff, h
2
GWAS, and %h2u) and the six set features (Sg ,

Sr , kg , kr , DS, and the number of GWAS selected). Note

that we used the log of polygenicity, MES, Sg , Sr , kg , kr ,

and DS when investigating their association with other

variables due to their skewed distributions (Figure S7).

We compared multi-trait and univariate GWAS results

based on the minimum p value of the multi-trait tests

across all variants within LD-independent loci (PJASS) and

the minimum p value of univariate tests across all variants

and all GWASs within the same loci (Puni). We used two

metrics: (1) the proportion of significant loci found associ-

ated at genome-wide level (p < 5 3 10�8) by JASS and

missed by the univariate GWAS, and (2) the fraction of

loci where PJASS was smaller than Puni (fJASS< univ).

We first describe the distribution of the genetic features

and their correlation. Second, we applied JASS to each set

and comparedmulti-trait and univariate GWAS association

results (Figure 1B). Third, we build a predictive model of

the association gain using a 5-fold CV approach (Figure

1C). For each CV, we pulled two independent datasets of

1,980 sets out of the 19,266 unique sets, one for training

and one for validation. We conducted a regression analysis

to estimate the joint contribution of the features in the

training dataset, and measured the correlation between

observed and predicted gain in the validation dataset.

Fourth, we reran the analyses using MTAG,4 a popular

multi-trait approach that leverages genetic correlation



Table 1. Coefficients of the multivariate linear regression models from 5-fold CVs

CV1 CV2 CV3 CV4 CV5 Mean 5 SD

No. of
traits k

0.096
(p ¼ 3.447 3 10�44)

0.077
(p ¼ 1.592 3 10�17)

0.082
(p ¼ 1.638 3 10�44)

0.049
(p ¼ 6.148 3 10�8)

0.083
(p ¼ 3.071 3 10�19)

0.077 5 0.017

Mean
log10 DS

�0.787
(p ¼ 8.338 3 10�29)

�0.536
(p ¼ 8.338 3 10�29)

�0.393
(p ¼ 2.242 3 10�10)

�1.174
(p ¼ 1.086 3 10�26)

�0.610
(p ¼ 1.947 3 10�9)

�0.700 5 0.301

Mean
log10 Sg

0.767
(p ¼ 3.813 3 10�45)

0.789
(p ¼ 2.055 3 10�20)

0.355
(p ¼ 5.990 3 10�15)

1.149
(p ¼ 1.604 3 10�56)

0.675
(p ¼ 5.636 3 10�21)

0.747 5 0.284

Mean
Neff

0.206
(p ¼ 4.342 3 10�15)

�0.016
(p ¼ 0.554)

�0.071
(p ¼ 0.003)

0.260
(p ¼ 1.099 3 10�10)

�0.015
(p ¼ 0.598)

0.073 5 0.149

Mean
h2GWAS

�0.509
(p ¼ 2.937 3 10�96)

�0.437
(p ¼ 1.455 3 10�34)

�0.518
(p ¼ 2.216 3 10�111)

�0.690
(p ¼ 6.670 3 10�79)

�0.429
(p ¼ 2.225 3 10�26)

�0.516 5 0.105

Mean
%h2u

0.112
(p ¼ 5.158 3 10�6)

0.370
(p ¼ 4.353 3 10�35)

0.091
(p ¼ 3.877 3 10�10)

0.277
(p ¼ 3.022 3 10�33)

�0.064
(p ¼ 0.002)

0.157 5 0.169

Mean genetic residual distance and mean genetic covariance were log10 transformed. All the features were scaled using MinMaxScaler in scikit-learn.18
across traits to boost statistical power, and compared re-

sults with JASS. Finally, we compared common trait selec-

tion strategies—e.g., choosing clinically homogeneous or

heterogeneous traits—in their impacts on the association

gain to evaluate our model prediction and provide a prac-

tical strategy in multi-trait test (Figure 1D).
Distribution of the genetic features across GWAS trait

sets

The individual genetic features of the 72 studied traits were

distributed as follows. The sample sizes ranged from 5,318

to 697,828 with a median of 85,559. Heritability (h2
GWAS)

ranged from 1% to 48% with a median of 10% (Figure

2A) and was consistent across the software used for its esti-

mation (Figure S1). Polygenicity and MES were highly var-

iable: polygenicity (i.e., the estimated number of causal

variants) ranged from 6.9 (estimated glomerular filtration

rate from cystatin C) to 570,102 (variability sleep duration)

with a median of 1,110, and MES ranged from 4.48 3 10�8

(variability sleep duration) to 3.3 3 10�3 (fasting proinsu-

lin) with a median of 1.0 3 10�4. The distribution of the

average of these parameters across the 19,266 sets is pre-

sented in Figure 2B along with the GWAS set features.

The latter metrics ranged (in 25–75 percentiles) as �2.04

to �1.79 for log10Sg ; �1.96 to �1.44 for log10Sr, 0.36 to

0.78 for log10kg, 0.05 to 0.32 for log10kr, and �1.11 to

�0.89 for log10DS. In particular, the variability in log10DS

was limited (given the theoretical upper bound of

log10DS is log10 2y0:3).

We measured the correlation across features at the trait

and set levels (Figures 2C and 2D). The proportion of un-

captured linear additive heritability of common variants

(%h2
u) was strongly associated with log10polygenicity (r ¼

0.76, p ¼ 8.8 3 10�15) and with log10MES (r ¼ �0.8, p ¼
3.5 3 10�17) (Figures 2C and S8), in agreement with previ-

ous reports showing that univariate GWAS performs better

for traits with a larger MES and a smaller polygenicity.7 As

expected, we observed similar correlation at the single trait

and sets levels (e.g., mean %h2
u and mean polygenicity are
Hu
highly correlated as are %h2
u and polygenicity) (Figure 2D).

Metrics related to genetic and residual covariance matrices

were positively correlated with each other (r ¼ 0.47). The

correlation between Sg and Sr and associated parameters

is expected as the latter is a function of sample overlap

and phenotypic correlation, itself depending on genetic

correlation.
Multi-trait versus univariate GWAS across 19,266

random sets

We applied JASS to all 19,266 sets and quantified the gain

in association detection of the multi-trait against univari-

ate test. On average, univariate tests identified 285 loci

per set, and JASS detected an additional 26 loci, corre-

sponding with a 1.1-fold increase in power (Figure S9A).

JASS gain was maximal for sets with a relatively low num-

ber (<300 loci) of previously detected loci (Figure S9B).

JASS detected at least one new association in 98% of the

trait sets (18,787 sets) (Figure S9C) and 508,829 new asso-

ciations in total (note that these can be overlapping loci).

These numbers are obtained when applying JASS on vari-

ants with beta coefficients available for all traits in the

set. When analyzing all variants including those with

missing values as allowed by JASS (see Material and

methods), approximately 1.4 times more new associations

were detected (693,382 new associations in total by JASS,

including variants with missing values) (Figure S9D).

We assessed the marginal relationship between genetic

features and the number of loci detected by the univariate

and multi-trait GWAS tests, and the association gain of

multi-trait test. Figure 3 presents the correlation between

each feature and the number of univariate and multi-trait

GWAS-associated loci. As expected, thenumberof univariate

associated loci was positively correlated with the number of

traits,meanNeff, themeanh2GWAS, andmeanMES, andnega-

tively correlated withmean uncaptured linear additive heri-

tability (mean %h2
u). Multi-trait GWAS gain over univariate

GWAS was positively associated with mean polygenicity

and mean %h2
u, and negatively associated with mean MES.
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Figure 1. Study overview
We conducted a power analysis on real data to understand in which setting a standard multi-trait test—the omnibus test—outperforms
univariate GWAS.
(A) To assemble our real data, we curated 72 GWAS summary statistics and formed approximately 20k sets of traits by random sampling.
Each set of traits was characterized by assessing key genetic features such as polygenicity, MES, and heritability.
(B) For each set of traits, we ran omnibus test using JASS and computed the association gain compared with the univariate test. We
defined this association gain as the number of LD-independent loci where the omnibus yields a smaller p value than the univariate
test. We repeated the analysis using MTAG, a popular multi-trait approach.
(C) To investigate which genetic features (highlighted in A) explain the JASS (omnibus) association gain, we applied statistical models to
predict the gain as a function of genetic features. Several models were benchmarked to optimize prediction performances.
(D) To suggest a practical strategy for selecting traits that yield a large association gain, we compared the performance of JASS on trait
sets that are clinically similar, clinically heterogeneous, and that were predicted to have a large gain by the predictive model highlighted
in (C).
Themeanh2GWAS showedanopposite effect, beingpositively

associatedwith the number of univariate associated loci, but

negatively associated with gain. Overall, this suggests that

themulti-trait test can be highly complementary to the uni-

variate test, performingbetter in situationswhere theunivar-

iate testdisplays lowpower.Wenoted ina recent study24 that

ahighmulticollinearityof thematrixunderlying thenullhy-

pothesis (Sr) can lead to a lack of robustness of the omnibus

test.24We checked how the condition number kr was related

to JASS gain (Figures 3B and S10). The condition number

stayed in a reasonable range for 99% of sets (min ¼ 1,

max ¼ 11). Furthermore, note that the trait sets contained

overlapping traits and are therefore not fully independent

from each other.

Predicting multi-trait test gain from genetic features

To robustly assess the impacts of genetic features on the

multi-trait gain, we conducted regression analyses with a
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CV scheme establishing independence between training

and validation data (Figure S11). We investigated the pre-

dictive power of the association gain (fJASS< univ) from a

joint modeling of the genetic features (Figure 4). Note

that some features are almost linear combinations of other

ones (e.g., DS is proportional to the difference between Sg

and Sr). To avoid extreme collinearity and ensure par-

simony, we selected six moderately correlated features:

the number of traits, log10DS, log10Sg , mean Neff, mean

h2GWAS, and mean %h2
u (see Material and methods). We

favored mean %h2
u over meanMES andmean polygenicity,

since mean %h2
u captures both log10(MES) and log10(poly-

genicity) (Figure 2). We assessed performances using a

5-fold CV. For each CV, the model parameters were derived

on a training dataset, and the prediction accuracy was

derived in an independent validation dataset (Material

and methods) (Figure S11). All six features were highly

associated with the multi-trait gain (Table 1). The mean



Figure 2. Genetic features characteristics derived from 72 traits and 19,266 random trait sets
Visualization of the investigated features and their relation at the level of individual trait (A, C, and E) and at the level of set of traits (B, D,
and F).
(A) Schematic of a genetic feature derived at the level of an individual trait.
(B) Schematic of a genetic feature derived at the level of a set of traits.
(C) Violin plots representing the distribution across the 72 summary statistics of heritability, polygenicity, MES, and sample size of the
study.

(legend continued on next page)
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%h2
u was overall positively associated with multi-trait gain,

whereas the mean h2GWAS was negatively associated. Over-

all, the association gain of multi-trait test, more specifically

the omnibus test, seems driven by genetic correlation, pol-

ygenicity, and the number of traits. The predicted gain was

significantly correlated with the observed gain on valida-

tion data (median Pearson r ¼ 0.43, p < 1.6 3 10�60) (Fig-

ure S12). A command (jass predict-gain) has been added to

the command-line toolset of the JASS Python package to

allow users to score combinations of traits using this regres-

sion model (Data and code availability).

We conducted a series of sensitivity analyses to

explore further performances. First, to interpret this model

behavior from the perspective of polygenicity andMES, we

fitted twomodels replacingmean%h2
u withmean log10(po-

lygenicity) and mean log10(MES) in turn (Figure S13). In

these models, mean log10(polygenicity) had a positive

contribution to the gain, whereas mean log10(MES) had a

negative contribution. In other words, multi-trait tests

likely detect new associations in settings where univariate

tests perform poorly, confirming the correlation analysis

(Figure 3). Additionally, the model suggests that the num-

ber of traits and log10Sg further enhance multi-trait test

gain. In contrast with previous observations in simulation

studies, log10DS likely diminishes the multi-trait test gain

(see Notes S4 and S5 for a hypothetical explanation). Sec-

ond, we also considered two nonlinear models for compar-

ison purposes, SVR and RFR. As shown in Figure S14,

these two models seem to outperform the multivariate

linear model on the training datasets. However, they per-

formed similarly or worse on the validation dataset, sug-

gesting a strong overfitting in the training data. Overall,

we did not find any benefit in using these more complex

models.

Comparison of JASS versus MTAG

We repeated the association screening and the prediction

analysis using MTAG, a popular multi-trait approach

leveraging genetic correlation among closely related traits

to inform GWAS screening. Regarding the association

screening, MTAG detected 153,061 new association re-

gions in total across the sets (30% of the number of new as-

sociations detected by JASS). On average, MTAG detected

eight new loci per set, and at least one new association lo-

cus on 63.3% of sets (12,195 of 19,266) compared with

98% of sets for JASS. In 93% of all the trait sets, MTAG de-

tected fewer associations than JASS (Figure 5A). The perfor-

mance difference further increased when applying JASS

also on variants with missing values (in 96% of trait sets

MTAG detected fewer associations). Despite these discrep-

ancies in the number of association loci, the number of

new association loci in MTAG and JASS were strongly
(D) Violin plots representing the distribution across the 19,266 sets
(E) Pearson correlation among polygenicity, MES, h2GWAS, %h2u, and
(F) Pearson correlation among the 11 features across 19,266 trait set
Pearson correlations displayed on panel E and F have been rounded
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correlated (Pearson r ¼ 0.72, p < 2.2 3 10�308), and as

well as the p-values of MTAG and JASS for the same loci

(Pearson r ¼ 0.75, p< 2.23 10�308). This concordance sug-

gests common determinants for statistical power between

the two methods. We next fitted a multivariate linear

model to predict MTAG gain from the same six genetic

features and training data used for JASS (Figure S15). The

most notable difference from JASS was that the number

of traits in the set was, consistently across CV folds, nega-

tively associated with the gain of MTAG. Indeed, JASS

particularly outperformed MTAG on larger set of traits

(Figure 5B).

To test whether the pronounced gain of JASS compared

with MTAG on large sets was mostly due to multiple

testing correction—as MTAG performs one test per trait

in the set of traits, multiple testing correction is applied

to MTAG p values (Material and methods)—we compared

the number of associations detected by JASS and by

MTAG without correction (Figure S3). In the absence of

multiple testing correction, MTAG type 1 error expectedly

increased with the number of traits in the set (e.g.,

genomic inflation factor l was 1.3, 1.66, 1.72, and 1.77

for 4 cases with 2, 5, 9, and 12 traits). Despite the increased

p value inflation for large sets, MTAG detected fewer asso-

ciations overall than JASS (Figure S3A) on most of the

sets (in 71% and 83% of sets when excluding and

including variants with partly unavailable summary statis-

tics, respectively). The performance of JASS and MTAG

were most similar in small trait sets (Figure S3B), while

JASS was particularly advantageous when analyzing set

with large number of traits, especially when allowing for

variants with missing summary statistics.

To ensure that the higher number of associations de-

tected by JASS was due to a higher statistical power and

not to a higher type 1 error rate, we simulated Z scores un-

der the null hypothesis of no genetic effects and under the

alternative hypothesis (Material and methods). The JASS

test is properly calibrated under the null, whereas MTAG

showed a slight deflation when adjusted for multiple

testing and a substantial inflation when left unadjusted

(Figure S16). We simulated Z-scores under the alternative

assuming a heritability of 0.25 and a genetic correlation

of 0.3 across five traits (Material and methods). JASS had

greater statistical power than MTAG under the alternative

hypothesis, even whenMTAGwas left unadjusted for mul-

tiple testing (Figure S17).

An informed strategy for trait set selection in multi-trait

GWAS

A common and seemingly sound strategy when con-

ducting multi-trait analyses is to use closely related traits.

This choice is partly driven by investigators’ interest in
of traits of the 11 genetic features derived for each trait set.
sample size across 72 traits.
s. (q-value annotation: *** <10�3, ** <10�2,*< 5x10�2). Note that
up to keep 2 significant numbers.



Figure 3. Determinant of JASS gain across trait sets
(A) Illustration of the three metrics to assess univariate and multi-trait GWAS outcomes. On a quadrant plot representing the p-value
of the multi-trait test with respect to the p value of the univariate test, the following areas represent regions where: (green) only the
univariate test is significant, (pink) only the multi-trait test is significant, (purple) the multi-trait test is more significant than the uni-
variate test.
(B) Heatmap of the Pearson correlation between the number of univariate association loci, the number of new association loci detected
by JASS, the association gain of JASS (fJASS<univ) and the 11 genetic features across 19,266 trait sets.
delineating the shared genetic etiology between a disease

and closely related phenotypes. This might also arise

from the intuitive idea that closely related phenotypes

share a fair amount of genetic etiology, which can be lever-

aged through multi-trait testing. However, its impact on

statistical power has not been evaluated. To advise investi-

gators on the best strategy to compose sets, we compared

multi-trait gain and the number of new association loci ob-

tained using five strategies. We evaluated three clinically-

driven strategies, a random baseline, and a data-driven

strategies (see Material and methods): (1) including

GWAS from the same clinical group (noted ‘‘homoge-

neous’’), (2) including GWAS from two to four clinical

groups (noted ‘‘low heterogeneity’’), (3) including GWAS

from five clinical groups or more (noted ‘‘high heterogene-

ity’’), (4) select sets at random, and (5) a data-driven

approach based on the linear regression predicted gain

(Material and methods). The data-driven strategy had a

higher gain and larger number of new association loci

compared with the other strategies (Figures 6A and 6B).

The gain and the number of new association loci increased

systematically with the clinical heterogeneity of the traits,

and the increases were statistically significant for most
Hu
pairs of trait selection strategies compared, especially

when comparing the data-driven approach with the other

approaches (p < 4.43 10�8 for gain and p < 6.73 10�7 for

the number of new association loci). Interestingly, the se-

lecting traits at random significantly outperformed the

clinically homogeneous strategy in terms number of new

associations discovered. The average number of new asso-

ciation loci detected in validation data equals 14, 20, 32,

22, and 61 for homogeneous, low heterogeneity, high het-

erogeneity, random baseline, and data-driven sets, respec-

tively. In addition, we examined whether grouping traits

based on heritability would lead to similar conclusions

(i.e., favoring heterogeneous groups of traits and the

data-driven strategy). Consistent with previous results,

sets composed of traits with low heritability had a higher

gain and a higher number of new associations than sets

composed of traits with high heritability (Figure S18).

Interestingly, heterogeneous sets in terms of heritability

discovered more new associations than low-heritability

sets, reinforcing the interest of heterogeneous sets of traits

when performing a multi-trait GWAS with JASS. Neverthe-

less, the data-driven strategy outperformed other strategies

in terms of the number of new associations discovered.
man Genetics and Genomics Advances 5, 100319, July 18, 2024 9



A B C

Figure 4. Model prediction power and feature contributions
(A) Boxplots of the prediction power across the 5-fold CVs of the multivariate linear regression model measured as the Pearson’s corre-
lation coefficient between the predicted and observed gain. The performance of each CV is represented as a colored dot. Orange dashed
line: median correlation coefficient between the predicted and observed gain in the validation data.
(B and C) The boxplots show the coefficients and -log10(p values) of the six features in the regressionmodel across 5-fold CVs using each
corresponding training data. Red dashed line, Bonferroni corrected nominal significance threshold.
We further decomposed the gain of the homogeneous

sets by clinical groups (Figures 6C and 6D). Two groups

consistently yielded more new association loci than

others, namely, ‘‘circulatory and respiratory physiological

phenomena’’ and ‘‘physiological phenomena.’’ The first

groupwas composed of spirometry traits and asthma, char-

acterized by a large sample size, substantial genetic correla-

tion, and moderate heritability, a favorable setting for

JASS. The second group contained anthropometric traits

(height, BMI, hip circumference, waist circumference,

and waist-to-hip ratio). We next investigated whether

multi-trait gain was associated with specific traits and

derived the fold enrichment for traits between the top

10% yielding sets (corresponding with >169 new associ-

ated loci by JASS) and the least 10% yielding sets. BMI

and hip circumference were amongst the top traits (Figure

S19). Notably, we found that high yielding trait sets (i.e.,

those that yielded R169 new association regions by

JASS) all contained BMI. In contrast, of the remaining trait

sets, only 9% of the trait sets contained BMI. Other traits

enriched in top sets included spirometry and to a lesser

extend mental disorders, arterial pressure, and sleep pat-

terns. BMI genetics is increasingly recognized to be a com-

plex entanglement of metabolic and behavioral factors,25

and suggests that complex traits that reflect multiple bio-

logic processes may benefit more from multi-trait analysis.

We additionally compared the multi-trait gain and the

number of new association loci by MTAG across the four

groups of trait sets. The results were rather opposite to

what we observed above with JASS: MTAG gain increased

as the trait sets became more homogeneous (Figure S20A)

(p < 1.4 3 10�7), and the number of new association loci

was greater for trait sets of low heterogeneity than high
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heterogeneity (Figure S20B) (p ¼ 2.7 3 10�6). We then

tested whether MTAG outperforms JASS on homogeneous

trait sets (Figures S20C and S20D) and found that there was

little difference between the two (p ¼ 0.084 for gain and

p ¼ 0.063 for the number of new association loci). We

further tested whether MTAG outperforms JASS on homo-

geneous trait sets of certain clinical groups (Figures S20E

and S20F). JASS significantly outperformed on ‘‘immune

system diseases’’ and ‘‘psychological phenomena’’ (im-

mune system diseases: p ¼ 8.2 3 10�4 for gain and p ¼
6.73 10�7 for the number of new association loci; psycho-

logical phenomena: p ¼ 2.5 3 10�5 for the number of new

association loci). In contrast, MTAG outperformed on

‘‘musculoskeletal and neural physiological phenomena’’

(which contains only one trait set). To demonstrate the

validity of the new association detected by JASS, we con-

ducted a replication analysis using BMI as a case study. In

practice, we tested if we could predict novel associations

observed in a larger study (sample size ¼ 683,365 23)

from multi-trait GWAS applied on the BMI study in the

present analysis (sample size ¼ 339,22426) (Table S1).

Across the 1,776 sets containing BMI, JASS detected

1,167 new associations (after Bonferroni correction, Mate-

rial and methods) of which 537 corresponded with a new

association in the larger BMI GWAS. Eighty-six associa-

tions of the larger GWAS were missed by JASS. Hence,

JASS was able to flag loci with a high recall (0.86, probabil-

ity of new association detected in the larger GWAS to be de-

tected by JASS) but a moderate specificity (0.46, probability

of a detected loci to be associated in the larger GWAS). This

can be explained by the generality of the null hypothesis

used in JASS, which requires only one trait in the set to

be significant (not necessarily BMI). To improve specificity,
4
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Figure 5. Comparison of MTAG with JASS
(A) The number of new association loci found by JASS with respect to the number of new association loci foundMTAG across all the trait
sets. Each dot represents a set of traits. Dot colors represent the number of traits in the set.
(B) Fraction of sets where the number of new association loci detected by JASS was superior to the number of associations detected by
MTAG stratified by the number of traits in the set.
we fitted a logistic regression predicting if a locus would be

associated with BMI in the larger GWAS by combining the

number of sets where the locus was associated by JASS and

the minimum p value across sets (Figure S21). This model

reached an area under the curve of 0.75, an accuracy

0.74, a recall of 46%, and a specificity of 75% when

applying a standard probability threshold of 0.5. Based

on JASS results, we were able to infer a substantial number

of loci associated in a GWAS with twice as many samples as

the one used in the present study.
Discussion

This study investigated the genetic features associated with

the statistical power of multi-trait GWAS. On average, the

power increase relative to the univariate GWAS was sub-

stantial: JASS detected new association loci in 98% of

19,266 sets, with an average of 26 new association loci.

This power increase appears to be highly associated with

the genetic features of trait sets. More specifically, multi-

trait gain tends to be higher for sets with (1) a moderate

mean heritability (mean h2
GWAS), (2) a smaller mean MES,

(3) a larger mean polygenicity, (4) a larger genetic covari-

ance across traits, and (5) a smaller distance between the re-

sidual and genetic covariances. We also found that select-

ing specific traits such as BMI, and more clinically

heterogeneous sets, specifically for the omnibus test, can

strongly outperform approaches that select clinically ho-

mogeneous sets. Finally, we investigated the predictive po-
Hum
wer of a multivariate linear model that could predict trait

sets that most likely benefit from the multi-trait test (me-

dian Pearson’s r ¼ 0.43, p < 1.6 3 10�60), which can be

used to astutely select traits to be tested jointly. Our find-

ings provide an approach that can increase the identifica-

tion of genetic associations using existing GWAS data,

with relevance to traits in which genetic signal is scarce.

We summarize in Figure S22 a guideline for selecting the

best suited methods according to the feature of their data.

A part of our findings—the distance between the residual

and genetic covariances negatively contributed to multi-

trait gain—is opposite to the trend implied by a previous

simulation study.8 This discrepancy is likely due to con-

straints on genetic and residual covariances that were not

considered in the previous simulation (Notes S4 and S5).

With the constraints, the absolute value of the off-diagonal

terms of the residual covariance matrix tends to become

lower when the genetic and environmental correlations

have opposite signs (i.e., a greater distance between the re-

sidual and genetic covariances) than when they have the

same sign (i.e., a smaller distance). The configuration

with the opposite signs can lead to an omnibus null having

a larger overlap with the univariate null, which can result

in a lower multi-trait gain (Notes S4). This new finding

highlights the importance of considering multiple param-

eters in a real data analysis to notice their interplay and un-

ravel it.

Selecting clinically homogeneous traits is the strategy

most commonly used.4,8,24,27–32 In our previous large-scale

analysis,8 a heterogeneous set yielded the largest number
an Genetics and Genomics Advances 5, 100319, July 18, 2024 11
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Figure 6. Comparison between clinical and data-driven trait sampling methods
(A and B) Distribution of the gain and the number of new association loci for trait sets selected by four trait selection strategies from the
validation data. The p values are from the two-sidedWelch’s t test. Differences inmean values in each pair compared in the test (right-left
categories in the order shown on the x axis) are also shown. Note we used a pair of a training data and a validation data to ensure in-
dependence for the test. The numbers under the labels on the x axis indicate the number of trait sets from each strategy. The observed
JASS gain and the number of new association loci are shown on the y axis.
(C and D) The observed gain and number of new association loci detected for trait sets of the ‘‘homogeneous’’ category, visualized per
clinical grouping.
of new association as compared with clinically homoge-

neous sets. In this work, we further showed that a data-

driven strategy is expected to outperform other strategies

based on clinical insights. Such sets might capture highly

pleiotropic signals hard to detect using univariate GWASs

and recommend that investigators compose a heteroge-

neous set or use our predictive model to build a set of traits.

We compared the results from the standard omnibus test

(implemented in JASS) against MTAG, a popular multi-trait

GWAS method.33–36 For the data we used, the omnibus

almost systematically outperformed MTAG, with an over-
12 Human Genetics and Genomics Advances 5, 100319, July 18, 202
all 3-fold increase in the number of loci detected. The dif-

ference was particularly striking in larger trait sets. MTAG is

built on the hypothesis of homogeneous genetic correla-

tion across genetic variants, and therefore is expected to

have maximum power when this assumption is valid.

Indeed, we observed that more homogeneous trait sets

yielded larger MTAG gain than heterogeneous trait sets

(Figures S20A and S20B). Yet, the omnibus generally per-

formed equally well or better than MTAG even on the ho-

mogeneous trait sets (Figures S20C–S20F). In contrast, by

construction, the omnibus test allows for substantial
4



heterogeneity, although at the cost of an increase in the de-

gree of freedom. In line with previous work suggesting that

genetic correlation might be fairly heterogeneous across

the genome,37 this cost seems to be outweighed by the

additional flexibility in capturing heterogeneous multi-

trait genetic patterns8 (Notes S1 and S2). Thus, the

omnibus test is recommended for the general identifica-

tion of variants that impact phenotypes, while MTAG is

suitable for identifying variants associated with specific

traits (Figure S22).

Our study has some limitations. First, we focused on

commonly measured genetic features, but other refined

metrics could be used. These include effect size distribution

as measured by the alpha parameters.38 Second, we consid-

ered GWAS derived from common diseases and anthropo-

metric traits. Future studies might explore performances

using a wider variety of molecular traits, for which GWAS

summary statistics are becoming increasingly available.

Third, the estimation of the features might be also refined.

Here, we used MiXeR15,16 to estimate most features. How-

ever, we observed a dependency of MES and polygenicity

on Neff. Improving these metrics could improve the overall

analysis and interpretations of the results. Fourth, we

focused on European ancestry summary statistics. This de-

cision was motivated by the availability of large GWAS and

using one ancestry for LD; however, by doing so, we

disposed of many traits with which we could have had a

greater variety of genetic features, which might have

improved the performance of the predictive model. This

focus should not lead the reader to think that multi-trait

GWAS is useful only on large sample studies of European

ancestry. We recently updated the JASS pipeline to run a

multi-ancestry multi-trait GWAS, which was able to detect

367 new association loci in non-European cohorts des-

pite their modest sample sizes.24 Future work might

leverage non-European existing39 and upcoming bio-

banks40 to investigate the validity of our results for non-

European ancestries.

In conclusion, this study provides a first overviewofwhat

to expectwhen applyingmulti-trait tests to a variety of data

andhowtomaximizenewdiscoveries. These insights canbe

leveraged to discover genetic variants associated with hu-

man complex traits and diseases missed by univariate anal-

ysis at no cost. Beyondmapping, JASSusedonclinicallyhet-

erogeneous trait sets might offer a way to understand a

shared genetic etiology among unexpected traits41 and

contribute to better understanding of pleiotropy.
Data and code availability

Datasets analyzed during the study are available as listed

below.

Curated GWAS summary statistics: https://jass.pasteur.fr/

and inZenodo (https://doi.org/10.5281/zenodo.10356162).

MeSH Tree Structures: https://meshb-prev.nlm.nih.gov/

search.
Hum
Codes used for the analyses during the study are avail-

able in Gitlab repositories as listed below.

Codes for the curation of GWAS summary statist-

ics: https://gitlab.pasteur.fr/statistical-genetics/jass_suite_

pipeline.

JASS package including the jass predict-gain command:

https://gitlab.pasteur.fr/statistical-genetics/jass.

Codes for the analyses during the study: https://gitlab.

pasteur.fr/statistical-genetics/multitrait_power_traitselection.
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