
HAL Id: pasteur-04611370
https://pasteur.hal.science/pasteur-04611370v1

Preprint submitted on 13 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Fast Identification of Optimal Monotonic Classifiers
Océane Fourquet, Martin Krejca, Carola Doerr, Benno Schwikowski

To cite this version:
Océane Fourquet, Martin Krejca, Carola Doerr, Benno Schwikowski. Fast Identification of Optimal
Monotonic Classifiers. 2023. �pasteur-04611370�

https://pasteur.hal.science/pasteur-04611370v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


, 2023, 1–7

doi:

Fast Identification of Optimal Monotonic Classifiers
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Abstract

Motivation: Monotonic bivariate classifiers can describe simple patterns in high-dimensional data that may

not be discernible using only elementary linear decision boundaries. Such classifiers are relatively simple, easy

to interpret, and do not require large amounts of data to be effective. A challenge is that finding optimal

pairs of features from a vast number of possible pairs tends to be computationally intensive, limiting the

applicability of these classifiers.

Results: We prove a simple mathematical inequality and show how it can be exploited for the faster identi-

fication of optimal feature combinations. Our empirical results suggest speedups of 10x–20x, relative to the

previous, näıve, approach in applications. This result thus greatly extends the range of possible applications

for bivariate monotonic classifiers. In addition, we provide the first open-source code to identify optimal

monotonic bivariate classifiers.

Availability: https://gitlab.pasteur.fr/ofourque/mem_python.

Contact: benno.schwikowski@pasteur.fr
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1. Introduction1

The use of high-throughput RNA sequencing and new compu-2

tational methods to interpret the data collected have greatly3

enhanced the ability to diagnose and classify diseases, including4

cancer. A significant challenge in this area is the large number of5

data dimensions compared to the small number of samples, which6

can be addressed through the use of feature selection methods7

(Hastie et al. (2001)). These methods filter features as part of the8

process or in a dedicated preprocessing step, based on character-9

istics or statistical tests. While these feature selection methods10

can be effective, the resulting models are often either too simple11

to accurately describe the underlying biology, or too complex and12

difficult for biomedical researchers to interpret in the context of13

existing knowledge.14

One approach to improving interpretability is the use of bi-15

variate models that only involve pairs of features. These models16

are more complex than univariate models but still work with rel-17

atively little data and allow for the graphical representation and18

analysis of the models and data in two dimensions. An example of19

this is the top-scoring pairs (TSP) classifier (Geman et al. (2004)),20

which is based on pairs of genes whose expression significantly dif- 21

fers between two classes. TSP can be used with both linear models 22

and more general monotonic modelsCano et al. (2019). However, 23

in cases of many possible features, identifying the best bivariate 24

model can be computationally expensive due to the need to test 25

many possible feature pairs. 26

In this paper, we present a mathematical property for bivariate 27

monotonic classifiers (Nikolayeva et al., 2018) that can be used 28

to significantly speed up the identification of optimal monotonic 29

feature pairs. We present a proof of the property (Theorem 1), 30

provide an algorithm that takes advantage of it (Algorithm 1), 31

and find that, across three biomedical use cases, the new algorithm 32

speeds the running time up by a factor of 10–20 (Figure 4). Apart 33

from (1) allowing to compute monotonic classification ensembles 34

in much more reasonable time, our result (2) significantly broadens 35

the range of possible applications (by allowing larger data sets as 36

input), and (3) it allows to evaluate the obtained ensemble by 37

statistical means. 38
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2. System and Methods39

Our mathematical inequality (Theorem 1) as well as the algorithm40

exploiting it (Algorithm 1) work for the task of binary, bivariate41

classification via monotonic models, as introduced by Nikolayeva42

et al. (2018). In this setting, we are given binary labeled data43

and aim to correctly predict the label of new data by constructing44

an ensemble classifier (or ensemble for short) from a set of gene45

pair classifiers, each of which operates on a combination of two46

features. The specific classifiers separate the data using bivariate,47

monotonic functions, which is why we call them pair classifiers (or48

just classifiers for short). The ensemble is constructed by selecting49

a good subset of pair classifiers, based on their prediction errors.50

In the following, we describe this classification setting (Sec-51

tion 2.1), focusing on the pair classifiers (Section 2.2), their52

prediction error (Section 2.3), as well as a mathematical inequality53

(Theorem 1) that relates this computationally expensive error to54

a computationally cheaper one (Section 2.4). Theorem 1 forms the55

basis of our algorithm (Section 3).56

2.1. Overview of the Classification Setting57

In the setting of Nikolayeva et al. (2018), we are given binary-58

labeled disease data of m ∈ N≥1 pairs of gene expressions (the59

gene pairs) for n ∈ N≥1 patients, with labels in {0, 1}. For each60

gene pair, a (pair) classifier (Section 2.2) is constructed optimally,61

using the data for all n patients. The ensemble is a subset of62

k∗ ∈ N≥1 classifiers, and the predicted label of the model is the63

majority of the labels of the k∗ classifiers.1 The choice of which64

classifiers to select is determined via leave-one-out cross-validation65

(LOOCV) over all n patients, called the classifier’s LOOCV error66

(LOOCVE) (Section 2.3). In addition, this selection is given a67

bound k ∈ N≥1 with k ≤ m of how many classifiers to choose at68

most.69

Existing Limitations of the Established Approach70

Evaluating the LOOCVE of each classifier is very expensive, as it71

requires to build a new classifier for each patient left out. How-72

ever, as we show in Theorem 1, the regression error (RE) of a73

classifiers, which can be computed without building new classi-74

fiers (Section 2.4), is a lower bound for a classifier’s LOOCVE.75

This observation drastically reduces the number of candidate clas-76

sifiers for which the LOOCVE needs to be computed, while still77

guaranteeing that the ensemble construction selects among the78

best possible classifiers.79

Cost Reduction via Regression Error80

We highlight the cost that is saved when utilizing the RE as a lower81

bound for a classifier’s LOOCVE. To this end, we count the num-82

ber of classifiers for which the LOOCVE needs to be computed,83

as this is by far the most expensive operation in this setting.84

The approach of Nikolayeva et al. (2018) of computing the85

LOOCVE of all m gene pairs has an overall cost of mn, as, for86

each gene pair, each of the n patients need to be left out in turn.87

In contrast, when utilizing the RE, the expensive LOOCV only88

needs to be carried out for a subset of ℓ ≤ m gene pairs. This89

results in an overall cost of ℓn + m, where the mterm accounts90

for the evaluation of the RE. If ℓ ≪ m, then the overall cost of91

this new approach is far lower than that of the previous one. In92

1 In the case of a tie, the label is chosen to be 1.
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Figure 1: Example of a monotonic pair classifier (Section 2.2), a

function f that is monotonic in both features and that separates

the area into a red class (top right) and a blue class (bottom left).

Section 4, we show that this is actually typically the case with 93

real-world data. 94

2.2. Monotonic Classification and Pair Classifiers 95

Given a set of points {(xi, yi)}ni=1 =: S ⊂ R2, a monotonically 96

increasing classifier (in x and in y) is any function f : R2 → {0, 1} 97

such that, for all i, j ∈ [1, n] ∩ N: xi ≤ xj and yi ≤ yj =⇒ 98

f(xi, yi) ≤ f(xj , yj). We call any function that is a monotonically 99

increasing in x or −x, and in y or −y a monotonic pair classifier, 100

and visualize the two classes 0 and 1 using colors; see Figure 1 for 101

an example. 102

We are interested in classifiers f that minimize the regression 103

error (RE) of S with respect to its labels (vi)ni=1 ∈ {0, 1}n, 104

i.e.
∑n

i=1 |f(xi, yi) − vi|. Since an RE-minimal f might not be 105

unique, we follow the approach of Nikolayeva et al. (2018) and 106

define an optimal classifier as one that classifies the most points 107

in R2 as 1. Formally, an RE-minimal classifier f∗ is optimal if and 108

only if, for all RE-minimal monotonic classifiers f and all x ∈ R2, 109

it holds that f∗(x) ≥ f(x) (see also Figure 2). 110

An RE-minimal monotonically increasing pair classifier for n 111

points can be efficiently computed via dynamic programming (DP) 112

in time Θ(n log2 n) (Stout (2013)). Since this algorithm only 113

constructs monotonically increasing classifiers, we compute four 114

different RE-minimal classifiers for each gene pair—one for each 115

possible orientation of each of the two axes. In the end, we choose 116

an RE-minimal classifier among these four options. 117

2.3. LOOCV Error of a Pair Classifier 118

Nikolayeva et al. (2018) estimate prediction errors of pair clas- 119

sifier from a data set {xi}ni=1 =: S ⊂ R2 of gene expression 120

measurements for n patients, with labels (vi)ni=1 ∈ {0, 1}n using 121

leave-one-out cross-validation (LOOCV). For a given pair of genes, 122

for each i ∈ [1, n] ∩N, they construct the optimal pair classifier f 123

for S \ {xi} and compute the prediction error |f(xi) − vi| =: εi. 124

They use the LOOCV error of the optimal monotonic classi- 125

fier for S as LOOCV E =
∑n

i=1 εi to estimate the predictive 126

performance of the classifier on new data. 127
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Figure 2: An optimal pair classifier (Section 2.2) for the shown

point set. Blue triangles are labeled 0, red points are labeled 1.

The background color (blue in the lower left area, red in the upper

right) corresponds to the predicted labels of the classifier. The

regression error (RE) (Section 2.4) of this model is 1, as exactly

one red point is inside the blue area and no blue triangle falls in

the red area. The red area cannot be increased any further without

increasing the RE, hence this classifier is optimal.

2.4. Regression Error of a Pair Classifier and Relation to its128

LOOCV Error129

The regression error (RE) of a classifier C trained on a set of data130

points S ⊂ R2 with labels (vx)x∈S is the number of misclassified131

points of C, that is, the cardinality of {x ∈ S | C(x) ̸= vx}132

(Figure 2).133

We prove in Theorem 1 that the RE is a lower bound for the134

LOOCVE. Theorem 1 shows that any point x ∈ R2 that is cor-135

rectly predicted by a classifier constructed over a set of n−1 points136

is also correctly predicted by a classifier constructed over the same137

n− 1 points and x.138

In order to state the theorem and its proof concisely, we intro-139

duce some notation. Let S ⊂ R2 be a set of data points. For all140

U ⊆ S, let C(U) denote the set of all classifiers over U . Further, for141

all U, V ⊆ S and all C ∈ C(U), let MC(C, V ) denote the number142

of misclassified points among V according to C, that is, its RE.143

Theorem 1 Let S ⊂ R2, and let x ∈ S. Further, let CS ∈ C(S)144

and CS\{x} ∈ C(S \ {x}), and assume that x ∈ S is correctly145

classified by CS\{x}. Then MC(CS , S) = MC(CS , S \ {x}).146

Proof We show the equation to prove via the following two cases.147

Case MC(CS, S) ≥ MC(CS, S \ {x}).148

This inequality holds because eliminating a data point evaluated149

by CS only keeps or reduces the number of misclassified points.150

Case MC(CS, S) ≤ MC(CS, S \ {x}).151

Since CS\{x} is optimal (with respect to its RE) for classifying152

S \ {x}, it holds that MC(CS , S \ {x}) ≥ MC(CS\{x}, S \ {x}).153

Since x is correctly classified by CS\{x} by assumption, it holds154

that MC(CS\{x}, S \ {x}) ≥ MC(CS\{x}, S). Moreover, as CS155

is optimal for classifying S, it holds that MC(CS\{x}, S) ≥156

MC(CS , S). By transitivity, this case follows.157

Conclusion. Combining both cases concludes the proof. □158

3. Algorithm 159

Our algorithm (Algorithm 1) identifies a set of optimal pair 160

classifiers (Section 2.2) for the setting of monotonic, bivariate 161

classification (Section 2.1). The algorithm exploits the connection 162

between the RE and the LOOCVE of a classifier provided by The- 163

orem 1. Given an integer k, Algorithm 1 returns a set of classifiers 164

that contain at least k pairwise disjoint gene pairs. Further, the 165

classifiers that are returned have the lowest LOOCVE out of all 166

classifiers for the set of provided gene pairs.2 In order to reduce 167

the expensive LOOCV computation, the main idea is to deter- 168

mine and maintain an RE threshold t, which allows to eliminate 169

the pairs based on their RE instead of their LOOCVE. On a high 170

level, the algorithm operates in three steps: 171

1. Evaluate the RE of all classifiers for all gene pairs and sort 172

them with respect to increasing RE (lines 1 to 6). 173

2. Evaluate the LOOCVE of the classifiers with the lowest RE 174

until the output contains at least k disjoint gene pairs while 175

also determining an RE threshold (lines 7 to 22). 176

3. Evaluate the LOOCVE of the remaining classifiers, adding 177

better ones to the output, and update t (lines 23 to 41). 178

For step 1, we note that ties in the RE of different classifiers are 179

broken arbitrarily (e.g. using lexicographic or random ordering). 180

Step 2 chooses the RE threshold t as the maximum LOOCVE 181

among all the classifiers that are evaluated, which are stored in a 182

search tree T . In this step, we also store the number of disjoint gene 183

pairs among the evaluated classifiers in the variable d. With each 184

new classifier C that is evaluated, we iterate over all gene pairs 185

of classifiers in T . If the genes of C do not appear in any existing 186

pair, we increase d by 1, as we found a new pair. Otherwise, we 187

proceed with the next iteration. 188

In step 3, the remaining classifiers are considered in order of 189

their RE. Due to Theorem 1, if a classifier has an RE that is larger 190

than the current threshold t, its LOOCVE is also at least as bad. 191

As the classifiers are sorted by their RE, we immediately skip the 192

evaluation of any further classifiers. Otherwise, we evaluate the 193

LOOCV of the classifier. During this evaluation, since we have 194

a threshold t, if we see that the LOOCVE is worse than t, we 195

stop evaluating the LOOCVE further. If the LOOCVE is worse 196

than t, we ignore the classifier. Otherwise, we add it to T . As T is 197

increased, it might be the case that we can remove classifiers that 198

are too bad right now, recalling that we either keep or eliminate 199

all classifiers of the same LOOCVE. To this end, we check whether 200

if we remove all classifiers with the worst LOOCVE (which is t), 201

we still have at least k disjoint gene pairs. We check this in the 202

same way as in step 2. If this is the case, we remove all classifiers 203

with a LOOCVE of t, and we update t to the new worst LOOCVE 204

among all the classifiers that we still keep. 205

At the very end of Algorithm 1, we return all of the classifiers 206

that we kept. 207

Note that, after a run of Algorithm 1, the classifiers are 208

partitioned into three types: those that are eliminated without 209

computing their LOOCVE, those for which the LOOCVE is (if 210

possible, partially) computed but that are not selected in the out- 211

put, and the classifiers for which the LOOCVE is computed and 212

that are part of the output (Figure 3). 213

2 In case of ties, all classifiers with the same LOOCVE are kept,
which means that the output can have a larger size than k.
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4 Fourquet et al.

Algorithm 1 The identification of optimal pair classifiers as de-

scribed in Section 3. Let m ∈ N≥1 be the number of gene pairs,

n ∈ N≥1 the number of patients, and let S := {Si}mi=1 be the

gene pairs with their respective labels {Vi}mi=1 such that, for all

i ∈ [1,m]∩N, it holds that Si ∈ (R2)n and Vi ∈ {0, 1}n. Further,

let k ∈ N≥1 with k ≤ m be given. The algorithm returns a set of

pair classifiers with the lowest LOOCVE among S containing at

least k disjoint gene pairs, if possible.

1: Q← empty max-priority queue

2: for all i ∈ [1,m] ∩N do

3: C ← optimal pair classifier for Si with labels Vi

4: e← RE of C (Section 2.4)

5: add (Si, C) to Q with key e

6: end for

7: T ← empty search tree

8: d← 0

9: t← −∞
10: (S,C)← maximum of Q

11: while Q not empty and d < k do

12: remove (S,C) from Q

13: q ← LOOCVE of C (Section 2.3)

14: if q > t then

15: t← q

16: end if

17: if genes of S are disjoint from all genes in T then

18: d← d + 1

19: end if

20: add S to T with key q

21: (S,C)← maximum of Q

22: end while

23: e← maximum key in Q

24: (S,C)← maximum of Q

25: while Q is not empty do

26: remove (S,C) from Q

27: if e > t then

28: break the loop

29: end if

30: q ← LOOCVE of C, aborting the evaluation if the

LOOCVE gets larger than t

31: if q ≤ t then

32: add S to T with key q

33: T ′ ← T without the elements with key t

34: if T ′ contains at least k disjoint gene pairs then

35: T ← T ′

36: t← maximum key in T

37: end if

38: end if

39: e← maximum key in Q

40: (S,C)← maximum of Q

41: end while

42: return the pair classifiers of T

4. Implementation214

We evaluate empirically by how much Algorithm 1 reduces the215

number of LOOCVE computations (Section 2.3) for real-world216

data sets.217

Our code is available online at https://gitlab.pasteur.fr/218

ofourque/mem_python.219
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Figure 3: The reduction of LOOCVE evaluations using Al-

gorithm 1 on the dengue severity classification problem (Sec-

tion 4.1.1). Each point represents a set of potentially many pair

classifiers with the RE and LOOCVE corresponding to the coordi-

nates. The graphs along both axes represent the densities (PDFs)

of the pair classifiers; the PDF at the bottom over the whole data

set, the PDF on the left only over the pair classifiers that are

evaluated (about 5 % of the overall data.). The vertical dashed

line represents the cutoff at which no further LOOCVE evalua-

tions were necessary. The horizontal dashed line shows the cutoff

at which no further classifiers were selected among those whose

LOOCVE was computed. Note that the update of the RE thresh-

old t is not shown. See Figure 5 for an illustrated example.

In the following, we discuss the data sets that we use for our 220

experiments (Section 4.1) and the experiment setup and our results 221

(Section 4.2). 222

4.1. Data Sets 223

We evaluate Algorithm 1 on three real-world data sets, each con- 224

taining gene expression data and binary labels from published 225

studies. Each data set is from another disease. For each data set, 226

we report the number of transcripts that we use for the experi- 227

ments. Given x transcripts, this results in
(x
2

)
different gene pairs, 228

which is the input for Algorithm 1. For each data set, we also elim- 229

inate transcripts with a low variance, in order to have a reasonable 230

input size and to focus on more interesting transcripts. 231

4.1.1. Dengue Data Set 232

This data set comes from the study by Nikolayeva et al. (2018), 233

determining a blood RNA signature detecting a severe form of 234

dengue in young diseased patients. The set contains data of 42 pa- 235

tients, out of which 15 developed a severe form (label 1) of dengue 236

and 27 a non-severe form (label 0). We follow the same filtering as 237

in the study, which means that we eliminate the transcripts with a 238

variance lower than 0.7. After this filtering, the data set comprises 239

2 653 transcripts. 240
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4.1.2. Leukemia Data Set241

This data set comes from the study by Golub et al. (1999), show-242

ing how new cases of cancer can be classified by gene expression,243

providing a general approach for identifying new cancer classes244

and assigning tumors to known classes. This data was used to245

classify patients with acute myeloid leukemia (label 1 ) and acute246

lymphoblastic leukemia (label 0). It is composed of two sub-data-247

sets: the initial (training, 38 samples) and independent (test, 34248

samples) data sets. We aggregate these two data sets into one,249

comprising 7 129 features for 72 samples. We filter the data set such250

that we only keep the 25 % of the features with highest variance,251

resulting in 1 783 remaining transcripts.252

4.1.3. Bladder Cancer Data Set253

This data set comes from the study by Urquidi et al. (2012), aiming254

to profile and differentiate tumoral urothelia samples from normal255

ones. This data set has been retrieved from CuMiDa (Feltes et al.,256

2019) and refers to GSE31189. It comprises 37 healthy samples257

(label 0) and 48 tumor samples (label 1). After only keeping the258

25 % of the features with highest variances, we are left with 2 734259

transcripts remaining.260

4.2. Performance Evaluation261

We investigate for how many classifiers Algorithm 1 does not com-262

pute the LOOCVE and for how many it only partially computes263

it. To this end, we run Algorithm 1 independently on each of the264

three data sets from Section 4.1 for various values of k, ranging265

from 5 to 285 in steps of 20. For the case of k = 85, we also log266

the RE threshold t in each iteration of step 3 of the algorithm267

(Section 3) in order to see how quickly it reduces.268

We focus on two different aspects of our results. In Sec-269

tion 4.2.2, we discuss how the RE threshold of Algorithm 1 changes270

over time. In Section 4.2.1, we discuss how many LOOCVE271

computations Algorithm 1 saves.272

4.2.1. Varying k of Algorithm 1273

Figure 4 shows the percentage of classifiers for which Algorithm 1274

does not compute the LOOCVE. This reduction is massive in275

all cases, reducing at least 80 % of the classifiers in the process.276

Since the running time of Algorithm 1 is mainly impacted by the277

LOOCVE calculations, this leads to heavily reduced running times278

compared to the naive approach of evaluating the LOOCV of all279

classifiers.280

Not surprising, Figure 4 shows that, as k increases, fewer clas-281

sifiers get eliminated, as the output size of Algorithm 1 is larger,282

hence requiring more classifiers to be fully evaluated via LOOCV.283

More interestingly is that the percentage reduces in steps. For ex-284

ample, for the dengue data set, except for the case k = 5, multiple285

values of k share the same amount of eliminated classifiers. This286

is the case because if Algorithm 1 contains a classifier, it contains287

all classifiers with the same LOOCVE. In order to guarantee this288

property, it evaluates the LOOCVE of all classifiers that share the289

same RE. Using the language of Figures 3 and 5, this means that290

the LOOCVE of an entire column of points is either (partially)291

computed or not at all. This leads to cases where increasing k292

does not result in evaluating an entirely new column, explaining293

the repeating numbers in Figure 4.294

Among the different data sets, we see that Algorithm 1 elimi-295

nates the most classifiers for the leukemia data set while keeping296

0 20 40 60 80 100
Minimum number k of disjoint pair classifiers

90

92

94

96

98

100

%
 o

f p
ai

r c
la

ss
ifi

er
s w

ith
ou

t L
OO

CV
E 

ev
al

ua
tio

n Dengue
Leukemia
Bladder

Figure 4: The percentage of pair classifiers whose LOOCVE is not

evaluated after running Algorithm 1 with the specified value of k

(on the x-axis) and the specified data set (the different curves;

see also Section 4.1). With increasing k, the LOOCVE of more

classifiers is evaluated. For typical values of k, at least 90 % of all

possible pair classifiers are not evaluated, resulting in speedups of

10–20. The light blue points in the upper right of Figures 3 and 5

represent the pair classifiers without LOOCV evaluation in the

dengue classification problem with k = 85.

the most for the bladder cancer data set. A larger amount of elim- 297

inated classifiers relates to more different RE values and/or the 298

RE being close to the actual LOOCVE. In any case, for the same 299

value of k, the order among the different data sets remains the 300

same, suggesting that running Algorithm 1 with small values of k 301

provides a good estimate of how many classifiers are eliminated 302

for larger values of k. 303

4.2.2. Update of the RE Threshold Inside of Algorithm 1 304

Figure 5 shows the impact of updating the threshold t of Algo- 305

rithm 1. Initially, t is very high and does not allow to eliminate 306

pairs according to their regression error. This follows from there 307

being no classifiers right to the vertical red, dashed line in the 308

leftmost plot. This bad initial value follows from the RE error not 309

always being a very good estimate for the LOOCVE. Recall that 310

Algorithm 1 iterates over the classifiers in order of increasing RE, 311

which means from left to right in the figures. Hence, the columns 312

of points are evaluated from left to right. Step 2 of the algorithm 313

stops once the output contains at least k = 85 disjoint gene pairs, 314

which is not a small number. This means that a large number of 315

classifiers need to be evaluated first. Additional significant time 316

can be saved by lowering this initial value of t during the evalua- 317

tion process. More precisely, from the first update onwards—that 318

already occurs after the first iteration in step 3—the threshold t 319

drastically decreases (second plot from the left), resulting in the 320

elimination of most of the classifiers, as visible with the density 321

functions in Figure 5. This is the case as more columns are evalu- 322

ated, many of which contain classifiers with far better LOOCVE 323

than the previously evaluated ones. 324

In the following iterations, the threshold is lowered again (not 325

always in each iteration tough), leading to a final elimination of 326
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Figure 5: Successive updates of the threshold t of Algorithm 1 in step 3 (lines 23–41). We ran the algorithm with k = 85 on the dengue

data set (Section 4.1.1). The series of panels at the bottom show the different values of t in the course of step 3. With decreasing t, the

number of pair classifiers for which the LOOCVE (Section 2.3) does not need to be computed (light blue area on the right), increases.

about 94 % of the classifiers for which the LOOCVE does not need327

to be calculated.328

5. Discussion329

In this paper, we present a preprocessing method for the fast330

computation of optimal binary monotonic pair classifiers (Sec-331

tion 2). We prove that the regression error (RE) of a classifier332

is a lower bound for its leave-one-out cross-validation (LOOCV)333

error (Theorem 1). We provide an algorithm that uses the RE334

in a straightforward way as a lower bound for the identifica-335

tion of good pair classifiers. On biological data sets, we find336

that this approach typically avoids the calculation of LOOCV for337

90 % or more of the possible pair classifiers that are evaluated338

in the näıve approach, corresponding to speedups of at least 10–339

20. The open-source implementation we provide with this paper340

(https://gitlab.pasteur.fr/ofourque/mem_python) implements341

this speedup.342

We see impacts of the resulting drastic speedup in at least three343

areas. First, when the genes underlying a monotonic pair classi-344

fier are selected from a large number of possible gene pairs, as in345

Nikolayeva et al. (2018), it it usually interesting to statistically as-346

sess the performance of the resulting classifier. As straightforward347

approaches to this typically require an order of magnitude more348

calculations, the speedup presented here brings the computation349

of p-values from the infeasible to the practical in many cases.350

Second, the speedup also facilitates the use of more ambitious351

types of models. One example would be the use of monotonic pair352

models for classification with more than two classes. A straight-353

forward approach to this problem could be based on binary pair354

classifiers that distinguish one class against all others. Since each355

class would have to be treated separately, the speedup we re-356

port here may be critical for the practical feasibility of such an357

approach.358

Finally, and importantly, the number of possible feature pairs359

scales quadratically with the number of data dimensions. The360

speedup enabled through our work thus also enables the use of361

monotonic pair classifiers for cases of higher data dimensionality,362

and ensures that this type of highly interpretable machine learning 363

model will also remain practically applicable in potentially even 364

more data-rich future biological applications. 365
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