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Abstract 
 

In the last few decades, several mosquito-borne arboviruses of zoonotic origin have 

established large-scale epidemic transmission cycles in the human population. It is often 

considered that arbovirus emergence is driven by adaptive evolution, such as virus adaptation 

for transmission by ‘domestic’ mosquito vector species that live in close association with 

humans. Here, I argue that although arbovirus adaptation to domestic mosquito vectors has 

been observed for several emerging arboviruses, it was generally not directly responsible for 

their initial emergence. Secondary adaptation to domestic mosquitoes often amplified epidemic 

transmission, however this was more likely a consequence than a cause of arbovirus 

emergence. Considering that emerging arboviruses are generally ‘pre-adapted’ for 

transmission by domestic mosquito vectors may help to enhance preparedness towards future 

arbovirus emergence events.  
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Introduction 
 

The COVID-19 pandemic and the current outbreak of monkeypox virus are just the two most 

recent examples of emerging infectious diseases caused by zoonotic viruses introduced into 

the human population. Because humans are new hosts for these viruses, emergence is often 

associated with viral adaptation to human cell receptors and/or human-to-human transmission. 

This was the case for Ebola virus, which increased its infectivity for human cells, while reducing 

tropism for bat cells, during the 2013-2016 epidemic in West Africa [1]. The repeated 

emergence of more transmissible SARS-CoV-2 variants also represents evidence of its 

ongoing adaptation to human hosts [2]. However, viral adaptation to humans often does not 

appear to be necessary for the initial host jump. For instance, efforts to identify early adaptive 

mutations associated with higher human-to-human transmissibility of SARS-CoV-2 failed to 

identify obvious candidates [3]. Evolutionary analyses suggest that both efficient human-to-

human transmission and human cell receptor usage were already present in ancestral bat-

associated SARS-CoV-2 lineages [4]. In fact, SARS-CoV-2-like strains circulating in cave bats 

of northern Laos already have the potential to infect humans [5]. Likewise, hemorrhagic fever-

causing arteriviruses circulating in wild non-human primates do not require major adaptations 

to replicate in human cells [6]. 

 

Here, I retrospectively examine the emergence of several mosquito-borne viruses in the last 

few decades to assess the extent to which viral adaptation to a new mosquito vector species 

was required for successful emergence in humans. The emergence of arthropod-borne viruses 

(arboviruses) is typically initiated by a spillover event that allows a virus to switch from a wildlife 

(enzootic) transmission cycle to a human (epidemic) transmission cycle. In the enzootic cycle 

(also referred to as the sylvatic cycle), the arbovirus is transmitted by wildlife-biting mosquito 

species, whereas in the human transmission cycle it is transmitted by human-biting mosquito 

species. This emergence scenario has been well described for yellow fever, dengue, 

chikungunya, and Zika viruses [7-9]. Worldwide, the two main vectors of these arboviruses are 

Aedes aegypti and Aedes albopictus, two ‘domestic’ mosquito species that thrive in human-

dominated environments [10]. In addition, mosquitoes in the Culex pipiens complex have been 

involved in the emergence of West Nile virus in North America [11,12]. The initial arbovirus 

spillover event can be facilitated by ‘bridge vectors’ that bite both wild animals and humans 

[11-14]. 

 

Nearly all arboviruses are RNA viruses with a high evolutionary potential owing to their high 

mutation frequency and fast replication rate. However, the obligate host alternation of 

arboviruses is predicted to result in a fitness trade-off, whereby optimal replication in one host 
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involves a fitness cost in the other host [15]. Accordingly, arbovirus emergence via a change 

in host range should be less frequent than that of single-host RNA viruses. This fitness trade-

off hypothesis has been supported by some studies [16], but not others [15].  In fact, adaptive 

evolution is generally considered a main driver of mosquito-borne virus emergence [15,17,18]. 

Virus adaptation to alternative mosquito vector species has often been put forward as a major 

factor underlying the emergence of arboviruses. For instance, emergence of a Venezuelan 

equine encephalitis virus genotype that caused an equine outbreak in Mexico in the 1990s was 

associated with a single amino-acid substitution in the envelope glycoprotein, which increased 

infectiousness to the mosquito vector Ochlerotatus taeniorhynchus [19]. In this opinion piece, 

I argue that adaptation to domestic vector species was typically not required for initial 

emergence of the most medically significant mosquito-borne viruses, although it often occurred 

secondarily during prolonged virus circulation in the human transmission cycle. 

 

What is the evidence for arbovirus adaptation to domestic mosquitoes? 
 
Yellow fever virus is a mosquito-borne flavivirus causing a hemorrhagic fever with a case-

fatality rate up to 50%. It was responsible for devastating disease outbreaks in port cities 

around the world from the 17th to the early 20th century [20]. Despite an effective vaccine 

developed in the 1930s, yellow fever virus still represents a significant public health threat 

because it has been increasingly re-emerging in the last few decades [20,21]. Yellow fever 

virus is maintained in a enzootic transmission cycle between non-human primates and sylvatic 

mosquitoes in jungles of Africa and South America [22]. The virus causes sporadic outbreaks 

when it is introduced into the human population, sometimes via an intermediate transmission 

cycle that bridges the sylvatic and human transmission cycles [22]. Sustained transmission of 

yellow fever virus in the human population is typically mediated by the domestic mosquito Ae. 

aegypti, whereas sylvatic transmission involves various mosquito species from the genus 

Aedes in Africa and from the genera Haemagogus and Sabethes in South America [7]. 

Although a formal investigation remains to be conducted, there is no indication in the current 

literature that emergence of yellow fever virus in humans was associated with adaptation for 

transmission by Ae. aegypti [23]. For example, two Brazilian strains of yellow fever virus, one 

isolated from a human and one isolated from a monkey, were experimentally transmitted at 

similar rates by Brazilian Ae. aegypti, Haemagogus leucocelaenus and Sabethes albiprivus 

[24]. The difficulty to rear the sylvatic vectors of yellow fever virus in the laboratory has been a 

major limitation to carry out such studies. 

 
Dengue viruses also belong to the Flavivirus genus and are the most prevalent mosquito-

borne viruses of humans – they cause disease in hundreds of millions of people each year 
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[25]. Four genetic types of dengue viruses evolved from sylvatic progenitors in the last 

hundreds of years and now circulate endemically in the human population throughout the 

tropics and sub-tropics [26,27]. Their worldwide emergence since the 18th century has been 

linked to the geographical expansion of their main mosquito vector, Ae. aegypti [28]. Initial 

dengue virus emergence in the human population required vector switching from arboreal 

mosquito species, such as Aedes niveus in Southeast Asia [8], to the domestic species Ae. 

aegypti and, to a lesser extent, Ae. albopictus [29]. Whether this original vector switching was 

associated with adaptive evolution has been debated but no conclusive evidence has been 

provided so far. One experimental study based on artificial blood meals found that three 

sylvatic dengue virus strains were less infectious to contemporaneous Ae. aegypti and Ae. 

albopictus mosquitoes than two human strains, supporting the idea that the latter were more 

adapted for transmission by domestic vectors [30]. However this result was not confirmed when 

an expanded repertoire of virus strains was included [15], and subsequent studies did not 

support the hypothesis that dengue virus emergence in humans from sylvatic progenitors 

required adaptation to domestic vectors [31,32]. Likewise, surrogate human models did not 

provide any evidence that ancestral sylvatic strains may have required adaptation to replicate 

more efficiently in humans [33]. Together, these experimental results are consistent with the 

lack of phylogenetic signature of host-specific adaptations between sylvatic and human strains 

[26]. On the other hand, dengue virus adaptation for enhanced transmission by Ae. aegypti is 

thought to have occurred continuously after the human transmission cycle was established. 

Indeed, a large body of literature supports the idea that vector-mediated selection plays a role 

in dengue virus lineage turnover and clade replacements [34-41]. Enhanced transmission of 

dengue virus by Ae. albopictus was also observed after 10 passages of experimental evolution 

in vivo [42]. This is in line with other studies showing that artificially bypassing one host 

increases arbovirus fitness in the other host [15]. 

 

West Nile virus is a flavivirus transmitted by Culex mosquitoes, which was responsible of one 

of the best studied arboviral emergence events after its 1999 introduction in New York and 

subsequent spread across North America. West Nile virus primarily infects avian hosts but it 

can cause disease in humans, who are dead-end hosts because they do not support onwards 

transmission. With the exception of one positively selected mutation encoding increased 

viremia in American crows [43], very little adaptive evolution has been observed during West 

Nile virus emergence in North America [44]. Evidence consistent with adaptation to human-

biting mosquitoes was reported in two studies that found more rapid transmission of a newly 

arising West Nile virus lineage, which had displaced the ancestral lineage originally introduced 

in New York in 1999 [45,46]. These two studies found that the new lineage had a shorter 

extrinsic incubation period in Culex pipiens and Culex tarsalis mosquitoes, however this result 
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was not confirmed by another study in Cx. tarsalis [47]. Evidence for adaptive evolution was 

also reported in a more recent lineage that showed increased transmissibility and increased 

prevalence in New York state [48]. Overall, the rapid establishment and spread of West Nile 

virus following its introduction into the New World is more consistent with ‘pre-adaptation’ to 

North American vectors [15].  

 

Chikungunya virus is an alphavirus that caused millions of cases of severe and often chronic 

arthralgia during human outbreaks in the last two decades. Chikungunya virus originates from 

Africa where it is maintained in a enzootic cycle involving several species of arboreal mosquito 

vectors and diverse non-human primates and possibly other vertebrate hosts [49]. The best 

documented chikungunya emergence events occurred in 2005-2006 on islands of the Indian 

Ocean and in 2014-2015 after introduction of the virus into the Americas [50]. Disease 

outbreaks resulted from the establishment of a human transmission cycle involving Ae. aegypti 

and sometimes Ae. albopictus [49]. The Indian Ocean outbreaks were associated with the rise 

of a single mutation in the envelope glycoprotein of the virus (E1-A226V) that enhances 

transmission by Ae. albopictus, but not by Ae. aegypti [51,52]. The E1-A226V substitution 

confers a clear selective advantage in places where Ae. albopictus is the predominant vector 

species. The emergence of this mutation was replicated under laboratory conditions [53] and 

has become a textbook example of arbovirus adaptation to an alternative mosquito vector 

species. However, the adaptive nature of the E1-A226V substitution is constrained by epistatic 

interactions that depend on the viral genetic background [54,55]. There is also ample evidence 

that chikungunya virus emergence in the human population did not require this mutation or 

adaptive evolution in general. Chikungunya virus was first discovered in present-day Tanzania 

during a human outbreak in 1952 [56,57] and subsequently detected in Asia in 1958 during a 

human outbreak in Thailand [58]. In fact, chikungunya virus may have emerged in Asia as early 

as the 18th century [59]. Although E1-A226V was selected convergently on at least four 

separate occasions during the Indian Ocean outbreaks, this adaptive substitution was not 

responsible for the initial emergence because it is absent from early outbreak isolates [60]. In 

addition, the chikungunya virus strain that was introduced into the Caribbean in 2013 lacked 

the E1-A226V mutation, and this mutation has not been detected during the subsequent 

epidemic spread in the Americas. 

 

Zika virus is a mosquito-borne flavivirus that was first isolated from a sentinel monkey in 

Uganda in 1947 [61]. During 60 years after its discovery, it was only associated with less than 

20 documented human cases and considered innocuous. The first recorded human epidemic 

of Zika virus occurred in Yap, Micronesia in 2007, where Aedes hensilli is thought to have been 

the main vector [62]. Zika virus subsequently spread to other islands of the South Pacific and 
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was introduced into Latin America in 2015 [63]. The massive epidemic that followed revealed 

the ability of Zika virus to cause congenital defects and neurological complications and led the 

World Health Organization to consider Zika virus a public health emergency of international 

concern. Zika virus is maintained in an enzootic transmission cycle between non-human 

primates and arboreal Aedes species, whereas transmission in the human cycle is primarily 

mediated by Ae. aegypti [64-66]. The role of adaptive evolution during the spread of Zika virus 

from the Asia-Pacific region to the Americas has been much debated [67-70]. Reverse 

genetics studies identified at least four genetic substitutions that preceded Zika virus spread 

into the South Pacific and the Americas and increased transmission by Ae. aegypti [71,72]. 

However, all four of these substitutions correspond to reversions that restored viral fitness after 

previous fixation of transmission-reducing mutations, possibly due to founder effects [71,73]. 

In other words, ancestral Zika virus strains did possess the nucleotide variants associated with 

high transmissibility by Ae. aegypti and were thus ‘pre-adapted’ for transmission in the human 

cycle. In fact, contemporaneous Zika virus strains currently circulating in the sylvatic cycle are 

more transmissible than epidemic strains that were isolated during the recent outbreaks [74]. 

 

Conclusions 
 

Retrospective examination of the best studied mosquito-borne arboviruses that have emerged 

or re-emerged in the last few decades (yellow fever, dengue, West Nile, chikungunya and Zika 

viruses) indicates that adaptation to domestic mosquito species that act as epidemic vectors 

likely does not represent a major barrier to initial arbovirus emergence. On several occasions, 

arbovirus adaptation to domestic mosquitoes contributed to amplify outbreaks but it was not 

responsible for the initial vector switching. The available evidence is consistent with the idea 

that emerging mosquito-borne arboviruses are generally ‘pre-adapted’ to transmission by 

domestic mosquito vectors. Once the epidemic transmission cycle is established, prolonged 

circulation in the human population provides increased opportunities for the arbovirus to 

acquire mutations that further optimize transmission by domestic mosquitoes (Figure 1). This 

is because the relative strength of natural selection and genetic drift depends on the population 

size [75]. In small populations, stochastic sampling of variants counteracts selection and 

hinders adaptation, whereas in larger populations, competition between virus variants occurs 

with little interference of random processes. Such secondary adaptation for human 

transmission during large-scale epidemic amplification was observed for Ebola virus [1] and 

SARS-CoV-2 [2]. Secondary adaptation after pathogen emergence is epidemiologically 

meaningful and its importance for public health should not be minimized. However, the lack of 

major constraint to cross the species barrier between enzootic and epidemic mosquito vectors 

means that initial arbovirus emergence and maintenance depend primarily on ecological rather 
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than evolutionary processes. Considering that an evolutionary mechanism is not a prerequisite 

to arbovirus emergence emphasizes the value of risk assessment studies based on the survey 

and characterization of arboviruses that are naturally circulating in enzootic transmission 

cycles. Thus, studies on the physiological competence of hosts and vectors, as well as their 

ecological interactions [76], should provide a relevant assessment of the risk of arbovirus 

emergence in the human population. 
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Figure 
 

 
 
Figure 1. Schematic for the emergence of a zoonotic pathogen with secondary 
adaptation for human transmission during epidemic amplification. Introductions from the 

zoonotic transmission cycle are followed by chains of transmission in the human population. 

Daggers indicate no further transmission. Blue circles represent human infections with the 

introduced strain whereas orange circles represent infections with an evolved strain that is 

more adapted for human transmission. Adaptive evolution is more likely to occur during 

epidemic amplification of the introduced strain because of the larger population size. 


