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Endotoxins, also known as lipopolysaccharides (LPS), are
essential components of cell walls of diderm bacteria such as
Escherichia coli. LPS are microbe-associated molecular pat-
terns that can activate pattern recognition receptors. While
trying to investigate the interactions between proteins and host
innate immunity, some studies using recombinant proteins
expressed in E. coli reported interaction and activation of im-
mune cells. Here, we set out to provide information on endo-
toxins that are highly toxic to humans and bind to numerous
molecules, including recombinant proteins. We begin by out-
lining the history of the discovery of endotoxins, their re-
ceptors and the associated signaling pathways that confer
extreme sensitivity to immune cells, acting alone or in synergy
with other microbe-associated molecular patterns. We list the
various places where endotoxins have been found. Addition-
ally, we warn against the risk of data misinterpretation due to
endotoxin contamination in recombinant proteins, which is
difficult to estimate with the Limulus amebocyte lysate assay,
and cannot be completely neutralized (e.g., treatment with
polymyxin B or heating). We further illustrate our point with
examples of recombinant heat-shock proteins and viral pro-
teins from severe acute respiratory syndrome coronavirus 2,
dengue and HIV, for which endotoxin contamination has
eventually been shown to be responsible for the inflammatory
roles previously ascribed. We also critically appraised studies
on recombinant Leptospira proteins regarding their putative
inflammatory roles. Finally, to avoid these issues, we propose
alternatives to express recombinant proteins in nonmicrobial
systems. Microbiologists wishing to undertake innate immu-
nity studies with their favorite pathogens should be aware of
these difficulties.

In 1989, the exact nature of the immune system was reex-
amined by Charles Janeway. He proposed that the self and
nonself model had reached its end and argued that the innate
immune system was the true gatekeeper (1). He also argued
that the innate immune system uses ancient pattern recogni-
tion receptors (PRRs) to recognize a pathogen by its
* For correspondence: Catherine Werts, cwerts@pasteur.fr.
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unchanging characteristics, the pathogen-associated molecular
patterns or the microbial-associated molecular patterns
(MAMPs). As a result, there was no longer any reason to
consider that there was a specific and a nonspecific immunity.
Polly Matzinger, on her side, considered that the immune
system reacts to endogenous danger signals generated by cells
and tissues in response to any sterile or microbial insult, the
so-called “damage-associated molecular patterns” (2). Since
the innate immune system has regained major interest and
many efforts have been devoted to deciphering it. Its study has
focused on the contribution of immune cells such as macro-
phages whose role was reported in the XIXth century by Elie
Metchnikoff (3), and dendritic cells, identified more recently
by Ralph Steinman (4). These cells are responsible for
detecting MAMPs and damage-associated molecular patterns
and initiating the immune response. They are therefore highly
sensitive to these signals. Among those, Gram-negative bac-
terial endotoxins, or lipopolysaccharides (LPS) are the most
potent agonist. Unfortunately, LPS can contaminate many
preparations of molecules whose role in innate immunity has
been under investigations. In this review, we propose to
examine why false results have been published due to endo-
toxin contamination and offer some possible avenues to avoid
perpetuating these errors.

Historical background and current problems

From the discovery of endotoxins to the establishment of their
biological activities

The word “toxin” has been first used in 1888 by Ludwig
Brieger (5), a German physician working in Berlin with Robert
Koch. In 1892, Richard Pfeiffer, a German physician and
bacteriologist, proposed that toxic properties of bacteria were
due to a factor released by lysed bacteria, and coined the term
“endotoxin”. The link between this bacterial product and its
capacity to induce fever in mammals was shown by Nikolai
Gamaleïa, and Sir Marc Armand Ruffer (6–9). In 1894,
Eugenio Centanni, an Italian pathologist, recognized the inti-
mate relationship between the pyrogenic and the toxic prop-
erties of the poison, which he found to be chemically
inseparable, and he named his material “pyrotoxina”. Ironi-
cally, “pyrexin”, the first endogenous pyrogenic factor claimed
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to have been isolated by Valy Menkin in 1944 (6) was finally
recognized to be contaminated by endotoxin (7). It was in
1953, that interleukin-1 (IL-1) was recognized to be the
endogenous pyrogen (8).

In the 1970s, LPS was reported to be a very potent inducer
of inflammatory cytokines (9), those being responsible for the
endotoxinic shock. Indeed, minute amounts of endotoxins can
trigger the release of cytokines by mammalian monocytes and
macrophages. Synergy between LPS and other MAMPs such as
muramyl dipeptide (10) was shown long before the discovery
of their respective PRRs. The identification of toll-like receptor
4 (TLR4) as the endotoxin receptor was achieved by Bruce
Beutler, who was awarded the 2011 Nobel Prize for this dis-
covery. It resulted from the analysis of peculiar mice, C3H/
HeJ, which are insensitive to LPS because of a mutation in the
tlr4 gene (11). In contrast to humans and rabbits, mice and rats
are highly resistant to endotoxin (12). Despite this major dif-
ference, LPS has been widely used in murine models to mimic
sepsis, but no new effective drug has emerged that has clearly
improved patient outcomes (13). Indeed, while large amounts
of LPS do induce a major inflammation in mice, it cannot be
used as a model of sepsis (14). New methods, such as single-
cell RNA-sequencing; single cell analysis and next-generation
sequencing, have allowed to further decipher the immune
and cellular responses of murine and human cells to LPS at the
molecular level (15–17).
Structure and variability of LPSs

The first biochemical characterization of endotoxin was
achieved in 1935 by Lydia Mesrobeanu and André Boivin.
They called it “antigène glucido-lipidique,” before it was
renamed lipopolysaccharide (18). In 1952, Otto Westphal
described the most widely used method to prepare LPS from
Figure 1. Structure of lipopolysaccharides (LPS). Schematic representation o
lipid A (lipidic anchor), the inner and outer cores, and the O-antigen with var

2 J. Biol. Chem. (2024) 300(1) 105506
Gram-negative bacteria by a hot aqueous phenol extraction
(19). Endotoxins make up 75% of the outer membrane, and
there are an estimated 4 million LPS molecules per bacterial
cell. More importantly, despite the use of a common acronym
for this bacterial compound, there is a wide chemical diversity
of LPSs depending on the bacterial origin (20–22). This
extreme heterogeneity underlines the diverse biological prop-
erties reported depending on the nature of the LPSs (23). The
complete structure is made up of external repetitive units of
oligosaccharides defining the O-antigen, a polysaccharidic
core, and a lipidic moiety bound to a dimer of glucosamine,
called lipid A (Fig. 1). The complete structure can be found in
Enterobacteriaceae, Pseudomonas, Leptospira and Vibrio. A
great diversity of oligosaccharides has been identified and
some rare sugars, specific to the microbial world have been
found (e.g., tyvelose) (24). The number of repetitive units can
vary and fluctuates within a given preparation. The O-antigen
can be absent as it is the case for Neisseria meningitidis, Bor-
detella pertussis, Acinetobacter, and Bacteroides fragilis The
canonical full structure is responsible for the “smooth”
phenotype of colonies, whereas LPS devoid of O antigen define
a “rough “phenotype. The core is made of variable sugar res-
idues, but the inner core is rather conserved, made up with
heptose and 2-keto-3-deoxyoctonate which is linked to the
lipid A. The outer core can be absent as it is the case for
Chlamydia and Rhodopseudomonas. The lipid A is made of a β
1,6-linked glucosamine dimer backbone, phosphate groups at
the 1 and 40 positions of the backbone and fatty acids bound to
the dimer of glucosamine. Regarding the lipid A, the variability
concerns the number of fatty acids (from 4 to 7), the length of
the acyl chain (from 10 to 18 carbons) and the addition of
various substitutes to the dimer of glucosamine (phosphate
group, ethanolamine, glucosamine and so on). The biological
activity of LPS is mainly dependent on the lipid A and the
f the structural variability of bacterial lipopolysaccharides, composed of the
ious sugar unit repeats. LPS, lipopolysaccharides.
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inner core, whereas the O antigen is immunogenic and defines
the serovars or serogroups. Penta-acylated lipid A are poorly
active as compared to hexa- or hepta-acylated LPS as observed
for example when comparing B. pertussis LPS versus N. men-
ingitidis LPS (25). In Leptospira interrogans, the lack of
phosphate in position 40 of the disaccharide, the methylation of
the phosphate group in position 1, and four amide chains
constitute the most striking features of this unusual LPS,
whose weak activity differs from the one from Escherichia coli
(26, 27), while the great diversity of O antigens defines more
than 300 serovars (see Examples from the leptospiral field
section).

Different parameters can influence the LPS biochemical
structure. In particular, bacterial culture at different temper-
ature (e.g., 27 �C versus 37 �C) can modulate the number of
fatty acids, as seen with Yersinia pestis (28). Similarly, growth
of bacteria in biofilms results in modifications of LPS struc-
tures when compared to planktonic cultures, as demonstrated
with Pseudomonas aeruginosa (29). Most interestingly,
important differences in lipid A structures have been reported
when comparing P. aeruginosa LPS derived from clinical iso-
lates versus laboratory strains, which were accompanied with
major differences in terms of human (but not murine) mac-
rophages activation (30). Finally, another source of heteroge-
neity lies in the fact that a preparation of LPS or lipid A from a
given bacterial origin is not homogeneous and contains
different forms as revealed by negative-ion MALDI mass-
spectra analysis (31). Furthermore, those forms may vary
from batch to batch. Thus, it is important to speak about LPSs,
Figure 2. Proteins naturally binding to LPS are numerous. List of proteins n
body. LPS, lipopolysaccharides.
not as a global entity but as a huge family of similar but not
identical molecules.
Natural receptors: endotoxins have high protein binding
potential

Many proteins naturally binding to endotoxins have been
identified in plasma, saliva, lungs and in granules of neutro-
phils (Fig. 2). Some have been reported to be acute phase
proteins (LPS-binding protein, [LBP]; soluble cluster of dif-
ferentiation 14 [sCD14]) and to further enhance cell activation
by LPS (32, 33). LBP has been shown to behave as a shuttle
molecule, catalyzing its interaction with cluster of differenti-
ation (CD)14. LBP is a 60 kDa glycoprotein produced by he-
patocytes. Its normal concentration in serum is 3 μg/ml and
can reach 200 μg/ml in acute-phase serum. LBP can either
shuttle the LPS to plasma high-density lipoprotein for its
neutralization or to CD14 for initiation of activation (34).
Membrane CD14 is a glycosylphosphatidylinositol-anchored
protein with leucin-rich repeats like those found in the
extracellular domain of TLR molecules. Apart from being an
acute-phase protein, sCD14 can also be released by mono-
cytes/macrophages. sCD14 allows CD14-negative cells, which
express TLR4, such as the endothelial cells, to respond to LPS.
Interestingly, both anti-LBP and anti-CD14 antibodies protect
mice against a lethal challenge with LPS, but these antibodies
are deleterious when used during a Gram-negative infection
(35). In contrast, other binding-proteins inhibit LPS activating
properties (e.g., cationic antimicrobial peptide CAP 18 and
aturally binding to LPS and found in different compartments of the human
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CAP 37; bactericidal/permeability increasing protein (BPI)). As
reflected in the different LPS structures, their inhibitory po-
tency varies from LPS to LPS (36). BPI shares 44% homology
with LBP, mainly present in granules of neutrophils, and it can
be found in low amounts in human plasma (0.2–2 ng/ml). In
abscess fluids, its concentration exceeds that of LBP (37). BPI
is protective against bacterial infection, but its protective effi-
ciency depends on the nature of the bacteria (38). A recom-
binant fraction of BPI was shown to significantly reduce the
neuro-injury and the need for amputation in patients with
severe meningococcal sepsis (39). Plasma lipoproteins prevent
LPS to interact with its receptor, hence limiting its capacity to
activate cytokine release (40). Robert Munford’s team has
described that an enzyme present in macrophages and neu-
trophils, the acyloxyacyl hydrolase, removes secondary acyl
chains from the lipid A, thus detoxifying the endotoxin
molecule (41). Among leukocytes compounds, cell-membrane
gangliosides also interact with LPS and prevent their binding
to macrophages (42). Among the plasma compounds able to
bind endotoxin, albumin is the most abundant one. Lipid A
binds albumin with a stoichiometry of 2:1 (43). Albumin has
been reported to be a facilitator for the binding of LPS to LBP
and CD14 (44). The binding of LPS to albumin was recognized
as a nonspecific one (45). In the early efforts to define the LPS
receptor, a 70 kDa molecule was identified and finally recog-
nized to be albumin (46). However, a specific receptor was
identified in accordance with the definition of a receptor (i.e.,
saturability, reversibility, and specificity) (47). It was later
identified as the CD14 molecule (48, 49). TLR2 (50, 51) and
TLR4 (11) were subsequently identified as the receptors that
contribute to cell signaling. In fact, it was further proposed
that TLR2 was the receptor for rare endotoxins. However, its
involvement was due to contaminants present in LPS prepa-
rations (52), or to lipoproteins tightly associated with the
leptospiral LPS (53, 54). Finally, it was shown that the myeloid
differentiation factor 2 (MD2) molecule associated to the
extracellular domain of TLR4 was the effective receptor of LPS
within the TLR4/MD2 complex (55).
In vivo detection of endotoxins

Circulating endotoxin can be detected in the blood of sepsis
patients. The first demonstration was made in 1963 using a
rabbit skin test associating subcutaneous injection of
epinephrine (56). The possible presence of endotoxin was then
confirmed with the Limulus assay in 1970 (57). The highest
levels were associated with the poorest outcome (58). In pa-
tients with meningococcal infection, plasma levels of LPS were
shown to correlate with circulating chemokines (59), and
bacterial DNA (60). Of interest, its presence was also found in
patients with Gram-positive bacterial or fungal infection,
suggesting that part of its origin can derive from gut trans-
location (58). Indeed, as an illustration of endotoxin trans-
location from the gut, circulating endotoxins have been found
in many clinical settings including abdominal aortic surgery
(61), resuscitated cardiac arrest (62), hemorrhagic shock (63),
severe dengue infection (64) (see Relevant examples from the
4 J. Biol. Chem. (2024) 300(1) 105506
literature section), and many others (65). The removal of
endotoxin in sepsis patients has been advocated despite some
potential bias (66). In a multicenter, randomized, clinical trial
that included 450 adults with septic shock and high circulating
endotoxin activity, polymyxin B (PMB) hemoperfusion
compared with sham hemoperfusion did not significantly
decrease 28-days mortality (67). A post hoc analysis identified
patients with abnormal coagulation and hyperlactatemia who
may benefit from PMB hemadsorption (68).
Endotoxin contaminations are diverse and ubiquitous

As illustrated earlier with the attempt to isolate the
endogenous pyrogen (69, 70), contaminations by endotoxin of
numerous preparations have jeopardized many studies inves-
tigating the role of these compounds in innate immunity. As
summarized in Figure 3A, there is a long list of products of
which properties have been associated with endotoxin con-
taminations. Humans can be exposed to endotoxins present in
natural environment, not only in farms and industries linked
to agriculture (e.g., textile) but also when exposed to dust at
home or in offices. The inhalation of contaminated air can lead
to various occupational diseases of which the main symptoms
are fever, coughing, dyspnea, general malaise, and an alteration
of lung function. The contamination can also be present on
solid supports (e.g., wound dressing, surgical gloves and so on)
as well as in liquid media (e.g., hemodialysis fluids, contact
lenses solutions and so on) in contact with the human body.

In in vitro experiments (Fig. 3B), minute amounts of
contaminating LPSs can trigger cells either by themselves or in
synergy with other microbial compounds (see Issues about
endotoxin contaminations in recombinant proteins section).
For numerous molecules initially considered displaying prop-
erties of cell activation, it was finally demonstrated that their
reported bioactivity was an artifact consecutive to endotoxin
contamination (see Relevant examples from the literature
section). The purification of a given molecule, being either a
protein, a sugar, or a nucleic acid, can end to a contaminated
product because of the use of contaminated water for the
preparation of buffers, the use of contaminated supports such
as those used in chromatography or the use of contaminated
enzymes or antibodies. Of course, the preparation of recom-
binant proteins cloned in E. coli further adds a chance to end
with a contaminated product (see Relevant examples from the
literature section). Regarding the culture media, the greatest
caution must be taken for the choice of the medium itself and
the additives. For example, the endotoxin contamination of
fetal calf serum can vary from 0.008 to 10 ng/ml (71). It should
be noted that endotoxin decontamination of a glass Erlen-
meyer used for E. coli cultures requires heating in a dry oven at
250 �C for 4 h. Therefore, using disposable plastic flasks, tubes,
and pipettes is almost mandatory when studying innate im-
munity. In the future, novel washing technology, already
commercially available, will allow the general recycling and
reuse of plastic pipette tips. This ecofriendly approach, rec-
ommended by the ethic committee of CNRS (the French na-
tional scientific research agency), may constitute an additional



Figure 3. Endotoxin contaminations are diverse and ubiquitous. List of publications with pubmed identifiers dealing with recognized endotoxin
contamination of various products that can be encountered in daily life (A, in vivo) or used during biological experiments (B, in vitro).
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risk of endotoxin contamination and artefactual results in
innate immunity studies, since the reused tips will not be
washed with endotoxin-free water.
Immune cells are extremely sensitive to endotoxins

Endotoxins are potent activators of the innate immune
system through activation of TLR4 (11, 72), even at very low
doses. Interestingly, upon LPS activation, TLR4 is the only
TLR that can signal through two different pathways: MyD88 at
the plasma membrane and TRIF upon endocytosis (Fig. 4) (73,
74). This results in nuclear factor (NF)-κB and interferon
regulatory factor (IRF)3 translocations, triggering gene
transcription leading to strong inflammatory and antimicrobial
responses (75). LPS recognition is further enhanced by several
coreceptors: the LBP that transfers monomeric LPS to the
CD14 (48, 76, 77) that then shuttles the endotoxin to the MD2
coiled within the TLR4 molecule (78, 79). In the case of E. coli
LPS, it was reported that the threshold to induce cytokine
production in macrophages and dendritic cells is <100 pg/ml,
and the threshold to upregulate costimulatory molecules <500
pg/ml (80–82).

In addition to induce cytokine production, LPS are also
involved in numerous other innate immune pathways and have
been associated with cellular stresses (oxidative stress, auto-
phagy and so on) and even cell death (83–86). Importantly, it is
J. Biol. Chem. (2024) 300(1) 105506 5



Figure 4. LPS signaling through TLR4 and inflammatory caspases. Diagram of lipopolysaccharide (LPS) signaling in macrophages. LPS first binds to the
serum LPS-binding protein (LBP), is delivered to CD14 then transferred to membrane or endosomal TLR4/MD2 complex, which initiates a signaling cascade
through the MyD88 and TRIF adapters with the translocation in the nucleus of NF-κB and IRF3 transcription factors, leading to expression of cytokines (type I
interferons, or inflammatory cytokines (IL-1ß, TNF, and IL-6)). In addition, the LPS is recognized within the cytosol by the caspase 4 or 5 (human), or 11
(mouse) that triggers the caspase dimerization and cleavage of gasdermin D (GSDM), with N terminal parts assembling in large pores, leading to lytic cell
death called “pyroptosis”, since it allows a massive release of cytosolic IL-1ß, a central cytokine in inflammation provoking fever. Both IL-1ß and TNF can
amplify the inflammation through retroactivation of their receptors IL-1R and TNFR, also leading to NF-κB activation. IL, interleukin; IRF3, interferon reg-
ulatory factor 3; MD2, myeloid differentiation factor 2; TLR, toll-like receptor; TNF, tumor necrosis factor; TNFR, tumor necrosis factor receptor.
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now widely accepted that the LPS can be recognized in host
cell cytosol through inflammatory human caspases 4/5 or
murine caspase 11 (87–90). This recognition triggers the so-
called “noncanonical” inflammasome that results in a lytic
cell death called pyroptosis (Fig. 4) (91). Pyroptosis is associ-
ated with membrane damage and permeabilization resulting in
massive inflammatory burst due to the release of potent cy-
tokines such as IL-1β and IL-18 (92). Overall, endotoxins are
not only potent inflammatory mediators, but they also exert
strong cytotoxic effects on immune cells and potential con-
taminations can therefore have a wide range of impacts.

Adjuvant role of endotoxins

Undesired effects may be linked to endotoxin or other E. coli
contaminations when recombinant proteins are used as drugs,
such as recombinant growth hormone or erythropoietin
(Fig. 3B). However, the use of E. coli recombinant proteins as
6 J. Biol. Chem. (2024) 300(1) 105506
subunit vaccines may be of interest, since contaminations may
trigger TLR2, TLR4, nucleotide-binding oligomerisation
domain receptor (NOD)1, NOD2, and other PRRs. Indeed,
TLR and NOD-like receptors ligands are known to be crucial
adjuvants to mount an efficient adaptive immune response,
and they are already largely used in licensed vaccines (93).
However, only synthetic analogs and nontoxic mimetics are
used for human vaccines, such as the monophosphoryl Lipid

IVA (94).
Issues about endotoxin contaminations in recombinant
proteins

Endotoxins cannot be completely neutralized during
purification

In addition to their high ability to activate innate immune
cells, endotoxins are almost impossible to remove after protein
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expression in E. coli (95). Indeed, as described above, endo-
toxins can bind numerous proteins, in both specific and
nonspecific manners (96). These risks are considerably higher
when expressing recombinant nonpolar proteins or membrane
proteins that are by nature very hydrophobic and therefore
most susceptible to bind endotoxins. To address this issue,
numerous studies on recombinant proteins have used
commercially available solutions to “remove” endotoxins from
protein samples, for instance in the Leptospira field (see Ex-
amples from the leptospiral field section). Most of them rely
on endotoxin removal columns that use PMB coated gels to
retain LPS and purify protein samples. Authors treat their
samples with PMB, a cationic antimicrobial peptide with LPS-
binding affinity, and then state that they have excluded the
possibility that contaminating endotoxins may be responsible
for the observed phenotypes. We believe that this is not the
case, and several studies support this hypothesis. First, one
must keep in mind that PMB neutralizes LPS through induc-
tion of its aggregation in large micelles, making it less available
for receptors and therefore less biologically active. Among
other factors, PMB efficiency depends on the intrinsic struc-
tural properties of endotoxins, which differ from one bacte-
rium to another, as we previously demonstrated (97, 98) (see
Structure and variability of LPSs section). Interestingly, a study
reported that PMB neutralization is only efficient on high
concentrations of E. coli LPS (3 μg/ml), but not on lower
concentrations of LPS (300 ng/ml) (99). Additionally, the
coreceptors of TLR4 signaling pathway are known to be able to
uptake monomeric LPS moieties from micelles to render them
available for TLR4 signaling (48, 76, 77), therefore potentially
hindering PMB neutralizing effect. Consistently, another study
reported that PMB was not very efficient at preventing the
production of proinflammatory cytokines in response to low
doses of LPS (80). Also, PMB induces a mild reduction of the
LPS negative charges (that are essential for proper signaling)
but never completely neutralizes them (99), therefore again
only partially reducing endotoxins’ ability to activate host re-
ceptors. Finally, several studies have reported that PMB itself
could promote the expression and production of proin-
flammatory cytokines and costimulatory molecules (80, 100,
101). Taken together, these results corroborate that endo-
toxins removing kits can never guarantee less than 5 EU/ml
residual endotoxin, which corresponds roughly to 0.5 to 1 ng/
ml, a concentration that is sufficient to activate innate immune
response.
Assessment of endotoxin contamination by the LAL assay is
not sufficient

To quantify contaminating endotoxins in recombinant pro-
teins, the commercially available Limulus amebocyte lysate
(LAL) assay is often used. The LAL is extracted from horseshoe
crab’s hemolymph that contains serine proteases which coag-
ulate in cascade in presence of endotoxins, hence allowing their
detection. Although this assay is very useful, it presents few
drawbacks that impede its efficiency at detecting LPS contam-
inations. First, the LAL assay is not as sensitive as some immune
cells in sensing LPS. Indeed, a study reported that LAL assay is
two orders ofmagnitude less sensitive that humanmacrophages
stimulated with LPS (81), suggesting that this assay is not suf-
ficient by itself. Second, another drawback of the LAL assay is
that the coagulation is not always correlated with the LPS
concentrations (102). For instance, several studies reported that
some residues in the recombinant proteins, namely hydropho-
bic residues, may induce LPS binding and consequently prevent
its measurement in the assay (95, 103). We have also observed
that the fusion of expressed proteins with poly-histidine tag
(HIS-tag) prevents the proper quantification of endotoxins by
the LAL assay, with almost no contamination detected at 10 μg/
ml, whereas serial dilution of the recombinant protein led to
increasing endotoxin detection (personal communication, C.
Werts). Accordingly, it has been demonstrated that cleavage of
the HIS-tag allowed a subsequent removal of endotoxins,
preferentially binding to cationic residues (104). Another issue
with the amebocyte lysate assays is the origin of the lysate
(American horseshoe crabs versus Japanese horseshoe crabs)
and the consequent variability. Indeed, differences have been
observed between the traditional LAL and the Tachypleus
amebocyte lysate, the latter also responding to fungal products
fromCandida spp (105). Because of their extensive use for those
assays, horseshoe crabs are now endangered species. Animal
friendly LPS quantifying methods have been developed, using
recombinant factor C, the first endotoxin sensor from the
coagulation cascade of limules, but they all present some tech-
nical limitations, like the classical LAL assay (20). Advantages
and drawback of these different bioassays have been recently
reviewed and authors highlight bacterial LPS heterogeneity as a
cause of variability in quantification (20). Overall, we therefore
think that the LAL and other assays are very useful but must be
interpreted with caution when working with recombinant
proteins, especially with HIS-tagged proteins, and cannot alone
guarantee complete lack of endotoxin contamination.

Commercial PRR/NF-κB HEK reporter cell lines are also
convenient to study PRR/MAMPs interactions, including TLR2,
TLR3, TLR4, TLR5, TLR8, TLR9, and other PRRs, usually
overexpressed. These cells can be useful to test the lack of various
bacterial components (such as lipoproteins, LPS, flagellins, or
nucleic acids) whichmay contaminate the recombinant proteins.
MD2-TLR4 expressing cells to test the lipid A activity are less
sensitive than LAL. However, whole LPS are better recognized
(27). Of note, those cells often also express endogenous low levels
of other PRRs such as TLR5, TLR3, and NOD1 that may syner-
gize with TLR4. Therefore, careful use of these cells should be
done since poor controls or endotoxin contamination of reagents
may also easily lead to artefactual results. Indeed, the control NF-
κB cells also express the endogenous levels of those PRRs, but the
lack of TLR4 overexpressionmay abolish the synergy, potentially
leading to the wrong conclusions about the TLR4 use of the re-
combinant protein tested.
Endotoxins are not always heat-resistant

It is commonly believed that LPS from E. coli is a heat-
resistant molecule that is not affected by boiling. Several
J. Biol. Chem. (2024) 300(1) 105506 7



JBC REVIEWS: ---
authors have heated their recombinant protein preparations
and have directly excluded that LPS could be responsible
when the phenotype was lost upon heating. However,
although heat-resistance may be true for aggregated LPS in
concentrated preparations, several studies have reported that
lower concentrations of E. coli LPS (<100 ng/ml) are more
sensitive to heat (personal communication, D. Bonhomme
and C. Werts), and that boiling did reduce LPS ability to
activate production of inflammatory cytokines (80, 106). Also,
the heat-sensitivity of the LPS depends on the bacterial
origin. Based on this, we believe that concluding on the na-
ture of the signaling molecule (proteic versus endotoxic) after
heat treatment is not accurate.

Endotoxins may synergize with other agonists

Beside LPS intrinsic ability to stimulate the immune system
at detectable concentration, traces amount of LPS can also
lead to cellular activation. Indeed, synergy between different
PRR agonists has been evidenced using sub activating doses of
each agonist that alone were not able to activate cells but when
combined triggered cytokine activation. Hence, sub active
doses of LPS synergize with lipoproteins (TLR2 agonists) (107,
108) and with muropeptides (nucleotide oligomerisation
domain receptor (NOD) 1 and NOD2 agonists) to activate
dendritic cells and macrophages (109). These components are
present in E. coli and may contaminate the recombinant
proteins upon purification. In addition, subactive doses of LPS
contaminating plasmids used to produce virus stocks have
been shown to synergize with cytosolic DNA sensed by cyclic
GMP-AMP synthase (cGAS) and enhance type I interferon
(110). Incidentally, these synergistic properties explain the
highest potency of commercial crude LPS preparations,
compared to repurified LPS, devoid of TLR2, NOD2 and
NOD1 activities (111).

Relevant examples from the literature

Since the discovery of TLRs in 1996, numerous studies us-
ing recombinant proteins have described host-derived mole-
cules to be TLR2 or TLR4 agonists (Fig. 5) (112). Most of these
compounds are secreted upon danger (heat shock proteins
(HSPs), high mobility group box1, surfactant), or reside in the
extracellular matrix (fibronectin and surfactant protein A). In
the same intent to uncover their observed inflammatory ef-
fects, the TLR specificity of recombinant proteins from viruses
and other microbes were also described. The confusing early
years (1996–2010) of deciphering PRR agonist specificities is
now over, and the specific recognition of lipid A by MD2-
TLR4 and lipoproteins by TLR2 is now well established with
crystal structures (113, 114). Other agonists of TLR4/MD2
have been discovered; however, they are either synthetic (115,
116) or endogenous ligands with short acid chains (117). The
lack of common structures between the genuine ligands and
putative recombinant proteins has called into question the
mechanism of their TLR4 activation, which in some cases has
been dismissed after appropriate controls or repurification to
remove endotoxin. We will present a few examples below.
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Endotoxin contamination of HSPs

Both bacterial and mammalian recombinant heat shock
proteins (rHSPs) have been shown to trigger inflammation in
endothelial and innate immune cells (118) (Fig. 5). Mammalian
HSPs of different molecular weights are considered as endoge-
nous danger signals, released upon infection or stress. rHSPs are
immunogenic, activate dendritic cell maturation, and elicit T-
cell mediated responses. rHSPs, acting as self-adjuvant, have
successfully been used as carriers or in fusion with antigen
peptides to deliver them to the major histocompatibility com-
plex class I pathway of antigen presenting cells.

However, the striking parallel between their inflammatory
responses via TLR2 and TLR4, closely mimicking responses to
crude LPS, put into question the mechanism of stimulation. It
was found that HSPs can bind LPS with high affinity (118). It
has also been shown that removal of endotoxin, testing in
TLR4 deficient mice, or direct HSP purification from the
mouse liver, resulted in loss of adjuvant effect, suggesting that
the high immunogenicity of rHSPs was mainly due to endo-
toxin contamination (119). This was confirmed in a study
correlating endotoxin contamination levels of rHSP70 with
their biological effects (120). However, rHSP72, the inducible
form of human HSP70, produced in insect cells using a
baculovirus system, and therefore endotoxin-free, retained its
chaperon effect and activated cytokine production in mouse
splenocytes. It may be hypothesized that the very high dose
(100 μg) of rHSP70 used to stimulate the cells could give way
to baculovirus contaminants, activating the innate immune
system (121). Nevertheless, HSPs have many functions and
bind to several receptors, such as scavenger receptors to favor
endocytosis (122), and the triggering receptor expressed in
myeloid cells 2 to enhance phagocytosis (123), both partici-
pating in innate immunity.

Driven by studies describing inflammatory properties of
eukaryotic HSP, many bacterial HSPs (HSP60 also known as
GroEL, HSP65 and HSP70/DNAK) have been described in the
early 2000s, as inflammatory molecules (118). For proteins
directly purified from Gram-negative bacteria (e.g., Legionella
and E. coli), the LPS present in their membrane, or other
MAMPs are likely to have contaminated the proteins. Re-
combinant GroEL of Leptospira has recently been shown to
activate mouse macrophages (124) (see Examples from the
leptospiral field section) and recombinant HSP60 from Chla-
mydiae has been described as a TLR4 agonist. In the latter
study, the authors excluded the endotoxin contamination,
because the endotoxin levels measured with the LAL were very
low, and the activation was heat sensitive. However, in both
studies, the proteins were expressed as HIS-tagged recombi-
nant proteins in E. coli. These confounding factors have been
discussed in Assessment of endotoxin contamination by the
LAL assay is not sufficient and Endotoxins are not always heat-
resistant sections.
Viral proteins from SARS-COV-2, DENV, and HIV1

The severe acute respiratory syndrome coronavirus 2
(SARS-COV-2) responsible for the COVID-19 pandemics has



Figure 5. TLR4/MD2 real & putative ligands. List of studies and corresponding PMIDs describing microbial associated molecular patterns (MAMPs) from
bacteria, parasites, virus, and plants (left box) and host derived proteins, sugars, and lipids (right box) as putative TLR4 agonists. In bold, endotoxin from
Gram-negative bacteria is the real TLR4 agonist. MD2, myeloid differentiation; TLR, toll-like receptor.
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been the subject of intense research, particularly in the field of
innate immunity. The fact that severe symptoms observed in
patients mimic certain features of bacterial sepsis prompted
researchers to investigate the causes of hyperinflammation,
sometimes referred to as “cytokine storm”, although unlike
sepsis, it is not systemic but localized in the lungs (125). Using
recombinant protein produced in E. coli or in human
HEK293 cells, the SARS-COV-2 spike S1 subunit, which binds
the angiotensin-converting enzyme 2 receptor on mammalian
cells, has been shown to be a key inflammatory mediator and
has been considered a TLR4 agonist in macrophages (126,
127). Interestingly, another study using recombinant spike
protein produced in human epithelial HEK293 cells did not
show activation by TLR4, but by the TLR2/TLR6 receptor of
diacetylated lipoproteins (128). In the latter, it is plausible that
the effect attributed to the recombinant spike protein could be
related to mycoplasmas, since they are TLR2/6 agonists and
are a frequent cause of contamination of cell lines (129). Of
note, in a more recent article entitled “TLR2 senses the SARS-
CoV-2 envelop protein to produce inflammatory cytokines”,
the authors used recombinant proteins to show that the
envelop but not the spike protein, stimulates TLR2 (130).
However, they do not discuss the fact that the Env is a 6xHis-
tagged protein expressed in E. coli, whereas the spike is pro-
duced in HEK293 cells, and therefore is devoid of MAMPs.

Finally, a study reexamined in primary human macrophages
the responses to five different recombinant spike S1 proteins
produced in E. coli or human cells, and showed that endotoxin
contamination, and not the glycosylation state, was responsible
for the artifactual inflammation observed (131). Interestingly, a
J. Biol. Chem. (2024) 300(1) 105506 9
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study demonstrated that a recombinant SARS-COV-2 spike
protein binds LPS with high affinity, leading to enhanced LPS
inflammatory activity (132). Indeed, the authors showed that a
HIS-tagged version of the spike protein produced in
HEK293 cells, that by itself was not inflammatory, induced a
measurable inflammation in THP-1-CD14 reporter cells when
mixed with a minimal amount of 2.5 ng/ml of LPS, although
the same amount of LPS alone did not induce inflammation
(132). The authors subsequently showed by molecular docking
that the LPS would bind the S1 subunit part of the protein.
However, it would have been very interesting to check whether
the spike protein devoid of the HIS-tag could also bind the LPS
with the same affinity, since LPS exhibits high affinity to
stretches of cationic histidine residues (104) (see Assessment
of endotoxin contamination by the LAL assay is not sufficient
section).

The high number of publications showing that the SARS-
COV-2 protein stimulate TLRs pushed forward in silico ap-
proaches to better understanding the interaction between the
spikeprotein andTLRs. TheSARS-COV-2 spike protein has been
shownbymolecular docking to bind to the external part of leucine
rich repeats domains of human TLR4, TLR2, and TLR1 (133),
whereas another study found potent interactions of several spike
S1 epitopes with the inner part of TLR4 leucine rich repeat and
MD2 (134). These studies also aimed to propose new therapeutic
strategies to decrease the inflammation upon SARS-COV-2
infection, with peptides targeting the regions of interaction of
spike and TLR4. Most probably these projects based on weak
assumptions may be not successful and may even be problematic
considering the cornerstone role of TLR4 in host defense.

Dengue is a viral disease transmitted by female Aedes sp.
mosquito. Dengue viruses (DENV) are flaviviruses that repli-
cate in dendritic cells, monocytes, and macrophages. The
hallmark of severe dengue is vascular permeability and
consequent plasma leakage, potentially leading to circulatory
collapse, shock, and death. High levels of circulating inflam-
matory cytokines and chemokines correlate with severe out-
comes observed in dengue patients with hemorrhagic fever
(135). Nonstructural (NS)1 protein is one of the 7 NS proteins
involved in intracellular replication and genome packaging but
is also secreted by infected cells as a hexamer found in blood
circulation. NS1 plays a pivotal role by subverting the com-
plement system (136). Recombinant NS1 has been incrimi-
nated in the inflammatory effects, endothelia permeability
(137), and platelet activation (138), and was further shown to
be either a TLR4 (138, 139) or TLR2/6 agonist (140). Using
macrophages from TLR-deficient mice and TLR-blocking an-
tibodies, the authors of the first study reexamined the in-
flammatory properties and TLR utilization of recombinant
NS1 proteins from different sources: E. coli with HIS-TAG
(140), stably transfected Drosophila S2 cells, or baculovirus
insect system (138, 139), and compared these recombinant
proteins with native NS1 purified from DENV-infected Vero
cell supernatants (141). Only the latter formed a hexameric
structure, without apparent endotoxin contamination, and
activated TLR4, suggesting that TLR4 may indeed be an NS1
receptor. Consistently, platelet activation was shown ex vivo
10 J. Biol. Chem. (2024) 300(1) 105506
with supernatants from cells infected with DENV but not Zika
virus (138), and reduced thrombocytopenia has been evi-
denced in a TLR4-deficient DENV mouse model (138, 139).
Dengue fever is a global threat still awaiting specific antiviral
treatments. Although these studies received much attention in
the hope of developing therapeutic TLR4 antibodies to treat
DENV infection, the authors honestly state that “It is still
conceivable that trace amounts of LPS within tissue culture
reagents could be bound and concentrated on NS1 in a
manner inaccessible to polymyxin B and the Limulus amoe-
bocyte lysate assay, with NS1 becoming an efficient delivery
agent for LPS to the TLR4 receptor complex” (141). Indeed,
the fact that DENV is a stealth pathogen that has evolved
numerous mechanisms to evade innate and adaptive immune
responses (136) argues against an inflammatory role for NS1.
In particular, DENV NS proteins are involved in modulating
and escaping the type I interferon response, by blocking at
different levels the TLR3, RIG-I, cGAS, and STING pathways
(136). In fact, it has been shown that leaky gut is associated
with severe dengue. Consistent with gut translocation of large
molecules, higher serum levels of LPS and ß-glucan were
measured in severe dengue patients compared with nonsevere
dengue patients, which may explain the “cytokine storm” and
endotoxemia (64).

The HIV-1 virus field is not exempt of confounding effects
of LPS. Indeed, several HIV-1 recombinant proteins have been
described as TLR4 agonists. First, the recombinant virion-
associated protein of unknown function was reported to acti-
vate TLR4/MyD88-mediated IL-6 production and reactivate
viral production from latency (142). Then, the envelope
glycoprotein gp120 which is important for virus entry by
binding to human T-cells CD4 and CCR5 receptors, and that is
shed in large quantities in serum, has been shown to activate
genital epithelial cells, and further shown to stimulate
inflammation through binding to both TLR2 and TLR4 (143).
This study was performed with recombinant gp120, expressed
in a baculovirus expression system, and commercially sold as
endotoxin-free. Of note, the TLR response required the pres-
ence of heparan sulfate, a compound that is known to enhance
TLR4 responses (144) (Fig. 5). The same group reported the
same year, that recombinant transactivator of HIV1 gene
expression was also a TLR4-MD2 agonist (145). In that case,
recombinant transactivator was a glutathione-S-transferase
fusion protein expressed in E. coli which was considered
endotoxin free despite an endotoxic level measured by LAL of
0.3 EU/μg. Those three examples of different HIV proteins
activating through TLR4 should be reevaluated. It is estab-
lished that HIV1 activates cells and induces proinflammatory
cytokines and type I interferon through classical viral MAMPs,
such as RNAs recognized by endosomal TLR3/7/8 and cyto-
solic RIG-I, as well as retro-reversed transcribed DNA sensed
by the cGAS/STING pathway. In addition, gut damage and
microbial translocation occur in HIV1 patients, with measur-
able levels of serum LPS, CD14 and other microbial inflam-
matory components such as flagellin or ß-glucan (146), which
may explain the chronic inflammation observed in people
living with HIV1, despite effective antiviral treatments (147).
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Examples from the leptospiral field

Leptospires are stealth bacteria that escape many innate
immune recognition pathways (148). In particular, because of
its peculiar structure (26), the LPS of leptospires is not a hu-
man TLR4 agonist (53). However, it is recognized by mouse
TLR4 (27), but only triggers a mild response in mouse mac-
rophages. Indeed, the leptospiral LPS signals through the
MyD88 pathway but avoids the TRIF pathway (54). The fact
that whole leptospires do not signal via human TLR4, even
when degraded by heating or lysed, should warn against data
showing recombinant leptospires proteins to be human TLR4
agonists. Moreover, even if leptospires can enter and reside in
macrophages (149), they do not induce cell death in mouse,
human, bovine, and hamster macrophages (150). Indeed, the
leptospiral LPS does not trigger the “noncanonical” inflam-
masome, which limits the release of the potent IL-1ß cytokine
(150) (see Issues about endotoxin contaminations in recom-
binant proteins section). Therefore, even minor endotoxin
contamination in recombinant proteins expressed in E. coli
may lead to erroneous conclusions on the putative inflam-
matory or lytic roles of these leptospiral proteins. Considering
the endotoxin contamination issues described above in Issues
about endotoxin contaminations in recombinant proteins and
Relevant examples from the literature sections, we reviewed
different studies using recombinant Leptospira proteins (124,
151–159). For each article, we present in Table 1, the factsheet
of the study and critically assessed the potential endotoxin
contamination and conclusions about the immune functions
and lytic properties of the studied recombinant proteins.

Other solutions for recombinant proteins expression
and purification

All microbial-based expression systems must be used with
caution

An option to avert endotoxin contamination is to use the
ClearColi E. coli expression system, in which bacteria do not
possess a classical LPS, but only have a tetra-acylated Lipid IVA
(160). The main advantage of this system is that Lipid IVA is
not an agonist of human-TLR4/MD2 complex (161), therefore
preventing the risk that immune cells may be activated by
contaminants. Although this system can be used to study the
response of human cells, it is not appropriate for other species
because Lipid IVA is still an agonist for less stringent receptors
such as mouse-TLR4, hamster-TLR4, and horse-TLR4 (161,
162). To overcome the endotoxin issue, LPS-free bacteria may
also be used as protein expression platforms, such as Gram-
positive Bacillus subtilis (163), or Sphingomonas, in which
LPS are replaced with nontoxic glycosphingolipids (164).
However, in these systems, other bacterial contaminants and
PRR agonists, such as lipoproteins, lipoteichoic acids, mur-
opeptides, or DNA can contaminate the recombinant proteins,
which should also limit their use as therapeutics or in innate
immunity.

Another possibility is to use plant expression systems that
present the advantage to allow the production of recombinant
glycoproteins (165). Active recombinant human and mouse
cytokines have been successfully produced in rice seeds, with
low endotoxin contamination (166). However, because of the
symbiotic association of the plants with microbes, we may
expect the same issues as described above and should be very
cautious regarding bacterial contamination of recombinant
proteins.

Yeasts may also be used as protein expression platforms
since they allow posttranslational glycosylation (167). Here, the
issue may be contamination with ß-glucans, agonists of dectins
(168), that potently synergize with TLRs and modulate im-
mune responses (169).

Proteins may be expressed in other systems

The safest choice to express recombinant proteins intended
for innate immunity studies is to either use insect cells or
mammalian expression systems, both devoid of any MAMPs.
However, in the case of insect cells, the use of replicative
plasmids (prepared with kits allowing low endotoxin content)
should be preferred over baculovirus expression systems.
Although they are powerful and versatile systems for pro-
ducing high levels of recombinant protein expressions, bacu-
lovirus virus DNA and particles that also trigger innate
immunity in mammalian cells, may contaminate the recom-
binant proteins.

Finally, cell-free expression mammalian-based systems us-
ing human lysates may allow rapid synthesis of recombinant
proteins with native posttranslational modifications without
microbial contamination. For small proteins, synthetic pro-
teins could also be a good alternative. One should also recall
that putative LPS contaminations can occur during the puri-
fication process.

Conclusion

Endotoxins are a major issue when studying innate immu-
nity. They can contaminate culture reagents and recombinant
proteins. The risk associated with the use of recombinant
proteins in innate immune studies is the erroneous conclusion
that many proteins, sugars, and lipids could activate the innate
immune cells via the well-characterized TLR4 receptor of LPS.
This also applies to the innate study of bacteria, parasites, and
fungi derived products. In the Leptospira field, close exami-
nation of whether the conclusions of the studies seemed
appropriate depends on the expression systems used to
generate the recombinant protein. Whether the observed
cellular phenotype could be attributed to LPS has to be very
carefully examined. It is important that researchers are aware
of the confusing effects of endotoxin bound to their protein.
To avoid such problems, we have presented several expression
and purification methods that may help readers to plan their
future experimental setup. Not all recombinant proteins can
be TLR4/MD2 agonists. Indeed, a red flag should be put on
recombinant proteins described as TLR4 agonists, especially
those constructed with a HIS-tag.

Even if these studies using recombinant proteins were car-
ried out on good faith, they pollute the field of innate immu-
nity. Modeling studies using sophisticated softwares and
J. Biol. Chem. (2024) 300(1) 105506 11



Table 1
Studies on leptospiral recombinant protein with potential endotoxin contaminations

Reference Protein
Expression
system Quality control [X] max

Immune effects observed
with REC-proteins

Compatible with
contaminations

Che et al., 2019
PMID:
30278102

Sph2 Hemolysin from
L. interrogans
serovar Lai

Bacteria
E. coli

None provided
presence of HIS-Tag

10 μg/ml
�70 kDa
�150 nM

1. rec-Sph2 induces cell
death
With LDH release
With annexinV+/PI+ staining

2. rec-Sph2 induces production of
ROS
With alteration of mitochondrial

potential

1. Yes
Lytic cell death (pyroptosis)
is classically triggered
by internalized LPS.

2. Yes
LPS-TLR4 induces ROS
production.

Faisal et al., 2016
PMID:
27996041

Lsa21 Adhesin from
L. interrogans
serovar Pomona

Bacteria
E. coli

1. DetoxiGel (Pierce)
endotoxin removal
NB: supplier cannot
guarantee less than
5EU/ml (�1 ng/ml)
residual LPS

2. LAL test (Biomedicals)
Results not provided

2 μg/ml
�21 kDa
�100 nM

1. rec-Lsa21 activates HEK-TLR2 cells
2. rec-Lsa21 triggers TNF & IL6

production
TLR2/TLR4-dependent

3. rec-Lsa21 induces costimulatory
& immune genes
TLR2/TLR4-dependent

1. Maybe
HEK do not express TLR4
but express endogenous
TLR5 and NOD1 that might
sense other contaminants
(flagellin/PG) from E. coli.

2/3. Yes
LPS-TLR4 induce inflammatory
genes upregulation.

Fang et al., 2018
PMID:
30337247

vWAI
vWAII

Proteins with
vWF domains from
L. interrogans
serovar Lai

Bacteria
E. coli

1. DetoxiGel (Pierce)
endotoxin removal
NB: supplier cannot
guarantee less than
5EU/ml (�1 ng/ml)
residual LPS

2. LAL test (Lonza)
Results suggesting
<0.1 ng/ml but
presence of HIS-Tag

5 μg/ml
�36 kDa
�140 nM

1. rec-vWAI/IIdo not trigger
platelets aggregation

2. No other form of platelets
activation described

Including no NO production
3. rec-vWAI/II inhibit vWF induced

platelets aggregation

1/2. No
Negative phenotypes
(especially NO production)
do not suggest
contaminations with LPS.

3. No
LPS role is controversial but
there is no strong evidence
suggesting it could prevent
platelet aggregation.

Hsu et al., 2020
PMID:
33094809

LRR20 Leucine reach repeat
20 protein from
Leptospira santarosai
serovar Shermani

Bacteria
Escherichia
coli
“ClearColi”
(lipid IVA)

None provided
presence of HIS-Tag

200 μg/ml
�20 kDa
�10 μM

1. rec-LRR20 presents specific
affinity for E-cadherin

No affinity for TLR2
presented as negative
control

2. rec-LRR20 induces NGAL
in HK2 (kidney cells)

1. No
LPS is not accountable for
protein/protein interactions.

2. No
HK2 proximal tubular cells
do not express TLR4 at basal
levels and use of ClearColi
dismiss TLR4 activation.

Hsu et al., 2021
PMID:
33441663

Loa22 Lipoprotein from
L. santarosai serovar
Shermani

Bacteria
E. coli
“ClearColi”
(lipid IVA)

1. MonoQ column with
polymyxin B

2. LAL test
Results suggesting
<<0.05 ng/ml
but presence of HIS-Tag

100 ng/ml
�22 kDa
�5 nM

1. rec-Loa22 with PG activates
HEK-TLR2 cells

2. rec-Loa22 with PG activates
PMA-induced THP1 cells

1. No
HEK do not express basal
TLR4 and it is expected that
lipoproteins activate TLR2.

2. No
THP1 express huTLR4 wich
is not sensitive to lipid IVA
from ClearColi E. coli.

Kumar et al., 2021
PMID:
34975922

LigA Surface protein from
L. interrogans serovar
Pomona

Bacteria
E. coli

1. DetoxiGel (Pierce)
endotoxin removal
NB: supplier cannot
guarantee less than
5EU/ml (�1 ng/ml)
residual LPS

2. LAL test (Pierce)
Results not provided
presence of HIS-Tag

2 μg/ml
�73 kDa
�30 nM

1. rec-HIS-LigA variable region
(LAV) activates macrophages

Proteinase K sensitive &
polymixin B resistant

2. rec-HIS-LAV activates
HEK-TLR4 cells

3. rec-HIS-domain11 is involved
in the signaling

4. rec-HIS-LAV triggers protective
IgG1 & IgG2c response

5. rec-HIS-LAV prevents
complement mediate killing

Binding to factor H hence
triggering C3b cleavage

1/2/3. Yes
LPS-TLR4 might
potentiate the response
to rec-LAV.

4. Yes
IgG2c antibodies suggest
that at least part of the
response is LPS-mediated.

5/6. No
LPS is not accountable
for the enzymatic activities
of rec-LAV (although it could
potentiate its effects).
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Table 1—Continued

Reference Protein
Expression
system Quality control [X] max

Immune effects observed
with REC-proteins

Compatible with
contaminations

6. rec-HIS-LAV prevents NET
formation upon infection

With efficient DNAse activity

Kumar et al., 2022
PMID:
35401498

LenB
LenD
LenE
Lsa30
Loa22
LipL21

Lipoproteins from
Leptospira interrogans
serovar Pomona

Bacteria
E. coli

Estimated endotoxin
(no method indicated)
0.10–0.15 ng/ml but
presence of HIS-Tag

1 μg/ml
�21–65 kDa
�15–50 nM

1. rec-HIS-lipoproteins induces
inflammatory responses

Production of TNF and IL6
Upregulation of costimulatory

molecules
Activation is polymyxin B

resistant
2. cow and human macrophages

respond less that mouse
3. rec-HIS-lipoproteins bind

complement FH and C4BP
4. rec-HIS-lipoproteins act as

nucleases and degrade NETs

1. Yes
Observed effects cannot be
mediated by TLR2 since only
the protein part of lipoproteins
are expressed and lipoproteins
needs the acyl chains to signal
via TLR2. The stimulation
could be induced by TLR4/LPS.

2. Yes
Species-specificity for TLR4
are described.

3/4. No
LPS is not accountable for
protein/protein interactions
nor for enzymatic activities
(although it could potentiate
their effects).

Passalia et al., 2020
PMID:
32078713

BatA (vWAI)
BatB (vWAII)

Proteins with vWF
domains from
L. interrogans serovar
Copenhageni

Bacteria
E. coli

None provided 5 μg/ml
�36 kDa
�140 nM

1. rec-BatA is a serine protease
2. rec-BatA/B cleave human

fibrinogen
3. rec-BatA/B inhibit platelet

aggregation

1/2. No
LPS is not accountable for
the enzymatic activities
of rec-Bats.

3. No
LPS role is controversial
but there is no strong
evidence suggesting it could
prevent platelet aggregation.

Wang et al., 2012
PMID:
22870312

Sph1
Sph2
Sph3
HlpA
TlyA

Haemolysin from
L. interrogans serovar Lai

Bacteria
E. coli

1. DetoxiGel (Pierce)
endotoxin removal
NB: supplier cannot
guarantee less than
5EU/ml (�1 ng/ml)
residual LPS

2. LAL test (Pierce)
Results not provided
but HIS-tag

2. ELISA with anti-E. c
LPS IgG
(Abcam)
Results not provided

10 μg/ml
�30–65 kDa
�150–330 nM

1. rec-HIS-haemolysins do not
induce cell death

2. rec-HIS-haemolysins induce
IL1β/TNF/IL6

Proteinase K sensitive and
polymixin B resistant

Through TLR2 and TLR4
Through JNK and NF-κB

1. No
2. Yes

Observed effects could
be induced by TLR4/LPS
and lipoproeteins/TLR2.

Ho et al., 2021
PMID:
33789603

GroEL Heat shock protein 60
from L. interrogans
Serovar Copenhageni

Bacteria
E. coli

1. DetoxiGel (Pierce)
endotoxin
removal

2. LAL test (Lonza)
2EU/μg (but presence
of HIS TAG impairs
the LAL test)

10 μg/ml
60 kDa
160 nM

1. rec-HIS-GroEL binds
extracellular matrix and
proteins

2. rec-HIS-GroEL binds
Vero cells

3. rec-HIS-GroEL induces
TNF/IL6 in murine macrophages

Proteinase K sensitive and
polymixin B resistant

1/2. No
LPS is not accountable for
the binding activities of
rec-GroEL.

2. Yes
LPS-TLR4 is responsible for
the rec-HIS-GroEL
macrophage activation.

For each publication suggesting that a leptospiral protein could be inflammatory or a TLR agonist, are indicated the name of the protein, the expression system, the results of endotoxin detection tests, if the protein has been HIS-tagged
(NB the presence of HIS-Tag impairs the detection with the Limulus assay), the concentration used to stimulate cells, and the principal conclusions of the authors. In the last column, we critically assess the authors conclusions and
explain why there is no problem since the endotoxin contamination should not interfere with their observations (NOT) or that the conclusions are probably erroneous since the results are compatible with endotoxin contamination
(YES), or potentially wrong because of other bacterial contaminations (MAYBE).
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artificial intelligence are now being used intensively to predict
new TLR4 agonists and to decipher safe vaccines adjuvants.
The fact that these in silico studies may rely on hundreds of
artefactual data based on recombinant protein studies should
raise alarm bells.
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