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Abstract: Arthropod-borne viruses (arboviruses) pose a significant global health threat and are
primarily transmitted by mosquitoes. In Cambodia, there are currently 290 recorded mosquito
species, with at least 17 of them considered potential vectors of arboviruses to humans. Effective
surveillance of virome profiles in mosquitoes from Cambodia is vital, as it could help prevent and
control arbovirus diseases in a country where epidemics occur frequently. The objective of this
study was to identify and characterize the viral diversity in mosquitoes collected during a one-year
longitudinal study conducted in various habitats across Cambodia. For this purpose, we used a
metatranscriptomics approach and detected the presence of chikungunya virus in the collected
mosquitoes. Additionally, we identified viruses categorized into 26 taxa, including those known
to harbor arboviruses such as Flaviviridae and Orthomyxoviridae, along with a group of viruses not
yet taxonomically identified and provisionally named “unclassified viruses”. Interestingly, the
taxa detected varied in abundance and composition depending on the mosquito genus, with no
significant influence of the collection season. Furthermore, most of the identified viruses were
either closely related to viruses found exclusively in insects or represented new viruses belonging to
the Rhabdoviridae and Birnaviridae families. The transmission capabilities of these novel viruses to
vertebrates remain unknown.

Keywords: virus discovery; mosquito; mosquito virome; comparative metagenomic; Cambodia

1. Introduction

Mosquitoes have consistently been identified as the primary vectors of arthropod-
borne viruses (arboviruses) in numerous studies and epidemiological investigations [1–4].
Over 300 mosquito species, mainly belonging to the Aedes and Culex genera [5,6], are
capable of transmitting arboviruses.

Arboviruses pose an increasing public health threat, imposing significant social and
economic burdens in various countries globally. There are over 500 known circulating
arbovirus strains, approximately 100 of which can cause harm to both humans and an-
imals [7]. These include well-known viruses such as Yellow fever virus (YFV), Zika
virus (ZIKV), Dengue virus (DENV), and Chikungunya virus (CHIKV) [8–10], as well
as Japanese encephalitis virus (JEV) and West Nile virus (WNV), carried by Aedes and Culex
mosquitoes [11,12].

In addition to arboviruses, certain mosquito species also harbor a class of viruses
known as insect-specific viruses (ISVs). ISVs have a limited host range restricted to insects
and cannot infect vertebrates or replicate in vertebrate cell lines [13–16]. The first identified
ISV was the Cell-Fusing Agent Virus (CFAV), a flavivirus that infects Ae. aegypti cell lines
and exhibits a significant cytopathic effect in Ae. albopictus cell lines. BHK-21 isolated
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from the kidney of a golden hamster, Vero, derived from the kidney of an African green
monkey, and BK, known to be a subline of the widely prevalent keratin-forming tumor
cell line HeLa [17]. The impact of ISVs on the transmission dynamics of arboviruses by
mosquitoes has been the subject of investigation in recent years. Several studies have
provided evidence that ISVs play a significant role in modulating the ability of mosquitoes
to transmit arboviruses. For instance, the presence of ISVs in mosquito saliva has been
found to competitively limit the replication of arboviruses by a mechanism involving
resource competition within the cellular environment, thereby blocking the transmission
process [18]. Additionally, ISV infections in mosquitoes have been shown to trigger an
immune response, leading to the activation of antiviral mechanisms. This immune response
plays a pivotal role in restricting arboviral replication within mosquitoes, consequently
limiting their transmission to human or vertebrate hosts [19].

Moreover, recent years have seen the discovery of less characterized viruses called
mosquito-associated viruses (MAVs) [20,21]. Unlike ISVs, MAVs have not been the sub-
ject of experimental studies to assess their ability to replicate in vertebrate hosts, their
pathogenicity, or their impact on arbovirus replication within mosquitoes. The only known
information about MAVs is that they are solely detected in mosquitoes.

The spread of mosquito vectors is facilitated by factors such as climate change,
mosquito adaptability, rapid urbanization, and increased international travel and trade,
leading to the expansion of regions affected by arboviruses [22]. One of the countries
significantly impacted by climatic change and facing the burden of arbovirus diseases is
Cambodia, located in Southeast Asia. The country faces challenges such as floods, which
can influence mosquito breeding, thereby increasing the risk of arbovirus emergence [23].
The national sentinel surveillance system has reported a high annual average of 103 cases
of dengue fever per 10,000 population since 2000. The case fatality rate for dengue fever
ranges from 1% to 2%, placing Cambodia among the most affected countries in Southeast
Asia [24]. Japanese encephalitis is also endemic and a leading cause of acute encephalitis,
particularly in children [25–27]. Zika virus was also infrequently reported from 2007 to
2016 [28]. Chikungunya re-emerged in 2020 and led to a nationwide outbreak [29].

Additionaly, Cambodia harbors a diverse mosquito population, comprising more
than 290 species from 20 genera, with 43 identified as vectors of pathogens [30]. This
diversity contributes to the complexity of controlling arbovirus transmission in the country.
To mitigate the risk of arbovirus emergence, comprehensive vector control measures,
strengthened surveillance systems, and increased public awareness on arbovirus prevention
and control are crucial.

To better measure the virus burden in mosquitoes, it is necessary to adopt broad-range
methods capable of also detecting unknown viruses. In recent years, metagenomic analysis
of field-collected mosquitoes using advanced next-generation sequencing (NGS) technology
has emerged as a valuable tool. This approach allows for the detection of a wide range
of novel or unexpected viruses [31,32]. In this study, using this tool, we have contributed
to the understanding of arbovirus disease epidemiology and circulation in Cambodia by
conducting a one-year longitudinal study in different biotopes.

2. Materials and Methods
2.1. Mosquito Collection and Identification

This study was approved by Cambodia authorities, with an authorization letter from
the Ministry of Environment issued in November 2019 (permit no 144). Mosquito sampling
was carried out in eight communes located in Kampong Thom Province. A total of six
environmental sites were selected (Figure S1). Eleven missions were conducted between
January 2021 and December 2021. For each mission, each site was investigated during three
consecutive days using two BG-1 Sentinel™ Mosquito Traps, 7.5–12 Volt baited with BG-
Lure® (BioQuip, Rancho Dominguez, CA, USA) installed both inside and outside houses.
Dry ice was placed in a dry ice dispenser next to each trap. Each trapping location was
visited every day to remove the collected insects. Caught mosquitoes were subsequently
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killed using carbon dioxide and further morphologically identified using available identifi-
cation keys [33–36]. Mosquitoes were stored immediately at 4 ◦C at the field until returning
to the laboratory, where they were stored at −80 ◦C until further experiments.

2.2. Preparation of Metatranscriptomics Libraries
2.2.1. Mosquito Pooling and RNA Extraction

Collected mosquitoes were pooled per species, season, and collection location (in-
door/outdoor) to a total of 10 mosquitoes maximum per minipool, and homogenized with
500 µL of PBS using a MagnaLyser version 1.1 (Roche, Mannheim, Germany) at 6000 rpm
for 1 min. Crushing material was centrifuged for 2 min at 12,000× g and 4 ◦C, then 167 µL
of supernatant was transferred individually to 835 µL of RNA later solution (Invitrogen).
The mixture was incubated overnight at 4 ◦C and stored at −80 ◦C until shipment to
Institut Pasteur in Paris. According to the mosquito species season and collection location
(indoor/outdoor), minipools were combined to form large pools that contained a maxi-
mum of 100 mosquitoes per pool (Table S1). A total of 6646 mosquitoes were selected and
subsequently distributed across 103 large pools. Overall, total RNA was extracted from the
103 large pools of mosquitoes in a Biosafety Level 3 (BSL-3) laboratory using the Maxwell
RSC simply RNA tissue kit (Promega, Madison, WI, USA), according to the manufacturer’s
instructions. RNA extracts were quantified with the Qubit RNA High sensitivity assay
(Invitrogen, Waltham, MA, USA) and analyzed using an Agilent BioAnalyzer RNA pico
chip (Agilent, Waldbronn, Germany).

2.2.2. NGS Library Preparation and Sequencing

Sequencing libraries of the 103 large pools were prepared using the SMARTer Stranded
Total RNA-seq kit v3-Pico input mammalian kit (Takara Bio, San Jose, CA, USA). The
quantity of RNA input, the duration of heat fragmentation, and the final amplification
were adapted according to each sample RNA profile. Quantification and quality controls
of the libraries were verified by the Qubit DNA High sensitivity assay (Invitrogen) and
the Bioanalyzer DNA High Sensitivity chips (Agilent, Waldbronn, Germany), respectively.
Sequencing was carried out on the Illumina NovaSeq or NextSeq 2000 devices in a paired-
ends 2 × 150 bp or 2 × 100 bp format, respectively, to achieve approximately 50 million
reads for each library (Table S2).

2.3. Virus Assignment

Raw reads were processed with an in-house bioinformatics pipeline (Microseek, Insti-
tut Pasteur, Paris, France) that allowed for quality check followed by read trimming and
normalization [37]. Trimmed reads were de novo assembled and translated into protein
sequences using an in-house translation tool comprised in Microseek. A BLAST-based simi-
larity search was then performed for all contigs and singletons against the comprehensive
and curated protein Reference Viral database (RVDB-prot) [38] followed by a BlastP-based
verification of the accuracy of the viral taxonomic assignation against the whole protein
NCBI/nr database. A final BLASTN-based verification was performed against NCBI/nt to
confirm that no better hit was obtained with non-coding sequences present in NCBI/nt.
The quantification of abundance of each viral taxon was estimated by summing the length
(in nucleotides) of all sequences (contigs and singletons) associated to this taxon instead of
summing the raw number of sequences, in order to take into account the length and depth
of long viral contigs.

2.4. Phylogenetic Analyses

To determine the evolutionary history of newly discovered viruses, amino acid se-
quences of the complete viral polymerase or complete polyprotein of each virus were
compared with the sequences of the same type of proteins recovered from the NCBI
database belonging to the same family. Within each family, sequences were aligned by
using the E-INS-I algorithm in MAFFT (version 7) [39]. Ambiguously aligned regions
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were subsequently removed using BMGE [40]. Phylogenetic trees were constructed with
PhyML (version 3.1) [41], employing LG as the evolutionary and substitution model and
Subtree Pruning and Regrafting (SPR) as the tree topology. Approximate Bayes parameter
implemented in PhyML was used for branch support statiscal test. Phylogenetic trees were
visualized with the Interactive Tree Of Life tool (iTOL version 6) [42].

2.5. Statistical Analyses

Principal Coordinates Analysis (PCoA) was conducted to explore differences in viral
abundances between species, season, and collection location (Indoor/Outdoor). PCoA
was based on the Bray−Curtis dissimilarity distance and computed using R software
(v4.2.1) and ade4 package [43]. Differential abundance analysis was performed using
SHAMAN with default parameters [44]. Abundance count data were normalized following
the normalization method provided in the DESeq2 R package (v1.6.3) [45]. To identify
differentially abundant viral genera across mosquito genera, a generalized linear model
(GLM) was used. The GLM included mosquito genera as the main effect. Covariates
season, collection location, and sequencing batch were included to take into account their
potential effects. The resulting p-values were adjusted using the Benjamin and Hochberg
procedure to account for multiple comparisons. Associated figures were generated with
ggplot2 package.

3. Results
3.1. Mosquito Diversity and Abundance

The year 2021, during which the mosquitoes were collected, covered the two main
bioclimatic seasons: the dry season from January to March and December, and the rainy
season lasting from April to November.

The collected mosquitoes were classified into three genera: Culex, Aedes, and Anopheles,
encompassing nine species: Ae. aegypti, Ae. albopictus, An. indefinitus, An. vagus, Cx.
brevipalpis, Cx. gelidus, Cx. quinquefasciatus, Cx. tritaeniorhyncus, and Cx. vishnui group.

Among these species, the most abundant during the dry season was Cx. quinquefascia-
tus, accounting for 54% of all captured mosquitoes, followed by Cx. vishnui group (21%)
and Ae. aegypti (12%). Conversely, in the rainy season, Ae. aegypti was the most frequently
captured species (31%), followed by Cx. vishnui group (24%) and Cx. quinquefasciatus (23%)
(Figure S2).

3.2. Overview of the Virome Composition among Mosquito Genera

To visualize the composition of the virome across mosquito genera and species, we
generated a heatmap representing the normalized viral abundance (Figure 1).

We identified a total of 26 taxa, including a group of viruses labeled as “unclassified
viruses” by the International Committee on Taxonomy of Viruses (ICTV). The heatmap
included mixed family groups and genus groups, as taxonomic assignations were based on
Last Common Ancestor (LCA) information provided by Microseek. In certain cases, the
LCA corresponded to a specific viral species or genus, resulting in classification at that level.
In other instances, LCA was only identified at the family level, and thus the classification
was maintained at that level.

The majority of the identified viruses belonged to taxa known to specifically infect
insects, such as Merhavirus and Ohlsrhavirus (Rhabdoviridae), and Phasivirus (Phenuiviridae).
Additionally, we found taxa associated with genera known to harbor arboviruses, such as
Flavivirus (Flaviviridae), Quaranjavirus (Orthomyxoviridae), and Alphavirus (Togaviridae). The
remaining viral sequences were assigned to taxa known to infect mostly plants and fungi
(Figure 1).
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Figure 1. Normalized abundance of viral species in mosquito pools. The heatmap shows the viral
abundances across mosquito genera and species. The normalized counts were transformed using
variance stabilizing transformation (VST) and are displayed on a logarithmic scale, ranging from
white (indicating low abundance) to dark blue (indicating high abundance). The viral genera (on the
right) were clustered based on their relative abundances, and the corresponding hosts are shown on
the left.

Two viral taxa, Dinovernavirus and Orthophasmavirus, were only identified in Aedes
and Anopheles mosquitoes. Six viral taxa were shared exclusively between Aedes and Culex
mosquitoes, including unclassified Totiviridae and unclassified Partitiviridae. Additionally,
three viral taxa, namely unclassified Rhabdoviridae, unclassified Flaviviridae, and unclassified
Quaranjavirus, were identified in all three mosquito genera. Furthermore, some taxa were
exclusively found in one mosquito genus and absent in others. For instance, two taxa
(Alphavirus and Almendravirus) were solely found in Aedes mosquitoes, while thirteen taxa
(including Culicidavirus and Pestivirus) were only observed in Culex mosquitoes. Notably,
no taxa were solely identified in Anopheles mosquitoes (Figures 2 and S3).

3.3. Comparing Virome Diversity and Abundance across Mosquito Genera, Season, and
Collection Location

To assess variations in viral abundance among samples, we performed a Principal
Coordinates Analysis (PCoA) on 87 out of the 103 libraries. Sixteen samples were excluded
from the statistical analysis due to inadequate representation, resulting in an insufficient
number for statistical comparisons.

The results revealed clear differences in the virome composition and viral abundances
among the mosquito genera, with three separate groups representing each mosquito genus.
Furthermore, within the Culex genus, we encountered a substantial number of mosquito
species, specifically Cx. Vishnui group and Cx. Quinquefasciatus. Notably, it appears that
there was a clear division at the species level, with these two species seemingly grouped
into two distinct categories (Figure 3).
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uniquely identified within each genus.
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Figure 3. Statistical analyses comparing viral abundances among mosquito genera. Principal Coordi-
nates Analysis was conducted on normalized relative abundances. The first two axes capture 63% of
the variability within the data and highlight differences in viral composition across mosquito genera.
The arrows show the direction of gradients of abundances for each viral genera and their length is
proportional to the covariance between the mosquito genera and computed PcoA axis. Viral genera
that showed significant differences through differential analysis are highlighted in red.
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However, no significant differences were observed for other covariates, namely the
season and the collection location (indoor/outdoor; Figure S4).

To compare viral abundance among mosquito genera more effectively, we conducted a
differential analysis. This allowed us to identify viral groups with varying abundance levels
through pairwise comparisons, and we quantified the differences using the Fold Change
criteria. Among the findings, it was observed that the unclassified Partitiviridae family
exhibited the highest abundance in Aedes mosquitoes, while the Dinovernavirus genus
was most abundant in Anopheles mosquitoes. On the other hand, the abundance of the
unclassified Rhabdoviridae appeared to be similar between Anopheles and Culex mosquitoes
(Figure 4). The comprehensive results, including the Fold Change and adjusted p-values
for all viral groups, are also reported (Table S3).
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3.4. Genetic Characterization of Relevant Viruses

To uncover potential arboviruses responsible for mild infections in humans, we fo-
cused on taxa of viruses known to infect both vertebrates and invertebrates. Subsequently,
we conducted a comprehensive phylogenetic analysis, which enabled us to identify and
classify the viral species present within these specific groups.

3.4.1. Togaviridae

The family Togaviridae includes two genera, Alphavirus and Rubivirus. The Rubivirus
genus contains a single virus that causes mild diseases in children, and it is transmitted by
the respiratory route. The Alphavirus genus contains a large number of viruses, many of
which are arboviruses and cause human diseases. The most common symptoms are fever,
encephalitis, and rashes.

Within this family, we identified viral sequences assigned to Chikungunya virus
(CHIKV) belonging to the Alphavirus genus. CHIKV was detected in one Ae. Aegypti pool
collected in the rainy season (Table 1). The consensus sequence showed 90% genome cover-
age, and an overall 99.9% amino-acid identity compared with a CHIKV strain identified
in Cambodia from a human serum in 2021 (OL999095). The CHIKV sequence clustered
in a phylogenetic clade comprising other CHIKV strains originating from Cambodia and
isolated from the serum of patients in Cambodia (Figure 5).
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Table 1. Compilation of referenced the Last Common Ancestors (LCAs) and their associated traits. The LCAs represented here are those identified by the Microseek
pipeline.

Mosquito Species
Harboring Viruses LCA (Last Common Ancestor)

Genbank
Accession
Number of

the LCA

Family Genus Primary Known Host Maximum %
aa Identity

Complete
Genome/

Complete CDS

Positive Libraries/
Tested Libraries (%)

Aedes aegypti Chikungunya virus OL999095.1 Togaviridae Alphavirus Human/vertebrate/Invertebrate 100 No 1/19 (5)
Aedes aegypti Cell fusing agent virus LR694078.1 Flaviviridae Flavivirus Aedes 100 Yes 17/19 (89)

Culex vishnui.g Culex flavivirus HQ678513.1 Flaviviridae Flavivirus Culex 99 Yes 5/24 (20)
Anopheles vagus Culex flavivirus BBQ04787 Flaviviridae Flavivirus Culex 71 No 2/10 (20)

Culex quinquefasciatus Culex flavivirus HQ678513.1 Flaviviridae Flavivirus Culex 99 Yes 35/35 (100)
Culex brevipalpis Culex flavivirus HQ678513.1 Flaviviridae Flavivirus Culex 98 Yes 4/5 (80)
Culex brevipalpis Culex flavivirus MN318426.1 Flaviviridae Flavivirus Culex 71 Yes 1/5 (20)

Culex gelidus Quang binh Virus NC_012671.1 Flaviviridae Flavivirus Culex 99 Yes 2/3 (67)
Culex vishnui.g Guadeloupe Culex rhabdovirus MN013393.1 Rhabdoviridae Unclassified Mosquitoes 100 Yes 8/24 (33)

Culex quinquefasciatus Guadeloupe Culex rhabdovirus MN013393.1 Rhabdoviridae Unclassified Mosquitoes 100 Yes 35/35 (100)
Culex brevipalpis Guadeloupe Culex rhabdovirus MN013393.1 Rhabdoviridae Unclassified Mosquitoes 100 Yes 1/5 (20)

Culex tritaeniorhynchus Wuhan Mosquito virus 9 YP_009305109.1 Rhabdoviridae Unclassified Culex 100 No 1/2 (50)

Anopheles vagus Ngaingan Hapavirus (Glycoprotein) YP_003518289.1 Rhabdoviridae Hapavirus Anopheles 27 Yes 8/10 (80)
Evro rhabdovirus (RdRp) QRD99862.1 Rhabdoviridae Unclassified Anopheles 46 Yes 8/10 (80)

Anopheles indefinitus Ngaingan Hapavirus YP_003518289.1 Rhabdoviridae Hapavirus Anopheles 27 No 2/3 (67)
Culex vishnui.g Merida virus MH310083 Rhabdoviridae Merhavirus Culex 99 No 2/24 (8)

Culex quinquefasciatus Merida virus MH310083 Rhabdoviridae Merhavirus Culex 99 No 9/35 (26)
Culex brevipalpis Merida virus MH310083 Rhabdoviridae Merhavirus Culex 99 No 1/5 (20)
Culex vishnui.g Culex pseudovishnui rhabdo-like LC514056.1 Rhabdoviridae Ohlsrhavirus Culex 96 No 12/24 (50)

Aedes aegypti Guadeloupe mosquito quaranja-like
virus 1 (RdRp) QRW42587.1 Orthomyxoviridae Quaranjavirus Aedes 99 Yes 16/19 (84)

Culex vishnui.g Wuhan Mosquito Virus 6 (RdRp) QRW42421.1 Orthomyxoviridae Quaranjavirus Culex 100 Yes 14/24 (58)
Culex quinquefasciatus Wuhan Mosquito Virus 6 (RdRp) QTW97780.1 Orthomyxoviridae Quaranjavirus Culex 100 Yes 35/35 (100)

Culex quinquefasciatus Port Bolivar virus (Polyprotein) QIW91912.1 Birnaviridae Entomobirnavirus Aedes 51 Yes 4/35 (11)
Eridge virus (RdRp) AMO03243.1 Birnaviridae Entomobirnavirus Aedes 35 Yes 2/35 (6)

Aedes aegypti Humaita-Tubiacanga OQ305261.1 Unclassified Unclassified Mosquitoes 100 Yes 14/19 (74)
Culex quinquefasciatus Hubei partiti-like virus 22 MW452285.1 Unclassified Unclassified Culex 100 Yes 24/35 (68)
Culex tritaeniorhynchus Hubei partiti-like virus 22 MW452285.1 Unclassified Unclassified Culex 100 No 1/2 (50)
Culex quinquefasciatus Hubei virga-like virus 2 MW452285.1 Unclassified Unclassified Culex 99 Yes 30/35 (86)

Culex vishnui.g Hubei virga-like virus 2 MW452285.1 Unclassified Unclassified Culex 99 Yes 1/24 (1)
Culex vishnui.g Broome luteo-like virus 1 MT498823.1 Unclassified Unclassified Culex annulirostris 91 Yes 17/24 (71)

Culex tritaeniorhynchus Broome luteo-like virus 1 MT498823.1 Unclassified Unclassified Culex annulirostris 85 Yes 1/2 (50)
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Figure 5. Phylogenetic analysis of Chikungunya virus strains identified in mosquitoes in Cambodia,
in relation to other strains belonging to the Indian Ocean lineage. The phylogenetic tree is constructed
based on the complete genomes of nucleotide sequences. The branch highlighted in red represents
sequences originating from Cambodia. The sequence identified in this study is represented by a solid
red circle. The scale bar indicates the number of nucleotide substitutions per site.

3.4.2. Flaviviridae

The family Flaviviridae contains four genera approved by the ICTV: Flavivirus,
Hepacivirus, Pegivirus, and Pestivirus. A new group of segmented Flaviviridae-related
viruses, named “Jingmenvirus group”, has been identified and described in the litera-
ture [46,47]. Most members of this family are important human and veterinary pathogens
such as Yellow fever virus, Dengue virus, and West Nile virus.

Within this family, viral sequences identified in this study were assigned to three
viruses belonging to the Flavivirus genus (Table 1). The cell fusing agent virus (CFAV) was
detected only in Ae. Aegypti pools. Complete coding genome sequences were obtained and
showed 99% of amino-acid identity with the LR694078 strain identified from Ae. Aegypti
collected in Cambodia in 2015. The Culex flavivirus (CxFV) was identified in pools of Culex
and Anopheles mosquitoes. Complete coding genome sequences were obtained, revealing
amino acid identities of 71% for Anopheles mosquitoes and one pool of Cx. Brevipalpis
mosquitoes, and 99% for the other Culex mosquitoes when compared with the BBQ04787
and HQ678513.1 strains, which were collected from Culex mosquitoes in Brazil in 2017.
The Quang Binh virus (QBV) was detected in Cx. Gelidus pools. The consensus sequences
showed coverage and amino acid identity of 99% to 100%, compared with the NC_012671
strain from Culex mosquitoes collected in Vietnam in 2002. It is important to note that, for
each virus, the identified sequences from different mosquitoes collected in different seasons
shared more than 99% identity of nucleotides.

While the Flavivirus genus includes a number of arboviruses, certain members within
this genus are classified as ISVs including CFAV, CxFV, and QBV. The phylogenetic analysis
revealed that these viruses cluster together with MAVs within a distinct clade within the
Flavivirus genus. The ICTV designates this clade as “unclassified Flavivirus” (Figure 6A,B).
Concerning the virus identified in Anopheles, we did not obtain an entire genome, unlike
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the viruses identified in Culex mosquitoes. The largest contig was 2198 amino acids long.
Consequently, we did not include it in our phylogenetic analyses.
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Figure 6. Phylogenetic analysis of Flaviviridae viruses identified in this study and their relationship
with other family members. The construction of the phylogenetic tree was based on the complete
polyprotein sequence. The labeled branches represent various known virus genera belonging to the
Flaviviridae family, as well as sequences belonging to the unclassified Flavivirus group. The scale
bar indicates the number of amino-acid substitutions per site. (A) Division of viruses according to
genera within the Flaviviridae family. The sequences identified in this study are surrounded in red.
(B) Enlarged view of unclassified Flaviviruses. These viruses are represented by the branch encircled
in red. The sequences identified in this study are written in red.
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3.4.3. Rhabdoviridae

The family Rhabdoviridae includes three subfamilies, 45 genera, and 275 virus species.
Certain genera such as Hapavirus and Ephemerovirus contain arboviruses. The Vesiculovirus
and Lyssavirus genera contain viruses that are pathogens for humans.

Complete coding genome sequences assigned to Guadeloupe Culex rhabdovirus were
found in different Culex mosquitoes (Table 1). They showed 99% amino-acid identity
compared with the strain MN013393 discovered in Cx. quinquefasciatus in Guadeloupe.

Phylogenetic analysis placed our sequences in a clade of unclassified Rhabdoviridae
that mainly contains MAVs (Figure 7A,B).
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Figure 7. The phylogenetic analysis included viruses from the Rhabdoviridae family found in this
study, as well as other viruses within the same family. The phylogenetic tree was constructed based
on the RdRp amino acid sequence. The labeled branches represent various known virus genera
belonging to the Rhabdoviridae family, as well as sequences belonging to the unclassified Rhabdoviridae
group. The scale bar indicates the number of amino-acid substitutions per site. (A) Classification of
viruses into different genera within the Rhabdoviridae family. The sequences identified in this study
are surrounded in red. (B) Zoomed-in view of sequences assigned to Guadeloupe Culex rhabdovirus.
The branch encircled in red represents unclassified rhabdoviruses. The sequences identified in this
study are written in red. (C) Detailed view of the newly identified sequences in our study, tentatively
named “Cambodia-Anopheles Rhabdoviridae-like”. These sequences are written in red. The branch
encircled in red represents unclassified rhabdoviruses.

Partial sequences were attributed to Culex pseudovishnui rhabdo-like virus and
Merida virus, belonging to the genera Ohlsrhavirus and Merhavirus (Table 1), respectively.
Sequences of the Culex pseudovishnui rhabdo-like virus were identified in Cx. vishnui
group pools and showed a 96% amino-acid identity with the LC514056 strain from Culex
mosquitoes identified in Japan. Sequences of Merida virus were detected in different
Culex mosquito pools with a 99% amino-acid identity compared with the MH310083 strain
discovered in Cx. quinquefasciatus.

All of the above-mentioned viruses have been referred to in the literature as MAVs
because they have been identified only in mosquitoes. So far, no information of their
transmissibility to vertebrates is available.

In addition, we detected a novel virus in Anopheles mosquito pools, tentatively named
“Cambodia-Anopheles Rhabdoviridae virus”. It shared approximately 27% amino acid
identity with the glycoprotein of the Ngaingan hapavirus (NGAV). Furthermore, our
pipeline also indicated that the same virus exhibited 46% amino acid identity with the
RdRp of Evro rhabdovirus (Table 1). NGAV belongs to the Hapavirus genus and has been
isolated for the first time in 1970 from biting midges collected at the low-lying plains
of the Mitchell River Aboriginal community, Gulf of Carpentaria, northern Queensland.
Early serologic surveys have suggested that NGAV infects wallabies, kangaroos, and
possibly cattle [48]. Evro rhabdovirus has only been identified in Anopheles mosquitoes.
A phylogenetic analysis of the polymerase sequences placed this new virus in a distinct
clade close to the group of “unclassified Rhabdovirus” that exclusively contains MAVs
(Figure 7A,C).
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3.4.4. Orthomyxoviridae

The family Orthomyxoviridae comprises seven genera, Isavirus, Thogotovirus, and
Quaranjavirus and the four types of Influenza virus (Alpha, Beta, Delta, and Gamma). The
genera of Influenza virus contain viruses that cause influenza in birds and mammals,
including humans. Thogotoviruses and Quaranjaviruses comprise arboviruses transmitted by
ticks or mosquitoes.

Our results identified sequences assigned to Guadeloupe mosquito quaranja-like virus
1 (GMQLV1) and Wuhan Mosquito Virus 6 (WMV6), which belong to the Quaranjavirus
genus (Table 1). Additionally, WMV6 viruses detected in Cx. vishnui group and those iden-
tified in Cx. quinquefasciatus mosquito species, shared more than 99% nucleotide identity.

The genomes of Quaranjavirus members usually contain six to seven segments [49].
Here, we identified four segments of GMQLV1 (PB1, PB2, PA, and NP) and five segments
of WMV6 (PB1, PB2, PA, NP, and HA), respectively, in Ae. aegypti and Culex sp. pools.
Only two quaranjaviruses have been recognized by the ICTV, the Johnston Atoll virus (JAV)
and the Quaranfil virus (QRFV), known to be transmitted to birds by ticks [50]. QRFV
is the only virus known to infect humans. It has been isolated from soft ticks and from
the blood of children with mild febrile illness in Quaranfil, Egypt [51]. Numerous viruses
have been included in the Quaranjavirus genus and have been designated as unclassified
Quaranjavirus [52–54].

The phylogenetic tree based on the PB1 segment of GMQLV1 and WMV6 and other
Orthomyxoviridae-related viruses placed GMQLV1 and WMV6 in a clade of unclassified
Quaranjavirus that mainly contains MAVs (Figure 8A,B).
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Figure 8. Phylogenetic analysis of Orthomyxoviridae viruses incorporated those identified in this study.
The phylogenetic tree is constructed based on the PB1 amino acid sequence. (A) Classification of
viruses into different genera within the Orthomyxoviridae family. The sequences identified in this
study are surrounded in red. The labeled branches represent various known virus genera belonging
to the Orthomyxoviridae family, as well as the sequences belonging to the unclassified Quaranjavirus
group. The scale bar indicates the number of amino-acid substitutions per site. (B) Zoomed-in view
of unclasified Quaranjavirus sequences. The branch encircled in red consists of viruses belonging to
the unclassified Quaranjavirus group, including the viruses identified in our study. The sequences
identified in this study are written in red.

3.4.5. Birnaviridae

The Birnaviridae family includes seven genera and comprises viruses that infect a
large diversity of hosts: Aquabirnavirus, Avibirnavirus, and Blosnavirus are genera known to
infect vertebrates (excluding mammals), while the Entomobirnavirus and Dronavirus genera
infect insects. In addition, the Ronavirus genus has been discovered from rotifers and the
Telnavirus has been identified from molluscs. The genome of Birnaviridae viruses contains
two segments, A and B encoding the polyprotein and the viral polymerase, respectively [55].

We identified viral sequences from Cx. quinquefasciatus pools that showed 37% amino-
acid identity with the polyprotein segment of Port Bolivar virus and 51% amino-acid
identity with the polymerase segment of Eridge virus, belonging to the Entomobirnavirus
genus (Table 1). Port Bolivar has been isolated from a pool of Ae. sollicitans mosquitoes
collected in East Texas, USA [56], and the Eridge virus was identified in Drosophila im-
migrans collected in the United Kingdom in 2011. We tentatively named the new virus
“Cambodia Culex Birnaviridae virus”.

We detected the complete sequence of the glycoprotein in four pools and the complete
sequence of the polymerase in two pools. Phylogenetic analysis based on the polymerase
protein revealed that the new viral sequences formed a distinct clade separate from other
genera within the Birnaviridae family (Figure 9A). The closest clade to our sequences is the
Entomobirnavirus genus.
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Figure 9. Phylogenetic analysis of Birnaviridae viruses incorporating those identified in this study.
The phylogenetic tree was constructed based on the RdRp amino acid sequence. (A) Classification of
viruses into different genera within the Birnaviridae family. The labeled branches represent various
known virus genera belonging to the Birnaviridae family, as well as the newly identified sequences
in this study. The sequences identified in this study are highlighted in red. The scale bar indicates
the number of amino-acid substitutions per site. (B) Pairwise alignment of the polymerase and
polyprotein segments between entomobirnaviruses and the new sequences identified in this study
belonging to the Birnaviridae family.

To investigate the similarities between the new sequences and the entomobirnaviruses,
we performed a pairwise comparison of the polymerase protein. The distance matrix
showed an average amino acid identity of 35% between the novel sequences and the
entomobirnaviruses for both segments (Figure 9B).
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3.4.6. Characterization of Some Unclassified Viruses

Because distinct characteristics or key information necessary for classification are
missing, some viruses remain unclassified within existing taxonomic categories. We de-
tected a significant number of taxonomically unclassified viruses in all mosquito species.
In accordance with the results obtained for the classified viruses, we observed that the
identified closest viral species varied among the mosquito genera. For example, sequences
related to Humaita-Tubiacanga virus were detected exclusively in Aedes aegypti pools
while sequences assigned to Hubei partiti-like virus 22, Hubei virga-like virus 2, and
Broome luteo-like virus 1 were detected uniquely in Culex mosquito pools. It is worth
noting that all the identified viruses in this group have previously been discovered solely
in mosquitoes in earlier studies. These viruses have been referred to as MAVs (Table 1).

4. Discussion

Mosquitoes are known to be the principal vectors of arboviruses, which pose a ma-
jor threat to human health. Numerous metagenomic analyses have been conducted on
mosquitoes worldwide to characterize the viral communities carried by these vectors. In
this study, we describe the diversity and evolution of viral communities associated with
mosquitoes collected over one year in Kampong Thom Province, Cambodia.

A total of 26 viral taxa were identified, including viruses specific to vertebrates,
invertebrates, plants, and fungi. Additionally, several viruses that remain unclassified by
the ICTV were also identified.

We observed that while certain taxa of viruses are shared between different mosquito
genera, some viral groups are restricted to specific mosquito genera. These findings align
with previous studies, indicating that the composition of viral communities present in
mosquitoes varies depending on the mosquito genus [57–59]. This supports the hypothesis
that viral composition can be host-specific, implying that different mosquito species or gen-
era may have unique viral associations. Several factors could contribute to host specificity.
One of these factors can be the mosquito’s microbiota, which can interact with viruses,
either directly or indirectly, impacting the abundance, replication, or transmissibility of
the viruses [60]. Studies have reported variations in the composition and diversity of
microbiota among different mosquito genera, leading to differences in the composition of
the virome between mosquito genera [61,62].

Contrary to some previous studies that reported changes in virome composition
according to the collection season [63,64], we did not observe such an association in
Cambodian mosquitoes. This absence of difference can be explained by the fact that the
presence of mosquito larval habitats harboring these viruses may not depend on seasonal
precipitation and can persist throughout the year. These habitats can be permanent, such
as lakes, rivers, and ponds, and provide continuous opportunities for virus transmission
and the maintenance of mosquito populations [65]. It is important to consider these factors
when studying the dynamics of virome composition in mosquitoes. Further research is
needed to investigate the specific mechanisms that allow certain viruses to maintain a
permanent presence in mosquito populations throughout the year.

We observed no differences in virome composition between mosquitoes captured
inside households and those collected outside. This finding is not highly unexpected as
it is conceivable that the same mosquitoes may move freely between indoor and outdoor
environments.

To identify putative arboviruses responsible for mild infections in the human popula-
tion, we focused on the taxa of viruses known to infect both vertebrates and invertebrates,
and we characterized the viral species detected within these groups by performing a phy-
logenetic analysis. Despite the ongoing circulation of DENV and JEV in Cambodia, we
did not detect these viruses in our samples. However, we identified one known arbovirus,
CHIKV, in a pool of Ae. aegypti mosquitoes collected during the rainy season. The CHIKV
strain identified in our study showed close genetic similarity (>99.9%) to the CHIKV strain
identified in a serum sample from a patient in Cambodia in 2021. This finding demon-
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strates the effectiveness of our approach in detecting known arboviruses. However, it also
highlights the challenges of detecting pathogenic arboviruses in field-caught mosquitoes,
as reported in previous studies [66–69]. Similar to many prior studies, we chose to pool
multiple mosquitoes before sequencing, which may have resulted in a decreased proportion
of viral reads and reduced precision in characterizing mosquito virome profiles. However,
a study that utilized a single mosquito for viral metagenomics did not observe a significant
difference compared to using mosquito pools [58].

The challenges of detecting pathogenic arboviruses in field-caught mosquitoes may be
attributed to several factors, including the low frequency of these pathogenic viruses within
mosquito populations. Arboviruses can have a low prevalence in mosquito populations,
making their detection more challenging compared with other more abundant viruses.

The most detected viruses were ISVs, including the cell fusing agent virus and Culex
flavivirus, and MAVs, such as Guadeloupe Culex rhabdovirus and Wuhan mosquito virus
9. It is important to highlight that the characterized viral species in this study differ based
on mosquito genus rather than species. Additionally, all sequences assigned to each viral
species shared more than 99% nucleotide similarity, even when they were identified in dif-
ferent mosquito species and collected during different seasons. This suggests the presence
of consistent viral species circulating among diverse mosquito populations throughout the
year. This finding strengthens the earlier observation that virome composition remains
unaffected by seasonal variations.

In the majority of metagenomics studies focusing on mosquito viromes, ISVs were
found to be more abundant than arboviruses [20,70,71]. The abundance of ISVs within
mosquitoes has been extensively studied to better understand their role and their potential
impact on arbovirus transmission. Previous research on various Culex species revealed
that mosquitoes infected with Culex Flavivirus (CxFV) showed reduced susceptibility to
secondary infection with West Nile virus (WNV) compared with uninfected mosquitoes [72].
Another study demonstrated the ability of Palm Creek virus (PCV) to effectively reduce the
replication of Kunjin virus (KUNV) and Murray Valley (MVEV) virus in C6/36 cells when
co-infected with ISV [73]. However, a recent study found no significant effects of Palm
Creek virus (ISV) infection on the vector competence of Zika and Chikungunya viruses in
Ae. aegypti and Ae. albopictus mosquitoes [74]. These findings suggest that the impact of
ISVs on arboviruses may vary depending on the specific arbovirus species, highlighting
the need for cautious interpretation. However, it is crucial to acknowledge that our current
understanding lacks conclusive evidence regarding the overall effects of ISV infection on
other arthropod-borne pathogens. Further studies should be conducted to determine the
underlying mechanisms by which ISVs interfere with the transmission of arboviruses and
identify the host factors associated with their restriction of viruses to mosquito hosts.

The increasing number of metagenomics studies focusing on the virome associated
with mosquitoes has led to the discovery of many MAVs in recent years. However, limited
information is available regarding their transmissibility to vertebrates and their specific
hosts. Given their abundance and persistence, it is important to study the potential role of
MAVs in arbovirus transmission and their interactions with specific hosts. Some MAVs,
such as Hubei partiti-like virus 22 and Hubei virga-like virus 22, were identified in our
study and belong to the “unclassified virus” group. This group comprises viruses for which
crucial information, such as their classification, evolutionary history, genetic diversity,
and ecological characteristics, is currently unknown. Further investigations should be
conducted to classify the viruses within this group.

Interestingly, we identified three novel viruses for the first time. The first one ap-
pears to be the virus identified in Cx. brevipalpis, which shares 71% amino acid identity
with a Culex flavivirus. However, phylogenetic analyses have placed it within the MAVs
clade in the group of unclassified Flavivirus, and it is not very distant from Culex fla-
viviruses. The second virus, Cambodia-Anopheles Rhabdoviridae virus, was classified
within a new clade among the Rhabdoviridae family. This virus is closely related to a
clade exclusively containing MAVs, indicating that it could represent a novel group of
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MAVs within the Rhabdoviridae family. The third virus, named Cambodia Culex Birnaviri-
dae virus, was placed in a distinct clade, significantly distant from the various genera
within the Birnaviridae family. The closest clade to our sequences was identified as the
Entomobirnavirus genus. Conducting a pairwise comparison of the polymerase protein
between entomobirnaviruses and Cambodia_Culex Birnaviridae-like virus revealed an
average amino acid identity of 35%. Based on the demarcation criteria set by the ICTV
for the Birnaviridae family, we propose that the Cambodia Culex Birnaviridae-like virus
belongs to a novel genus within the Birnaviridae family. To further characterize these new
viruses, additional studies are needed to determine their ability to infect vertebrates, such
as molecular surveillance of patients with an unknown fever etiology or serological surveys
of human populations continuously exposed to mosquito bites.

5. Conclusions

This study shows the diversity of viral communities, encompassing both classified
and unclassified viruses. It also reinforces the hypothesis that viral composition can be host-
specific, particularly within the mosquito genus, which harbors unique viral associations.
Insect-specific viruses (ISVs) and mosquito-associated viruses (MAVs) were found to be
more abundant than arboviruses. The study also highlights the presence of novel and
unclassified viruses, underscoring the need for further research to determine their infectivity
and potential impact on vertebrates.
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