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Abstract.—Molecular sequence data from rapidly evolving organisms are often sampled at different points in time. Sam‑
pling times can then be used for molecular clock calibration. The root‑to‑tip (RTT) regression is an essential tool to assess
the degree to which the data behave in a clock‑like fashion. Here, we introduce Clockor2, a client‑side web application for
conducting RTT regression. Clockor2 allows users to quickly fit local and global molecular clocks, thus handling the in‑
creasing complexity of genomic datasets that sample beyond the assumption of homogeneous host populations. Clockor2
is efficient, handling trees of up to the order of 104 tips, with significant speed increases compared with other RTT re‑
gression applications. Although clockor2 is written as a web application, all data processing happens on the client‑side,
meaning that data never leave the user’s computer. Clockor2 is freely available at https://clockor2.github.io/. [evolutionary
rate heterogeneity; molecular clock; root‑to‑tip regression.]

INTRODUCTION
Phylodynamic analyses make use of genetic sequence

data to understand the evolution, epidemiological, and
ecological dynamics of a pathogen. Importantly, phyo‑
dynamics achieves its greatest value when generating
insight about infectious disease dynamics beyond that
offered by traditional epidemiological data. This fre‑
quently occurs at population interfaces, such as during
transmission across host sub‑populations, geographical
boundaries, or host species. Despite the increased com‑
plexity of such datasets, the essential component to all
phylodynamic modeling is the assumption of a molec‑
ular clock relating epidemiological and evolutionary
timescales (Biek et al. 2015).

The simplest molecular clock model is the strict clock,
which assumes a constant rate of substitution per unit
time known as the “evolutionary rate” (Zuckerkandl
and Pauling 1965). When the evolutionary rate is con‑
stant throughout a phylogenetic tree, the term global
molecular clock is used. In contrast, a strict local clock
refers to the situation where different substitution rates
apply to different monophyletic groups within a tree
(Ho and Duchêne 2014). The branches of local clocks
are sometimes referred to as the “foreground” while the
remaining branches are known as the “background,”
such that there are foreground and background rates
of evolution (Yoder and Yang 2000). The assumption
of a local clock may, for example, correspond to sam‑
pling from different host populations, host species, or
pathogen lineages (Worobey et al. 2014).

Several tools allow for the inference of strict molecular
clocks via root‑to‑tip (RTT) regression, but none read‑
ily offers the ability to fit local clock models (Rambaut
et al. 2016; Volz and Frost 2017; Hadfield et al. 2018;
Sagulenko et al. 2018). Here, we introduce Clockor2,
an RTT regression tool enabling rapid inference of
global and local strict molecular clocks from phyloge‑
netic trees where tips are annotated with sampling times
and other relevant data. Clockor2 is bundled with an
example from Dudas et al. (2018) where local clocks
are fit to MERS‑CoV samples from human and camel
hosts, and another in the documentation from Porter
et al. (2023) with SARS‑CoV‑2 samples from human and
mink hosts.

Phylodynamic datasets are and will continue to grow
in size and scope (Featherstone et al. 2022). For exam‑
ple, datasets of thousands to tens‑of‑thousands of sam‑
ples have been used to understand the spread of SARS‑
CoV‑2 at international scales, the emergence of variants
of concern (VOC), and transmission between species
(du Plessis et al. 2021; Hill et al. 2022; Nadeau et al. 2023;
Porter et al. 2023). However, larger datasets are more
likely to sample from distinct populations as a function
of their size, making local clocks increasingly important.
Currently, testing the fit of a local clock over alterna‑
tive models, such as global or relaxed clocks, frequently
requires intensive computational efforts using common
Bayesian phylodynamic applications such as BEAST or
RevBayes (Drummond and Rambaut 2007; Drummond
et al. 2012; Höhna et al. 2016; Suchard et al. 2018; Bouck‑
aert et al. 2019). Each generally requires hours to days
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2 SYSTEMATIC BIOLOGY

FIGURE 1. Clockor2 presents the tree alongside RTT regression data. Users can toggle between local and global clocks and alter the appear‑
ance of the tree. In this case, a tree of MERS‑CoV samples from Dudas et al. (2018) is presented with light coloured (yellow in online version)
points corresponding to samples from camel hosts and dark coloured points (dark blue in online version) corresponding to human hosts. The
solid dark line in the regression panel refers to the global clock where all samples are pooled.

of computation time. Clockor2 uniquely offers a scal‑
able and accessible client‑side web application for ex‑
ploring the fit of local clocks, with results available in
seconds to minutes to direct subsequent phylodynamic
analysis.

Specifically, Clockor2 allows users to perform RTT re‑
gression for fitting global and local clocks (Fig. 1). The
user begins by dropping or importing a rooted tree.
Sampling dates and group identifiers can then be parsed
from tip labels or separate files on input. Like other RTT
regression applications, Clockor2 also allows users to
infer the best fitting root based on the 𝑅2 value or resid‑
ual mean square (RMS) of the RTT regression. Both are
key indicators of clock‑like evolution (Drummond et al.
2003; Rambaut et al. 2016). It also offers users a local
clock‑search function to explore assumptions about the
number of local clocks in a dataset as well as the ability
to add a local clock interactively.

METHODS

Documentation and Examples
The documentation for Clockor2 is available at https:

//clockor2.github.io/docs/. It includes demonstration of
use with empirical datasets of MERS‑CoV and SARS‑
CoV‑2 from Dudas et al. (2018) and Porter et al. (2023).
The MERS‑CoV dataset can be loaded from the landing
page and is also shown in Figure 1.

General Model for Global and Local Strict Clocks
RTT regression consists in modeling the evolution‑

ary rate as the slope of a linear regression of the dis‑
tance from the root to each tip (RTT distance), typically
in units of substitutions per site (𝑠𝑢𝑏𝑠/𝑠𝑖𝑡𝑒), against the
sampling date of each tip (Drummond et al. 2003). If
we denote the evolutionary rate as 𝑟 (usually in units
of 𝑠𝑢𝑏𝑠/𝑠𝑖𝑡𝑒/𝑡𝑖𝑚𝑒), RTT distance as 𝑑 (usually in units of
𝑠𝑢𝑏𝑠/𝑠𝑖𝑡𝑒), 𝑜 as the intercept (interpreted as origin), and
sampling times as 𝑡, then the model for a global strict
clock takes the form:

𝑑 = 𝑟𝑡 + 𝑜 + 𝜖

where 𝜖 is an error term.
Clockor2 uses a generalization of this model to ac‑

commodate local clocks. For a given tree with a set of
tips 𝑇, we define local clocks as pertaining to groups of
tips 𝑔𝑖 and a rate parameter for each (𝑟𝑖). For a strict clock
model with two local clocks, we then write

𝑑 = {𝑟1𝑡 + 𝑜1 + 𝜖, if tip ∈ 𝑔1
𝑟2𝑡 + 𝑜2 + 𝜖, if tip ∈ 𝑔2

We refer to groups instead of clades because while
collections of tips belonging to one local clock neces‑
sarily share a common ancestor, they do not necessar‑
ily comprise a whole clade. This occurs when two or
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FIGURE 2. Simulated examples of how local clocks appear in trees and RTT regression data. a) RTT regression data for two local clocks with
similar rates separated by a long branch. b) A tree characteristic of two similar local clock rates separated by a long branch. c) RTT regression
data where two local clocks have different evolutionary rates. d) A tree characteristic of two local clocks with different rates.

more local clocks are nested. The tips comprising the
outer clock(s) then cannot comprise a whole clade if an‑
other local clock is nested within it. For example, local
clock 1 shown in Figure 2b,d does not comprise a clade
(i.e., is not monophyletic) because local clock 2 is nested
within it.

This general model then captures the two key scenar‑
ios where local clocks may be appropriate. The first is
where rates are similar between local clocks, but sepa‑
rated by a long branch (Fig. 2a,b). For example, in the
evolution of VOCs in SARS‑CoV‑2 or due to temporally

sparse sampling in the case of ancient Yersisnia pestis
samples (Hill et al. 2022; Tay et al. 2022; Eaton et al.
2023). The second scenario is where rates differ between
local clocks (Fig. 2c,d). For example, this can occur when
a pathogen spreads in different host species, such as
has been observed for SARS‑CoV‑2 in mink and human
hosts (Porter et al. 2023).

For each group of tips defining a local clock, we
independently conduct an RTT regression to estimate
the evolutionary rate (slope). 𝑅2 or RMS values are
then an indication of clock‑like behavior for each local
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4 SYSTEMATIC BIOLOGY

clock. Clockor2 focuses on 𝑅2 and RMS as indicators
of clock‑like evolution because they offer the most
straightforward interpretation of clock‑like evolution.
𝑅2 values of 1 indicate perfect clock‑like evolution,
while values of 0 indicate a lack of a molecular clock.
Likewise, lower RMS values indicate better fit of a strict
clock.

Local clock and or global clock configurations can also
be compared using an information criterion that com‑
bines the likelihood of each local clock’s RTT regression
while penalizing the number of inferred parameters
(three for each clock—slope, intercept, and variance).
Clockor2 allows users to use either the Bayesian In‑
formation Cirterion (BIC), Aikake Information Crite‑
rion (AIC), or corrected Aikake Information Cirterion
(AICc). We recommend using the BIC because it most
heavily penalizes the addition of extra parameters, and
local clocks in turn.

Derivations of the above information criteria for the
local clock model are given in Supplementary material,
Section 1. Briefly, these exploit the assumption of inde‑
pendent sampling to factor the likelihood across local
clocks. Note, however, that this assumption is always
flawed because samples necessarily share some ances‑
try by the assumption of a phylogenetic tree. In other
words, ancestral branches are counted over many times
in calculating the distance from root to tip for each sam‑
ple (Duchêne et al. 2016). However, this is a limitation
of the RTT regression approach generally, rather than of
Clockor2 itself.

Local Clock Search: An Exploratory Feature
Where it is hypothesized that a dataset contains lo‑

cal clocks, Clockor2 provides functionality to corrob‑
orate this hypothesis by performing a search for local
clocks in the tree. Briefly, the algorithm takes a max‑
imum number of clocks and a minimum number of
tips (group size) for each local clock as input param‑
eters. It then iterates through all combinations of in‑
ternal nodes from which local clocks could descend to
induce corresponding local clock configurations. Impor‑
tantly, the clock search algorithm tests for a number
of clocks up to and including the maximum number
so that it may find more parsimonious configurations
with fewer clocks. Configurations are compared using
the information criteria outlined above. Again, we rec‑
ommend the BIC as it penalizes additional parame‑
ters (i.e., additional local clocks) most heavily. See here
for an animation (https://github.com/LeoFeatherstone/
clockor2Paper / blob / main / figures / clockSearchEg2
Clocks.gif) of the clock search algorithm.

The clock‑search algorithm operates in polynomial
time (see Supplementary material, Section 2). Efficiency
is improved by reducing the maximum number of local
clocks in the search, increasing the minimum group size,
and contingent on the topology of the underlying tree.
However, the former two parameters exert a far greater
effect on efficiency than topology.

Clock‑Search User Guidelines We stress that this algo‑
rithm is intended as an exploratory feature of Clockor2,
rather than a formal test. It has a strong tendency to
over‑parameterise and select higher numbers of local
clocks, even where these all have congruent evolution‑
ary rates (see Supplementary material, Section 3 and
Fig. S2). Based on this, we only suggest using the clock
search if there is a biological hypothesis about why
there may be a particular number of clocks. In this
case, users should test up to and including the hypoth‑
esized number of clocks, but not more, to avoid the
high‑likelihood of over‑fitting. The clock search is in‑
tended to help corroborate hypotheses about numbers
of local clocks in a dataset, and we urge users to for‑
mally test these hypotheses using more rigorous meth‑
ods, such as a marginal likelihood comparison if they
wish to report results (Tay et al. 2023; Drummond and
Suchard 2010). The Phylostems software also provides
a web‑based platform to explore local temporal signal
in trees (Doizy et al. 2023). We point users to docu‑
mentation on the current limitations of the clock search
(https://clockor2.github.io/docs/examples/sars‑cov‑2/).

Finding the Best Fitting Root

Clockor2 selects the best fitting root based on the 𝑅2 or
RMS of a global clock model for the input tree. It seeks a
root minimizing among‑lineage rate variation, which is
equivalent to maximizing temporal signal. It follows the
same algorithm as implemented in TempEst (Rambaut
et al. 2016), but makes use of parallelization to improve
speed for larger trees. Briefly, the tree is rooted along the
branch leading to each internal node or tip, an RTT re‑
gression is performed, and the root position along the
branch leading to the highest 𝑅2 or RMS is selected.
When targeting 𝑅2, Clockor2 optimizes the root posi‑
tion using the golden‑section search algorithm (Kiefer
1953). There is an analytical solution for the RMS (see
Supplementary material, Section 4).

The best fitting root is inferred using a single, global
clock because it presents the most parsimonious model
of the evolutionary rate for a given tree. The fit of more
elaborate local clock models can then be compared with
this using information criteria and/or comparing the 𝑅2

or RMS values of each model. Clockor2 does not find
the best fitting root for local clock models because the
search space of best fitting roots and local clock con‑
figurations quickly becomes prohibitive and is possibly
unidentifiable.

If a biologically informed root is available, such as
with an outgroup, we suggest users retain it instead
of the best fitting root. This is because the best fitting
root essentially seeks to minimize among‑lineage rate
variation, which may contradict the biological reality.

Dependencies
Clockor2 has three key dependencies for handling,

and plotting trees and RTT data. Trees are handled and
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TABLE 1 Time in seconds taken to find the best fitting root for

test trees of 100, 500, 1000, 5000, and 10,000 tips using Clockor2 and
TempEst v1.5.3 on a 2021 Macbook with 16 Gb of memory and 8
cores running Chrome v113.0.5627.126. Times vary with computer
and browser. In general, the relative efficiency of Clockor2 will in‑
crease with the number of cores. Using the residual mean squared as
an optimization target is faster because there is an analytical solution.

𝑅2 Residual mean squared

Tips Clockor2 TempEst Clockor2 TempEst

100 0.313 0.760 0.129 0.050
500 1.370 2.400 0.502 1.500
1000 3.476 10.280 1.514 5.430
5000 78.013 272.290 24.370 122.000
10,000 306.821 1310.340 94.992 951.000

manipulated using the PhyloJS (https://www.npmjs.
com/package/phylojs) library. Phylocanvas is used to
visualize trees and plotly.js is used to plot RTT data
(Abudahab et al. 2021; Plotly‑Technologies‑Inc. 2015).

RESULTS

Efficiency

Clockor2 can process trees of up to the order of 104

tips, and is thus fit for the expanding size and diversity
of phylodynamic datasets. Finding the best fitting root
makes use of parallelization to increase speed. Speedup
is therefore proportional to the number of threads or
cores available, in addition to the choice of browser
and computer. For example, Clockor2 is faster than
TempEst, v1.5.3, on a 2021 Macbook pro with 16 Gb of
memory and 8 cores running Chrome, v113.0.5627.126
(Table 1). However, we found Clockor2 to be compara‑
ble or slower on other combinations of processor and
browser, such as a Lenovo Thinkpad with an 11th Gen
Intel i7 processor running Firefox v118.0.2.

The user interface also remains responsive when
working with large trees. This is in large part due to
the use of WebGL in the tree and plotting compo‑
nents, which exploit GPU acceleration to render large
and interactive trees and datasets through Phylocan‑
vas and Plotly.js, respectively (Abudahab et al. 2021;
Plotly‑Technologies‑Inc. 2015).

DISCUSSION
Clockor2 provides a flexible and scalable front‑end

web platform for RTT regression. Its extension to fit‑
ting local clocks allows it to accommodate the growing
complexity of phylodyanmic datasets as genomic epi‑
demiology plays a growing role in infectious disease
surveillance.

As a front end application, Clockor2 is also highly
accessible with no installation steps required, although
users have option of saving the site to run locally. Wher‑
ever there is a browser, it is possible to conduct an RTT
regression using Clockor2 with the data never leaving
the user’s computer. This is particularly valuable where

data sharing restrictions apply, such as for patient con‑
fidentiality.

Future Directions
One future direction consists in finding the right in‑

formation criterion to penalize the addition of local
clocks in the clock search. This will help to transition
the clock search from being an exploratory feature, to
a formal test for finding local clocks. This may come in
borrowing from the broader literature on continuously
evolving traits (Khabbazian et al. 2016; Bastide et al.
2017). Non‑parametric clustering approaches may also
offer an alternative solution.

In the future, it will be possible to re‑implement core
functionality in increasingly popular and highly effi‑
cient programming languages that can compile to Web‑
Assembly format. For example, as the bioinformatics
ecosystem in Rust continues to develop, it will be possi‑
ble to further improve the efficiency of Clockor2 using
packages such as Bio‑Rust (Köster 2015).

SUPPLEMENTARY MATERIAL
Data available from the Dryad Digital Repository:

http://dx.doi.org/10.5061/dryad.gxd2547sn.
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