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Abstract

The role of climate factors on transmission of mosquito-borne infections within urban land-
scapes must be considered in the context of the pronounced spatial heterogeneity of such
environments. Socio-demographic and environmental variation challenge control efforts for
emergent arboviruses transmitted via the urban mosquito Aedes aegypti. We address at high
resolution, the spatial heterogeneity of dengue transmission risk in the megacity of Delhi,
India, as a function of both temperature and the carrying-capacity of the human environment
for the mosquito. Based on previous results predicting maximum mosquitoes per human for
different socio-economic typologies, and on remote sensing temperature data, we produce a
map of the reproductive number of dengue at a resolution of 250m by 250m. We focus on
dengue risk hotspots during inter-epidemic periods, places where chains of transmission can
persist for longer. We assess the resulting high-resolution risk map of dengue with reported
cases for three consecutive boreal winters. We find that both temperature and vector carry-
ing-capacity per human co-vary in space because of their respective dependence on popula-
tion density. The synergistic action of these two factors results in larger variation of dengue’s
reproductive number than when considered separately, with poor and dense locations
experiencing the warmest conditions and becoming the most likely reservoirs off-season.
The location of observed winter cases is accurately predicted for different risk threshold crite-
ria. Results underscore the inequity of risk across a complex urban landscape, whereby indi-
viduals in dense poor neighborhoods face the compounded effect of higher temperatures
and mosquito carrying capacity. Targeting chains of transmission in inter-epidemic periods at
these locations should be a priority of control efforts. A better mapping is needed of the inter-
play between climate factors that are dominant determinants of the seasonality of vector-
borne infections and the socio-economic conditions behind unequal exposure.
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Introduction

Climate change, globalization, and rapid population growth are accelerating the spread of
established pathogens and facilitating the emergence of novel ones, modifying geographical
limits and environmental suitability for disease transmission [1, 2]. Spatial resolutions finer
than those of countries and cities are becoming critical to understand the epidemiology of vec-
tor-borne diseases such as dengue fever and Zika which are primarily transmitted by the bites
of Aedes aegypti in urban settings [3-5]. Although traditional “well-mixed” mathematical
models provide a foundation for epidemiological theory [6, 7], the increasing availability of
fine-scale data has underlined the importance of explicitly considering the spatial dimension
[8, 9]. Consideration of highly-resolved spatial scales becomes important to predicting trans-
mission risk and to the planning and evaluation of control efforts in urban landscapes where
human density and mosquito abundance can vary widely.

Aedes aegypti is the major urban vector of dengue virus and adapted to inhabit a peridomes-
tic niche. This mosquito bites predominantly at dawn and dusk, although artificial light can
lead to increased night time biting [10]. The vast majority (~90%) of bloodmeals are taken on
humans and the female mosquito can take more than one bloodmeal during each gonotrophic
cycle (egg batch production and egg laying) [11, 12]. Mosquitoes are sensitive to desiccation
and higher temperatures can lead to increased biting frequency, especially in smaller adults
[13]. Temperature also impacts significantly on mosquito development, survival, activity pat-
terns and the viral dissemination rate within the mosquito [14-16]. Mosquitoes require water
for egg laying and larval development, and although they can breed in natural aquatic habitats,
they have adapted to exploiting human-made breeding sites, including solid waste, overhead
tanks, water storage jars and so forth [17, 18]. As such, temperature and the availability of arti-
ficial oviposition sites have major impacts on mosquito bionomics.

The persistence of dengue virus transmission in urban settings is challenging to control
efforts given the pronounced heterogeneity in environmental, demographic and socio-eco-
nomic conditions. Because humans effectively generate breeding sites for Ae. aegypti in the
form of a variety of small water containers [18], vector abundance within cities depends on
population density and infrastructure [19]. The number of water containers can vary spatially
also as a function of socio-economic conditions, especially in developing countries where
unplanned urbanization and limited resources leave a part of the population without regular
or continuous access to pipe water and garbage collection. Recruitment of larvae to the mos-
quito population will be a function of such suitable breeding sites and determine abundance of
adults. We follow the ecological concept of a carrying capacity as the maximum population
size allowed by the local environment, where the environment encapsulates the myriad factors
limiting that size, in the case of urban mosquitoes mostly through oviposition sites.

Temperature, another important determinant of vector-borne transmission, can also vary
within cities because of the urban heat island effect (UHI). Temperature influences the demo-
graphic parameters of mosquitoes, as well as transmission parameters, ultimately determining
vectorial capacity [20-22]. Importantly, land surface modifications make urban areas warmer
than their surrounding peri-urban or rural landscapes [3]. Although the local cause of the UHI
can vary, several high-resolution remote sensing studies have shown that the intensity of UHI
tends to positively correlate with human population density [23-25]. Usually, these tempera-
ture differences are larger at night than during the day and are more noticeable during sum-
mer and winter [26, 27]. A better understanding of how UHI contributes to dengue
transmission hotspots would be extremely valuable to optimize deployment of mosquito con-
trol resources across the scale of a metropolis. High-resolution datasets allowing translation of
temperature heterogeneity into transmission risk especially outside the epidemic season could
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help us locate environmental niches where mosquitoes survive and breed, enabling viral per-
sistence. Hypothetically, targeting such localized reservoirs could interrupt or minimize chains
of transmission across seasons.

Here we examine dengue transmission risk at a high resolution (250m by 250m) in the
megacity of Delhi, India. By considering the basic reproduction number, we explore the inter-
play of temperature in winter with the vector’s carrying capacity in relation to human popula-
tion density. We show that these two environmental factors act synergistically, producing a
larger variation in local disease risk than when considered separately. Case reports for three
winters are used to validate our risk map. Results highlight the inequity of risk across a com-
plex urban landscape: individuals in dense poor neighborhoods face the compounded effect of
warmer temperatures.

Results

We focus on the basic reproduction number, Ry, which measures the average number of sec-
ondary infections produced by one single infection in a totally susceptible population.
Although the precise form of R, depends on model assumptions, its general expression for
mosquito-borne diseases (with a single host and vector) can be typically written in such a way
to separate the respective effect of two key factors, namely temperature and the maximum
number of mosquitoes per human the environment can support. We refer hereafter to this
maximum abundance supported but the local environment as the vector’s carrying capacity
and denote it by V. Specifically, R, can be decomposed into the product of two terms: a func-
tion of temperature (capturing its influence on demographic and transmission parameters of
the mosquito and the pathogen within the mosquito), and the ratio of the vector’s carrying
capacity (V) to the human population (N) (capturing the multiple effects of social, economic
and demographic conditions on the number of artificial breeding sites) (Methods). We can
typically write R, = f(T)+/%, an expression decomposing the effects of climate and socio-eco-
nomic conditions. To map R, for Delhi at a high resolution we can therefore rely on local tem-
peratures and carrying capacities and apply this relationship at different locations. Values for
the carrying capacity per human were previously estimated as a function of population density
for the city of Delhi, on the basis of a general model for coupled mosquito-human dynamics
and reported cases [28]. No translation of this dependence to variation in space was however
investigated. We can therefore ask here how the spatial variation in these values together with
that in temperatures influences dengue risk as measured by local R,. We refer hereafter to tem-
perature and T for the remote sensing quantity of Land Surface Temperature (Methods).

We start by considering first the spatial variation of the two variables in the general expres-
sion for R. The respective maps show that the two quantities are spatially heterogeneous
within the city of Delhi in the winter season (Fig 1A). Spatial temperature (T) at night-time in
winter varies about five degrees Celsius (mean T = 18.6°C), and the ratio of the vector’s carry-
ing capacity to the human population (V/N) shows values ranging from zero to 1.5 (mean V/
N = 0.4) across the city. Importantly, because both quantities, T'and V/N, vary as a function of
human density, they therefore share a common source of spatial variation. To address this
dependence for V/N, we note that mosquito recruitment in urban landscapes is intrinsically
related to human activity. The map for V/N specifically relies on the previously inferred depen-
dence of the vector carrying capacity on human density in [28] (Fig 1B, see Methods). The
shape of the function was shown to vary for different socio-economic categories (low, medium
and high) as defined in [28, 29]. In particular, 87% of the spatial units correspond to socio-eco-
nomic conditions for which V/N increases with population density, with locations that exhibit
the most deprived conditions experiencing the fastest increment. Thus, the resulting map of
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Fig 1. Temperature (T) and the relationship between vector carrying capacity (V) and human population density (N, number
of human population in 250 m by 250 m) -i.e. V/N- in Delhi. A Maps for a spatial resolution of 250m by 250m for temperature
(November, night-time), V/N and N in the city of Delhi. B Vector carrying capacity V (maximum number of mosquitoes) as a
function of population density for deprived (triangles), medium (circles) and rich (dots) typologies. These respective dependencies
for the different socio-economic typologies are derived from the estimated function for V/N as a function of N in (28). In particular,
Vincreases with N for locations classified as deprived and medium, whereas it varies non-monotonically for locations classified as
rich, where above a certain population density threshold mosquito abundance decreases, probably reflecting that more inhabitants
correspond to better living conditions, in terms of water, infrastructure etc, so that breeding sites for the vector do not keep
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increasing. C Boxplot of November night-time temperature as a function of population density (boxes illustrate, as is standard, the
median with the 25th and 75th percentiles, and the dotted lines indicate the extremes of the distribution). Basemap shapefile
downloaded from https://data.humdata.org/dataset/geoboundaries-admin-boundaries-for-india.

https://doi.org/10.1371/journal.pcim.0000240.9001

R, (Fig 1A, right panel) largely reflects increasing risk with increasing density for the effect of

VIN. For temperatures from remote sensing at night, the resulting map at the same high reso-
lution of interest, are also affected by human density. Although the least dense areas show the

highest variability, those most populated tend to be systematically warmer (Fig 1C). Together,
these two patterns suggest the potential synergy of the two environmental variables on dengue
risk across the city. In particular, population density would drive the spatial co-localization of
elevated winter temperature and vector’s carrying capacity.

To address this hypothesis, we examine first the separate effect of each of the two variables
and then their joint influence on the spatial variability of Ry. Frequency distributions in the
form of histograms show that both T'and V/N generate broad ranges in R,’s spatial variability.
Compared to the spatial average of R, (about 0.4), consideration of temperature introduces a
variation of up to 40% (Fig 2A) and consideration of V/N of up to 75% (Fig 2B). The associated
maps exhibit variation that would be absent not only under constant temperatures as expected,
but also under the common assumption of a linear increase of vectors with humans in stan-
dard coupled vector-human mathematical models (Fig 2A-2C). Importantly, when both fac-
tors are considered together, the range of R is larger than when they are considered
separately, with many more units at the two extremes of high and low risk conditions (Fig 2C).
In particular, units that do not exhibit a high dengue risk under either factor alone, can do so
when their joint effect is considered together (Fig 2D). Thus, comparison of the maps indicates
that T and V/N act synergistically in a considerable part of the city.

We discuss below the need to extend our results to additional sampling of temperature at
additional times in the winter season. But we ask first whether the generated risk map, despite
being based on temperature values for one given winter date, has predictive value for dengue
cases in the winter season. For this purpose, we rely on surveillance data over three winter sea-
sons for reported dengue cases at high spatial resolution (Methods). First, we establish a
threshold R,* to classify spatial units at risk of dengue transmission when Ry is above this
value (Ry, > Ry*, u = 1,2,. ... U, where U s the total number of units). Since small values of R,*
imply a higher number of units at risk, we expect the percent of “hits”, defined as units whose
observed cases surpass the threshold, to decrease with increasing R,*. However, a high number
of hits is not necessarily informative. We can illustrate this by the trivial extreme of R,* = 0, for
which we would obtain a 100% trivial success rate because the whole city would be at risk.
Thus, to evaluate the R, criterion, we compute as a baseline the probability of the number of
realized hits under the assumption of a random spatial distribution of infected units (for a
given threshold). We specifically compute the p-value of a binomial process:

J Uf i Up—i
pfvalue:Z ; p(l—p)7

i=K

where the number of trials is the number of infected units Us the number of units with cases
classified at risk is the number of hits K, and the probability that a risk unit is randomly
infected is p = UR/U, for the number of risk units UR. We find that the p-value is consistently
below 0.05 as Ry* increases, leading us to reject a random distribution of cases relative to our
risk map. (A p-value larger than 0.05 is only obtained when R,* equals the 97.5th quantile, that
is when 2.5% of the units are classified at high risk).
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(for more detailed maps see S3-S5 Figs). Basemap shapefile downloaded from https://data.humdata.org/dataset/

geoboundaries-admin-boundaries-for-india.

https://doi.org/10.1371/journal.pcim.0000240.g002
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Because population density underlies both components of Ry, we can further ask whether
considering a threshold defined directly on the basis of local human density would also be
informative. We repeat the calculation of a binomial probability now with a minimum popula-
tion density threshold as an indicator of dengue transmission during the winter season. We
find that this condition works as well as one defined on the basis of R, as an indicator of winter
hotspots (see Fig 3).

Discussion

The spatial distributions of temperature and vector carrying capacity to human ratio, produce
important variability in local suitability for virus transmission at high resolution within Delhi.
Although the influence of these drivers could be expected, their joint action reflects a common
underlying influence of population density, which proves critical for the localization of winter
hotspots. Identification of such hotspots will be invaluable for interrupting the chain of trans-
mission during the low season when it should be most vulnerable to intervention.

The current vector management strategy relies on breeding sites reduction, use of larvi-
cides, and space spraying against adults. The spraying occurs during the warmer months when
mosquitoes are in abundance. Although effective in terms of control, breeding sites reduction
is extremely laborious in a big city such as Delhi. Also, these interventions require a large
amount of resources which are not typically available in developing countries in particular.
Our work suggests that predictable hotspots off-season would benefit from particular attention
during the winter months without the need to carry out city-wide interventions, thereby
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optimizing human resources. Although this strategy may not necessarily imply control during
the high dengue season, the approach would allow the identification of hotspots to interrupt
the chain of transmission in the low season. Such off-season intervention would be valuable
for reducing the probability of an outbreak in the following epidemic season because the
importation of an infected individual would be necessary to re-initiate dengue circulation
within the city.

The synergistic action of the two drivers especially affects the least developed areas of the
city, with 70% of the winter cases reported from within socio-economic units classified as
deprived, and only 22% and 8%, from medium and rich typologies respectively (44.2% of the
units in Delhi are classified as deprived, 34.5% as medium and 10.7% as high socioeconomic
status). Deprived units are typically densely populated with only a few green areas, which can
favor the UHI effect. In addition, the number of vectors per human is higher in poor areas of
the city, where one can expect a larger proportion of available man-made water containers
[18]. This socio-economic disparity in dengue suitability is also evident on simulated R, risk
map, which yields a higher percentage of risk units in the deprived typology as the Ry* thresh-
old increases (S1 Fig).

The location of reported cases over three winter periods validates the high-resolution risk
map obtained here when compared to the random distribution of infections across units.
Although the values of R, obtained for our map remain below one, this does not necessarily
imply the absence of transmission [30, 31]. The commonly used threshold of R, = 1 assesses
the risk of an outbreak from a purely deterministic perspective. Although such an outbreak is
not expected in Delhi during the off-season and transmission in small areas is inherently sto-
chastic, higher values of R, even below one, should indicate higher transmission suitability,
and therefore a higher chance of persistence of transmission chains off-season.

Because human density influences local vector carrying capacity and temperature, this
quantity can also be used effectively as an indicator of dengue transmission risk in winter. As a
purely statistical indicator, the associated threshold can be less informative, however, than a
more mechanistic and direct understanding of how population density ultimately impacts risk
[32-34].

A limitation of our results is the reliance on a single detailed remote sensing image. The pat-
tern of increasing temperature with density should, however, hold more generally as it has
been reported for Delhi [23, 35] but also for other cities [24, 36]. We assumed here that the
resulting variation on the basis of population density for the particular date considered is rep-
resentative of the season. We further assumed a correlation between LST and air temperature
which is more relevant for Aedes aegypti biology. Air temperature would be valuable, but since
our study is based on relative temperatures (in space), we can expect that considering LST
measurements would not influence our results. Another limitation is the use of inferred mos-
quito carrying capacity from data gathered in 2008-2010 for comparison with winter dengue
cases in 2013-2015. Whilst precise mosquito densities per socio-economic typology may well
differ, it is assumed that the relative differences will remain. Although the predictive character
of the map supports the above assumptions, future work should examine the robustness of the
risk patterns and the effects of seasonal and daily variation, addressing the challenge of high-
resolution images for night temperatures in winter. Our main purpose here was to illustrate
how the interaction of the variation in temperature with that in the vector’s carrying capacity
can lead to heterogeneous dengue risk.

Our study is based on the notion of the maximum abundance of the mosquito in the form
of the carrying capacity of the local urban environment. Although the complexity of factors
determining carrying capacity of an urban mosquito species is considerable, oviposition sites
and their productivity are a clear limiting factor [37]. This limiting role is consistent with the
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increase of mosquito abundances following the arrival of the seasonal rains [38]. Direct mea-
sures of mosquito abundance across the urban landscape would be valuable but are extremely
challenging in practice at fine scales over the extent of a whole city [39]. Mathematical models
of coupled vector-human transmission commonly assume a constant vector-to-human ratio
[40]. This implicit assumption implies a constant risk landscape across the city in terms of the
effect of V/N on R, which therefore precludes the variation in risk described here. We have
relied for our risk map on an indirect estimate of maximum mosquito numbers per human
[28]. Interestingly, the predictive power of the R, threshold provides support for this indirect
estimation of V/N.

The challenges posed by climate change require a robust and holistic approach to under-
standing infectious disease dynamics [31]. Understanding climate change effects on infectious
disease transmission remains a crucial gap within urban landscapes at sufficiently high spatial
resolutions, including potential synergies with various demographic and socio-economic driv-
ers. We have shown that the fine-scale interaction of temperature and socio-economic condi-
tions (related to vector production) amplifies local dengue transmission suitability. Both these
factors are sensitive to climate change directly and indirectly. Warmer winter temperatures
where cold temperatures limit transmission can favor persistence of mosquito populations
outside the epidemic season. Climate change can also favor breeding site production, as cli-
mate instability in the form of extreme events can contribute to poverty and overcrowding as
the result of enhanced and unplanned human migration [41]. Although our findings are for
dengue in the megacity of Delhi, we expect the described synergistic effect of temperature and
mosquito carrying capacity to apply more broadly to other urban landscapes and other cli-
mate-sensitive infections, especially in developing countries with seasonal transmission.

Methods and materials

Expression of the basic reproductive number as a function of temperature
and vector carrying capacity per human

The basic reproductive number gives the average number of secondary infections that would
result from introducing a single infective individual into an entirely susceptible population.
Calculation of R, for dengue infection involves a two-step process: host to vector, then vector
back to host (or vice versa). To illustrate this process, we rely on the following standard equa-
tions for the infectious classes in coupled vector-human models:

dl/dt = aP,,ZS/N — (1 + 7)1 (1a)

dz/dt = aP,,,WI/N — u,Z (1b)

where W, Z and M (for mosquitoes), and S, I and N (for humans), denote susceptible, infec-
tious and total populations, respectively. Parameter a denotes the biting rate, Py (for a
human) and Py, (for a mosquito) are the respective probabilities that an infectious bite results
in an infection, y is the recovery rate of infected humans, and pz and 1, the respective mortal-
ity rates for humans and mosquitoes.

Let Rypr be the number of hosts directly infected by the introduction of a single infective
vector into an entirely susceptible host population. Similarly, let Ry, denote the number of
vectors that become directly infected upon the introduction of a single infectious host into an
entirely susceptible vector population. When the host population is entirely susceptible (I =0
and then S = N), the transmission rate from the vector population to the host population is
given by a - Py - Z. Thus, the transmission rate per infective vector equals a - Py (Eq 1a).
Since infective vectors live for an average of 1/, time units, a single infective vector will give
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o

rise to Ry = a - Ppu/pa infective hosts. Employing a similar argument for an entirely suscepti-
ble vector population (Z = 0 and thus W = M), we obtain (Eq 1b) Rogar = (a - Pup/ (Uar + 7)) -
(M/N). Therefore, over the entire transmission cycle we obtain the following expression,

2
(7 + 1) VN N
(e.g. [42]). We can decompose this expression into two main factors: one that depends on
demographic and biological parameters which are constant or depend on temperature (h(T),
where T is temperature), and another that is the ratio between mosquito and human numbers.

Because the developmental life cycle of Ae. aegypti is complex, coupled mosquito-human

models commonly assume that the total abundance of mosquitoes follows logistic growth,
with for example an equation of the form

dM/dt = JM(1 — M/K) (3)

where A represents the number of offspring per adult female per unit time, and, K, the carrying
capacity supported by the environment. By making a quasi-stationary assumption whereby the
population dynamics of the vector equilibrates quickly to temporal variation, we can consider
that M ~ K (by equating Eq (3) to zero). Variations of this expression for mosquito abundance
are of course obtained depending on model details. For example, [42, 43] proposes that dM/dt
=EFD - pEA - MDR - pip; " - M - (1 = M/K) — pips - M (an expression obtained by adding Eqs
(1), (2) and (3) for susceptible, exposed and infectious mosquitoes populations in the original
article), and therefore

M(1 — uw,,’/(EFD - pEA - MDR)) - K

where EFD is the number of eggs laid per female per day, pEA is the probability of mosquito
egg-to-adult survival, and MDR is the mosquito egg-to-adult development rate. Another exam-
ple is found in [28] where

M(A/py) - K

In short, models in which the differential equation for mosquito abundance follows a form
in the family of logistic functions (Eq (3)), produce generically the form Mg(T) - K, where the
particular expression of the function g(T) depends on the model.

Here, we specifically used the following differential equation for adult mosquitos

M pep.ppa -y (1-M) Z 0, M (4)

Then, by introducing the value of M obtained from equating the left-hand side of this equa-
tion to zero into the expression in Eq (2), we specifically obtain

aP,, P M @P,, P, K K
— < = <~ =f(Mh/< ()
(P o) VN -\ (7 + ) EFDPEA N N

The values of the parameters of f{(T) and their dependence with temperature are given in
Table 1. We emphasize that although we illustrate the risk maps for this model and therefore
this specific form of f(T), the results should generalize to other models.

The carrying capacity as a function of the human population per spatial unit is computed
with the curves inferred in [28]. We summarize here the basic approach. For Ae. aegypti, it is
reasonable to consider that K depends on N, or K = K(N), since humans generate the breeding
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Table 1. Model parameter specifications. Values without references indicate that have been determined for this article (see S1 Fig).

symbol description formula parameters value
a biting rate (days™) ¢ T (T—T,) /Ty — T [44]
EFD rate of eggs laid per female (days'l) ¢ T-(T—T,) V/Tyge — T [44]
pEA probability of mosquito egg-to-adult survival c-(T-T,,) (T,o—T) [44]
Um mosquito mortality (days’l) const. 0.09 [45]
Pum probability virus transmission from human to mosquito const. 0.8
P probability virus transmission from mosquito to human c-T-(T—T,,) /Ty — T [1] ¢ =0.00092
Tppin =13
Ty = 33
¥ human recovery rate (days’l) const. 1/7 [46]
Un human mortality (days’l) const. 1/(60.365) [47]

https://doi.org/10.1371/journal.pcim.0000240.t001

sites for the mosquito. The function K(N) was previously shown to vary with socio-economic
conditions on the basis of the typologies classified in [29], with K oc N2 and K oc N'** for
typologies denoted respectively as deprived and intermediate, and a non-monotonic, increas-
ing and then decreasing, behavior for those denoted as rich [28]).

Temperature data from remote sensing

Satellite brightness temperature was retrieved from LANDSAT 8 TIRS (band 10). The thermal
image was taken on November 15, 2013 at around 5:00 AM. Land surface temperature was
computed by the methods of [48] (by incorporating the correction equations for land surface
emissivity and atmospheric bias). Surface temperatures were obtained at a 38 m scale and then
aggregated to the 250 m by 250 m spatial resolution (see details on [49]). The total number of
spatial units (of 250 m by 250 m) in the city is 10676.

Dengue cases for the winter season

The dengue cases were geo-localized for the winter seasons (December to February) from 2013
to 2015, the first years in which dengue cases were reported in winter. Dengue cases were con-
firmed for the presence of IgM antibodies against DENV by MAC ELISA using a kit prepared by
the National Institute of Virology, Pune, India as an integral part of the National Vector Borne
Disease Control Programme. These confirmed cases were geo-coded with QGIS [49]. Only con-
firmed cases are recorded in the surveillance system, and only a small percentage of cases are
screened. The exact percentage is not provided by the surveillance system. No serotyping is car-
ried out. Units with the presence of dengue exhibit the report of one single case, given the high
spatial resolution, the off-season timing, and the expected under-reporting of infections.

For this study, no individuals subjects were involved. The health data used in this work
come from previous publications and analysis of the surveillance system by the municipality of
Delhi [49], where the use of this data was granted by the ethics committees of the Indian Coun-
cil for Medical Research, India (N° TDR/587/2012-ECD-11, 10 December 2012) and Institut
Pasteur, France (N° 2011-20, 29 April 2011).

Population density

The population density (N) was computed from our previous acquisition of the detailed built-
up data from the Global Human Settlement database in order to estimate the population at
250 m x 250 m [49, 50].
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Supporting information

S1 Fig. Model parameters (Eq 5) as a function of temperature. The black circles represent
experimental data (from [44] Supp Material), the red dots the mean value (with respect to tem-
perature) and the dashed red lines the curves used as a model to describe the parameters varia-
tion. A biting rate (data values from [51, 52]). B Number of eggs laid per female per day (data
from [53, 54]), C probability of mosquito egg-to-adult survival (data from [16, 55-58]). D
Probability of virus transmission from a bite of an infected mosquito to a susceptible human. E
Probability of a susceptible mosquito to get the virus following a bite on an infectious human
(D and E data are from [15, 59-61]). The parameters of the curves shown in panels A, B and C
are taken from [44] and those of panels D and E were determined in this article.

(TIF)

S2 Fig. Percent of units at risk that belongs to the different socio-economics typologies as a
function of Ry* (threshold to classify spatial units at risk of dengue transmission when R,
is above this value). Pink triangles denote low socio-economic typologies, whereas black cir-
cles and gray dots represent medium and rich socio-economic conditions, respectively.

(TIF)

S3 Fig. The effect on the basic reproductive number RO of temperature (T) Map of local Ry
at 250 m by 250 m spatial resolution for local temperature with spatially averaged V/N.
Blue, aqua green and red colors represent respectively a low (R0 < 0.3), medium (0.3 < R0 <
0.55) and high (RO > 0.55) risk of local dengue transmission. Small black squares on the map
represent spatial units with reported cases (basemap shapefile downloaded from https://data.
humdata.org/dataset/geoboundaries-admin-boundaries-for-india).

(TIF)

S4 Fig. The effect on the basic reproductive number RO of vector carrying capacity per
human (V/N). Map of local RO at 250 m by 250 m spatial resolution for local V/N with spa-
tially averaged temperature. Blue, aqua green and red colors represent respectively a low

(RO < 0.3), medium (0.3 < RO < 0.55) and high (RO > 0.55) risk of local dengue transmission.
Small black squares on the map represent spatial units with reported cases (basemap shapefile
downloaded from https://data.humdata.org/dataset/geoboundaries-admin-boundaries-for-
india).

(TIF)

S5 Fig. The effect on the basic reproductive number RO of temperature (T) and vector car-
rying capacity per human (V/N). Maps of local RO at 250 m by 250 m spatial resolution for
local temperature and V/N. Blue, aqua green and red colors represent respectively a low

(RO < 0.3), medium (0.3 < RO < 0.55) and high (R0 > 0.55) risk of local dengue transmission.
Small black squares on the map represent spatial units with reported cases (basemap shapefile
downloaded from https://data.humdata.org/dataset/geoboundaries-admin-boundaries-for-
india).

(TIF)

S1 Checklist. Inclusivity in global research.
(PDF)
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