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SUMMARY

Bacterial pneumonia is a considerable problem worldwide. Here, we follow the inter-kingdom respiratory
tract microbiome (RTM) of a unique cohort of 38 hospitalized patients (n = 97 samples) with pneumonia
caused by Legionella pneumophila. The RTM composition is characterized by diversity drops early in hospi-
talization and ecological species replacement. RTMs with the highest bacterial and fungal loads show low
diversity and pathogen enrichment, suggesting high biomass as a biomarker for secondary and/or co-infec-
tions. The RTM structure is defined by a ‘‘commensal’’ cluster associated with a healthy RTM and a ‘‘path-
ogen’’ enriched one, suggesting that the cluster equilibrium drives the microbiome to recovery or dysbiosis.
Legionella biomass correlates with disease severity and co-morbidities, while clinical interventions influence
the RTM dynamics. Fungi, archaea, and protozoa seem to contribute to progress of pneumonia. Thus, the
interplay of the RTM equilibrium, the pathogen load dynamics, and clinical interventions play a critical role
in patient recovery.

INTRODUCTION

Culture-independent techniques coupled with high-throughput
sequencing have revolutionized the research on human-associ-
ated microbial communities.1 In recent years, principally marker
gene-based studies have revealed that airway surfaces are also
inhabited by a resident microbial ecosystem, the respiratory
tract microbiome (RTM).2,3 The bacterial composition of a
healthy RTM mainly consists of the most common phyla of hu-
man microbiomes: Firmicutes, Bacteroidetes, and Proteobacte-
ria.4,5 The primary source of microorganisms of the RTM is the
oropharynx, from which they migrate through microaspiration
and mucosal dispersion mechanisms to the lungs.6–8 Indeed,
some of the common RTM genera, such as Streptococcus, Pre-
votella, or Veillonella, are shared with the oral microbiome.9,10

Although few studies have quantified the microbial load in the
respiratory tract, it has been estimated that the biomass in
healthy individuals decreases from themouth to the lungs, where
the load is minimum (up to 104–105 bacterial cells per milliliter of
intraluminal fluid).11 Despite the importance of non-bacterial in-

fections of the respiratory tract, only very few studies have
focused on other domains of life in the RTM, such as eukaryotes,
archaea, or viruses5,12,13; thus, their role in the RTM ecology and
human physiology remains unknown.
Research on the RTM has gained attention primarily because

of its recently discovered role in host immune system stimula-
tion.2,14,15 It has been also proposed that the RTM may protect
against pathogens through colonization resistance, as seen for
the gut microbiome.16 However, research on the RTM and its
impact on infectious diseases such as pneumonia is still in its in-
fancy, although pneumonia is a significant public health issue. To
date, most research on the RTM and infection has been under-
taken for specific chronic respiratory diseases, such as cystic
fibrosis.17–19 These studies showed that cystic fibrosis severity
indicators such as decreased lung function increase when a
loss of microbiome diversity and a dominance of recognized
cystic fibrosis pathogens are observed.18 Similarly, an ecological
model of pneumonia proposed that the RTMequilibrium of pneu-
monia patients is altered to a state of dysbiosis characterized by
low microbial diversity, a high burden of opportunistic species,

Cell Reports Medicine 4, 101167, September 19, 2023 ª 2023 The Author(s). 1
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ll
OPEN ACCESS

mailto:anaelena.perez@salud.madrid.org
mailto:cbuch@pasteur.fr
https://doi.org/10.1016/j.xcrm.2023.101167
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrm.2023.101167&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


and particular host inflammatory responses.20 Several clinical
and ecological factors might locally affect the RTM ecology,
shaping the outcome of a lung infection; however, the contribu-
tion of most of them still remains unknown.21

Among infectious diseases, acute lower respiratory tract in-
fections comprising pneumonia, acute bronchitis, or bronchioli-
tis are a leading cause of morbidity and mortality worldwide.22

Pneumonia, an infection of the lung alveoli caused by bacteria,
viruses, or fungi, represents a clinical and economic burden
and a significant public health problem. Legionella pneumophila,
which is also listed among the 33 pathogens responsible for an
estimated 7.7 million deaths globally in 2019, is one of these
bacteria, as it is responsible for a severe pneumonia called
Legionnaires’ disease (Global Burden of Disease Antimicrobial
Resistance Collaborators, 2019, https://www.thelancet.com/
journals/lancet/article/PIIS0140-6736(22)02185-7/fulltext). This
infection can be fatal in approximately 5%–30%of cases despite
timely and adequate treatment and in up to 40%–80%
in untreated, immune-suppressed patients (World Health Or-
ganization, https://www.who.int/news-room/fact-sheets/detail/
legionellosis). Legionellosis is mostly community acquired and
occurs worldwide.23 However, outbreaks are also reported
frequently, the largest one occurring in 2014 in Portugal with
377 cases.24 It is associated with high mortality, and patients
often require hospitalization, which also represents an economic
burden.25 Themain risk factors for legionellosis are old age, male
gender, smoking, pulmonary-related conditions, immunosup-
pression, and chronic respiratory and renal illnesses.26

In this study, we followed the inter-kingdommicrobiome diver-
sity and composition (bacteria, archaea, fungi, and protozoa) of
97 RTM samples from 38 patients with Legionella-associated
pneumonia during their entire hospitalization period through
marker gene high-throughput sequencing. The dynamics of the
archaeal, bacterial, and fungal fractions were quantified based
on a spike-in approach.27 We show that in addition to the anti-
biotic treatment regimen, invasive ventilation, and patient risk
factors, clinical and ecological variables related to pathogen
load dynamics and microbiome ecology are important for the
disease outcome. Our bacterial pneumonia model based on L.
pneumophila infections sheds light on RTM during hospitaliza-
tion and its relationship with ecological and clinical factors,
which should be crucial in improving current clinical strategies
to cure pneumonia and develop new microbiome-based
therapies.

RESULTS

The respiratory microbiome of pneumonia patients is
associated with high bacterial and fungal biomass and
low species diversity
To investigate the composition of the inter-kingdommicrobiome
during Legionnaires’ disease pneumonia and its possible role in
disease severity, we studied a unique cohort of 38 patients hos-
pitalized with pneumonia caused by L. pneumophila (Table S1).
Those patients were sampled during the entire disease period,
allowing us to analyze in total 97 samples and to follow the
impact of clinical interventions on the microbiome. Samples
were collected between 2017 and 2019, and all clinical parame-

ters such as age, ventilation, antibiotic therapy, sequential organ
failure assessment (SOFA) score, and Legionella PCR diagnos-
tics were recorded for correlation analyses (for full patient-asso-
ciated data, see Table S1). To quantify the microbial abundance
of bacteria and fungi in these pulmonary samples, we used syn-
thetic chimeric DNA spikes according to a method previously
published27 (detailed in STAR Methods [extended experimental
procedures] and Figure S1). The spikes were co-isolated and
PCR amplified, providing estimations of the amplicon abun-
dance. After quality filtering, a total of 87 samples from 38 pa-
tients were used to characterize the diversity, composition,
and biomass of bacteria and archaea (16S rRNA), 29 for the
fungal diversity, composition, and load (internal transcribed
spacer [ITS]), and 8 for diversity and composition of protozoa
(18S rRNA) (the study design is summarized in Figure S2).
We then estimated the alpha diversity of bacteria and archaea

in pulmonary samples during pneumonia, based on adjusted
spikes (n = 87) using the number of copies of the 16S rRNA
gene (Figure 1). The median number of bacteria was 107 copies
per milliliter of sample (Figure 1A). The alpha- and beta-diversity
analyses were based on the amplicon single variant (ASV) level.
The mean alpha-diversity values were Shannon index (3), rich-
ness estimator Chao 1 (220 ASVs), and Berger-Parker index, a
dominance index (0.3). We found that the alpha-diversity metrics
correlated significantly with bacterial abundance (Figure 1B).
Diversity and richness decreases while the number of
bacteria and the dominance index increased. In addition, the mi-
crobial composition changed along the gradient of the bacterial
load toward enrichment in Microbacteriaceae, Stenotrophomo-
nas, Pseudomonas, and Mycoplasma (Figure 1C). The fungal
biomass (estimated by the number of ITS copies per milliliter)
and alpha-diversity correlations (n = 29) showed the same trend
as that of bacteria (Figure 1D), with a high load associated with a
low diversity and opportunists such asCandida albicans growing
with the load gradient (Figure 1E). Samples with high biomass
have low diversity and are dominated by a few potentially path-
ogenic respiratory tract pathogens that might be considered
markers for dysbiosis.

Legionnaires’ disease-associated RTM is characterized
by clusters of ‘‘commensal’’ oropharynx bacteria and of
opportunistic respiratory ‘‘pathogens’’
The most abundant phyla (relative and absolute abundances)
identified in the patients were Firmicutes (mean 42%), Proteo-
bacteria (36%), Bacteroidetes (11%), Actinobacteria (4%),
and Fusobacteria (4%) (Figures S3A and S3B). However, we
found significant variability between samples, which reveals
the dramatic changes in the microbiome associated with dis-
ease and medical therapy. When the taxa prevalence among
samples was analyzed (relative and absolute abundance),
the most abundant genera were Enterobacteriaceae (closest
species to the most abundant ASV Escherichia coli),
Haemophilus (H. parainfluenzae), Legionella (L. pneumophila),
Prevotella (P. melaninogenica), Staphylococcus (S. aureus),
Stenotrophomonas (S. maltophilia), Streptococcus (S. infan-
tis), and Veillonella (V. dispar) (Figure 2A). Notably, the profile
obtained from the most abundant taxa based on absolute
values pointed to bacterial groups that were not determinant
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when analyzing relative abundances (e.g., Haemophilus or
Stenotrophomonas), highlighting the importance of quantifica-
tion in microbiome studies.
To understand the role of the RTM in pneumonia, we need to

shed light on ecological processes that define its functioning
as microbial interactions. Thus, we performed a co-abundance
network analysis to identify potential cooperative relationships
between bacteria or bacteria-sharing niches (Figures 2B and

S3C). This allowed us to distinguish five clusters containing 41,
36, 23, 4, and 2 taxa, respectively. Considering the most preva-
lent taxa, Prevotella, Streptococcus, Veillonella, and Haemophi-
lus, we identified a ‘‘commensal’’ cluster (red) enriched in bene-
ficial bacteria generally considered members of the RTM of
healthy individuals. On the other hand, Staphylococcus, Steno-
trophomonas, Enterobacteriaceae, and Legionella constituted
the ‘‘pathogenic’’ cluster (yellow). The highly connected nodes

Figure 1. Diversity of the RTM of patients with pneumonia due to L. pneumophila
(A) Alpha-diversity metrics Shannon, Chao 1, Berger-Parker index (dbp), and biomass represented in violin box plots (n = 87). Bacterial abundance ismeasured as

the number of 16S rRNA copies permilliliter of sample. The number of bacteria ranged from 105 to 109, with amean of 107 16S rRNA copies permilliliter of sample.

The Shannon index distribution is variable (0.2–6), with most values between 3 and 4 (mean of 3). The richness estimator Chao 1 shows for most of the samples

values between !100 and 300 predicted ASVs (mean of 221), while the Berger-Parker index ranged mainly from 0.2 to 0.5 with a mean of 0.3.

(B) Spearman correlations of bacterial abundance with alpha-diversity metrics Shannon, Chao 1, and dbp (n = 87). The correlation coefficients (rho) and p values

are shown.

(C) Samples and taxa distribution represented in a non-metric multidimensional scaling (NMDS) plot based on the Bray-Curtis dissimilarity matrix (n = 87). The

PERMANOVA-associated p value of the microbial abundance effect in shaping microbial composition is included above the graph. The bacterial abundance

variable is plotted as a vector (red arrow), and the most significant taxa that change in correlation with the bacterial abundance are represented with colored

arrows.

(D) Spearman correlations of fungal abundance with alpha-diversity metrics Shannon, Chao 1, and dbp (n = 29). The correlation coefficients (rho) and p values are

shown.

(E) Samples and taxa distribution represented in an NMDS plot based on the Bray-Curtis dissimilarity matrix (n = 29). The PERMANOVA-associated p value of the

fungal abundance effect in shaping microbial composition is included above the graph. The fungal abundance variable is plotted as a vector (red arrow), and the

most significant taxa that change in correlation with the bacterial abundance are represented with colored arrows.

n, number of samples.
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are Staphylococcus, Enterobacteriaceae, Bilophila, Lachnoa-
naerobaculum, and Selenomonas (buffering the network stabil-
ity), and articulation points (nodes when absent disconnect the
network) are Aggregibacter, Jonquetella, and Spirochaeta. The
stability of the most abundant RTM members during legionello-
sis might derive from the dynamics of the different network clus-
ters. Those taxa more closely connected in the network might
have a dependency on each other (i.e., cooperation) or might
share the same niche (grow in the same conditions). Their abun-

Figure 2. Putative interactions among
dominant bacteria of the RTMof pneumonia
patients
(A) Heatmap of the dominant bacterial taxa

per sample (n = 87). The most significant taxa

regarding predominance, relative abundance, and

absolute abundance are marked with asterisks.

(B) The prokaryotic network of the RTM considers

the most abundant taxa (mean over 103 16S rRNA

copies per milliliter of the sample). The network is

based on the ASV abundance tables collapsed at

the genus level. Significant positive associations

are shown (p < 0.01). Each node represents a

taxon, color-coded by phylum. The main clusters

of nodes are highlighted. Connections within a

cluster are colored gray, and connections

between clusters are in red. Dominant, highly

connected, and articulation points of taxa are

shown. A complete detailed network is shown in

Figure S3C.

n, number of samples.

dances and the loss of such intercon-
nected species in a cluster may deter-
mine the disappearance of the rest of
the group as a ‘‘ripple effect.’’

The patient’s microbiome
composition is rapidly shifted
toward resistant, pathogenic
species
To learn about the dynamics of the RTM
during antibiotics treatment, we followed
the alpha and beta diversity, bacterial
biomass, and pathogen load of patients’
samples over time (Figure 3). This shows
that alpha diversity, bacterial biomass,
and pathogen abundance variation ex-
ists within and between patients (Fig-
ure 3A). Interestingly, although great dis-
parities in the microbiome composition
were detected, the patient’s individuality
signal is well reflected in the bacterial
composition of each patient (Figures 3B
and S3D). The RTM dynamics of two pa-
tients (O and P) with similar sampling
scheme (0–11 days) are shown in
Figures 3C and 3D, and full details of pa-
tients with longitudinal data are pre-
sented in Figure S4. Both had an RTM

composition where a high abundance of Legionella was
present, after which both microbiome compositions shifted
rapidly (2–4 days post inclusion) toward an abundance of
Enterobacteriaceae and Staphylococcus (Figure 3C). In both
cases, the samples enriched in Legionella were those with the
highest abundances (day 3 and day 0 for patients O and P,
respectively) (Figure 3D). However, although Legionella was
decreasing, there was still high biomass during the entire period
examined (!106 16S rRNA copies per milliliter of sample). This
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suggests that during hospitalization and therapy, a ‘‘replace-
ment’’ of Legionella by other potential pathogens that could
occupy its niche in the lungs is taking place, thereby maintaining
constant high biomass. Variable temporal trends occur for the
most abundant taxa when clustering their relative abundances
from patients sampled during the same days (Figure 3E).
Evident changes in bacterial abundance were not observed.
Nevertheless the composition changed significantly, primarily
influenced by periods where Legionella increases in the short
term and Staphylococcus in the mid to long term. Significant dif-
ferences in the RTM dynamics during the hospitalization period
were observed also when analyzing individual patients, similar
to our overall findings (Figure S4). A similar trend was seen as
some taxa such as Staphylococcus in patients D, K, and P,
Enterobacteriaceae in patients O, or Prevotella in patients L
and Q, grew when Legionella or other abundant taxa decreased.
The increase in Prevotella in patients L and Q may indicate re-
covery of the microbiome in those patients as compared to
the microbiome of healthy individuals (Figure S4). Taken
together, our findings suggest that Legionella or other abundant
bacteria are replaced, which leads to the maintenance of a rela-
tively constant biomass.

Clinical factors are associated with the respiratory
microbiome diversity, composition, and biomass
We analyzed the association of continuous and categorical
metadata variables (Table S2) with the alpha and beta diversity,
the biomass of the RTM, and the load of the pathogen Legion-
ella (Figure 4). We first examined the effect of the sample type
(sputum, tracheal aspirates, bronchoalveolar lavage [BAL]) on
the alpha or beta diversity and on bacterial abundance. Figure 4
shows that no significant difference in the alpha diversity or
abundance was observed among sample types with respect
to their composition. The difference due to the sample type is
much lower than the effects caused by the patient, the antibiotic
usage, or invasive ventilation. Although the sample type is a
relevant factor to be considered in respiratory microbiome
studies, in strongly disturbed systems such as the lung micro-
biomes of hospitalized individuals with severe infection, the dif-
ference associated with the sample type is minor compared to
the impact of other factors that introduce more significant
perturbations in the microbial ecosystem. Indeed, based on
PERMANOVA test coefficient R2 (R function adonis2), the vari-
able ‘‘patient’’ explained most of the variance of the microbiome
composition with great differences compared to the rest of
the factors, although there were no significant differences in
alpha diversity or biomass. Several factors, such as immuno-
suppression or gender, are associated with composition, while

invasive ventilation and hospitalization periods are also related
to alpha diversity. Moreover, Legionella abundance is associ-
ated with severity-related clinical factors such as SOFA
scores. The following sections present further details of these
associations.

Legionella pneumophila load influences the severity of
the disease and is linked to gender and risk factors
L. pneumophila showed a variable distribution in 68 of the 87
samples with an average abundance of 105 copies per milliliter
of sample (range 102–106). When analyzing the qualitative and
quantitative clinical factors significantly correlated with the L.
pneumophila load (Table S3 and Figure 4), we found that the res-
piratory, coagulation, cardiovascular, and total SOFA scores
were positively associated, indicating that elevated Legionella
concentrations in the lungs are associated with systemic effects
of the infection. Moreover, the abundance of L. pneumophila
varies significantly between day 0 and the day of the diagnosis
by urinary antigen test (between 0 and 4 days with a median of
2 days), the days between day 0 and the beginning of antibiotic
treatment (period 0–5 days, a median of 2), and the duration of
invasive ventilation (between days 3 and 20, a median of
12 days). A higher amount of Legionella is observed in men
and individuals with hemopathies and immunosuppression (Ta-
ble 1). Men are known to have a higher incidence and mortality
rate of legionellosis than women,26 but the differences in the mi-
crobiome have not been considered. Owing to the differential
incidence of Legionnaires’ disease between men and women,
the number of samples from women in our study was lower
(n = 8) compared to men (n = 79). No differences in diversity,
richness, or dominance between genders were observed
(Figure S5A). However, women showed a higher bacterial
burden than men, while men harbored a higher amount of Le-
gionella per milliliter of sample, which could be a crucial factor
explaining why the disease outcome is often worse in men
than in women (Figure S5B). In addition, themicrobiome compo-
sition of men and women is significantly different, as we identi-
fied 48 gender-associated features, 32 of which are associated
with men and 16 with women. The microbiome of men is en-
riched in Proteobacteria containing known pathogenic species
belonging to Enterobacteriaceae, Pseudomonas, Enhydro-
bacter, Stenotrophomonas, Haemophilus, and Legionella (Fig-
ure S5C and Table S3). Quantification of the L. pneumophila
load and correlation with clinical features and gender revealed
that higher amounts of L. pneumophila are associated with
the patient health status defined by the SOFA score and
co-morbidities such as male gender, underlying diseases, and
immunosuppression.

Figure 3. RTM diversity and composition per patient
(A) Alpha-diversity metrics Shannon, Chao 1, and Berger-Parker index (dbp). Patients with temporal samples were included (15 patients, n = 69).

(B) Total bacterial and Legionella load. Abundance represents the number of 16S rRNA copies per milliliter of sample. Samples and taxa distribution are rep-

resented in an NMDS plot based on the Bray-Curtis dissimilarity matrix. Taxa distribution is represented with triangles. The PERMANOVA-associated p value of

the variable ‘‘patient’’ is included above the graph.

(C and D) (C) Temporal variation of the microbiome composition and (D) bacterial load of two patients (O and P).

(E) Significant temporal trends of the most abundant bacteria (%). Significance is based on the ‘‘Trendyspliner’’ (test for a significant non-zero trend over time)

implemented in the splinectomeR package.

n, number of samples.
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Invasive mechanical ventilation, hospitalization, and
antibiotics alter the RTM of pneumonia patients
To investigate whether there is a connection between invasive
ventilation and changes in the RTM microbiome, we analyzed
all samples of ventilated patients (n = 41). This revealed a statis-
tically significant association between the microbiome of venti-
lated patients with lower diversity and richness compared to
that of non-ventilated ones and a higher Berger-Parker index
indicating the dominance of few ASVs (Figure 5A). Generally,
when analyzing ventilated patients over time (D, L, M, P, Y,
ZC), we found a high abundance of only one or two taxa at the
different points during hospitalization, including Legionella,
Enterobacteriaceae, Streptococcus, or Achromobacter (Fig-
ure S4 and Table S2). Although no significant relationship be-
tween ventilation and total biomass or Legionella load was
observed (Figure 5B), the microbiome composition differed be-
tween invasive-ventilated and non-ventilated patients (Fig-
ure 5B). Samples of patients with invasive ventilation showed a
lower abundance of nine taxa and an enrichment in Legionella.
Other clinically relevant pathogens, such as members of Entero-
bacteriaceae, Staphylococcus, or Mycoplasma, were associ-
ated with ventilation (Table S3). Invasive mechanical ventilation
is associated with decreased alpha diversity and a composition
shifted toward a source of pathogenic bacteria.
The evaluation of the effect of the most frequently administered

antibiotics on the RTM (a dual therapy of macrolides and fluoro-
quinolones) (n = 46) showed that patients treated with this combi-
nation had a lower diversity and richness, and higher dominance
of ASVs compared to patients who did not receive this combina-
tion therapy (Figure 5C). Interestingly, the total bacterial concen-
trationwas higher in treated individuals, but the Legionella amount
was not statistically different among groups under different antibi-
otics treatment (Figure 5D). Furthermore, no global but specific
compositional differences among both groups were identified

(Figure 5D). The samples from patients under dual therapy are
associated with higher relative abundance of Legionella and a
lower abundance of 17 taxa, including the predominantPrevotella,
Oribacterium, orVeillonella (Table S3).Most patientswho received
this therapy were also under ventilation (D, M, P, Y, ZC), showing
low diversity and dominance, and high abundance of one or two
taxa, mainly Legionella, Enterobacteriaceae, Streptococcus, or
Achromobacter (Figure S4; Table S2).
Antibiotic treatments are known to impact the human micro-

biome; however, here we showed that the standard dual therapy
of macrolides and fluoroquinolones (the most common spiramy-
cin + levofloxacin) led to a stronger decreasing diversity and
richness than other dual therapies such as combinations of
b-lactams (amoxicillin) and macrolides (pristinamycin, spiramy-
cin, clarithromycin) or macrolides with b-lactams (cefotaxime +
spiramycin; ceftriaxone + piramycin). We then compared the
effect of specific combinations of antibiotics on the microbiome
diversity and composition. No significant differences in alpha
diversity related to the treatments were seen. However, the het-
erogeneity of the patient treatments is a limitation of our ana-
lyses, since it is strongly affected by the sample size. We found
that significant composition changes depend on the antibiotic
combinations administered (Figure S6). Further longitudinal
studies with a larger number of samples would be critical to bet-
ter understanding the impact of antimicrobial combinations.
Certain clinical periods could be determinants for the response

of a patient to therapy, such as the number of days between diag-
nosis and antibiotic treatment or the number of days post anti-
biotic therapy.We thus evaluated the possible association of spe-
cific hospitalization periods with the microbiome. Most periods
showed a significant negative correlation with diversity and rich-
ness and a trend in the dominance index to increase (Figure 4
and Table S3). These results suggest that RTM diversity de-
creases rapidly after hospitalization. Thus, the first days of

Figure 4. Statistical association of meta-
data variableswith the alpha and beta diver-
sity, the biomass of the bacterial RTM, and
the Legionella load
The heatmap shows the p values of the statistical

analyses (Wilcoxon signed-rank test, Spearman

correlation, PERMANOVA). The definition of the

categorical variables and the alpha diversity

(Shannon, Chao 1, and Berger-Parker index [dbp])

was based on the Wilcoxon signed-rank test with

Bonferroni correction. The association with the

alpha diversity was based on the Spearman cor-

relation for continuous variables. The direction of

the correlation coefficient is indicated. For the

categorical variables ‘‘dual therapy of antibiotics,’’

the positive direction means higher abundance in

treated samples; in ‘‘gender,’’ higher abundance in

men; in ‘‘diabetes,’’ higher abundance in diabetic

individuals; ‘‘invasive ventilation,’’ higher abun-

dance in ventilated individuals. The association of

the microbiome composition (beta diversity) with

the variables was based on the PERMANOVA test

(R adonis2 function). The number of samples and

patients is shown at the top. The R2 coefficient

from the adonis2 result is also represented as a

measure of the variance explained by the variable.
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hospitalization could be crucial to prevent RTM diversity drops
typically associated with highly dysbiotic microbiome profiles.
Further clinical studies are needed to test whether medical inter-
ventions at this time could avoid diversity loss and, in conse-
quence, improve the patient’s health through modulating the
host-microbiome interplay. Interestingly, the bacterial abundance
generally remained constant over these periods, supporting the
theory of species replacement (see extended experimental pro-
cedures in STAR Methods for statistics).

The non-bacterial fraction during Legionella-associated
pneumonia is enriched in opportunistic pathogens
The fungal community was dominated by Ascomycota, mainly
Candida species (median of 96%, 105), pointing to the presence
of the opportunistic pathogenC. albicans, followed byMalassezia
species (closest species M. globosa 0.6%, 103) during pneu-
monia. Unfortunately, 1.3% (103 copies) could not be allocated
to specific taxa, indicating that a large part of the fungal diversity
in the pulmonary microbiome remains undescribed and further in-
depth analyses are necessary (Figure 6A). As for bacteria-bacte-
ria, we performed a co-abundance network analysis to identify
potential cooperative inter-kingdom relationships or shared
niches (Figure 6B). Similar to our analysis of bacteria-bacteria in-
teractions that had identified a cluster of pathogenic bacteria
(Figure 2B), we identified a cluster where Aspergillus, a fungus
associated with respiratory infections, co-occurs with bacterial
pathogens such as Legionella, Enterobacteriaceae, Acineto-
bacter, orStaphylococcus. In contrast,Candidabelongs to a clus-
ter that is particularly enriched in oral anaerobic gram-positive
commensals and various opportunistic pathogens such as Bul-
leida, Atopobium, Orobacterium, Selenomonas, or Lachnoanaer-
obaculum (Figure S3E). Furthermore, we identified a cluster of
fungi in the RTM such as Penicillium and other Saccharomycetes

that are primarily associated with the environment. Additional
research is necessary to determinewhether their presence is tran-
sient in the RTM.Archaea constitute an important part of the RTM,
as we identified them in 23% of the samples (n = 87) (Table S3).
The genus Methanobrevibacter was the most common archaea,
of which Methanobrevibacter oralis was identified in 14% of the
samples (0.05% and 103 copies per milliliter of sample). Interest-
ingly, a maximum of 105 copies were identified in a patient with an
immune system condition (lymphoid leukemia). Methanobrevi-
bacter is linked in the co-occurrence network with certain
commensal bacteria, such as Bifidobacterium, as well as other
bacteria that are not well known or not known to be significant
in respiratory illnesses (Figure S3C); thus, their presence does
not seem to be related to virulence. Although we could analyze
only a small number of samples (n = 8) for the presence of proto-
zoan species, we found that all were positive for the protozoa Tri-
chomonas tenax in variable proportions (Table S3). T. tenax is a
commensal in the oral cavity but it can also cause lung infections,
particularly in immunodeficient patients.28 Indeed, three of the five
patients inwhomT. tenaxwas identified suffered fromcancer (one
chronic lymphocytic leukemia and two multiple myeloma) associ-
ated with several alterations of the immune system, possibly fa-
voring the presence of Trichomonas. Presence and diversity of
protozoa in the RTM have been neglected. Despite marker gene
and metagenomic analyses for this taxonomic group being chal-
lenging, the presence of protozoa in the lungs should be consid-
ered in future research, especially concerning patientswith immu-
nological conditions.

DISCUSSION

The RTM during pneumonia has been poorly analyzed, with
only very few longitudinal studies that have mainly focused

Table 1. Selected clinical parameters of patients included in this study

Patients Days between day 0 and antibiotics

Total no. of patients 38; total samples 97 n = 31, median = 2, 1–3

Gender Days post antibiotic therapy

male n = 30, %79 n = 31, median = 5, 2–8

Immunosuppression Days post first symptoms

yes, n = 2, 5% n = 31, median = 9, 7–14

Hemopathy Days between symptoms and antibiotics

yes, n = 2, 5% n = 31, median = 5, 3–7

Dual therapy macrolide-fluoroquinolone SOFA cardiovascular

yes, n = 23, 60% n = 33, median = 1, 0–4

Invasive ventilation SOFA coagulation

yes, n = 13, 34% n = 35, median = 0, 0–1

Invasive ventilation duration SOFA total

n = 13, median = 12 days, 9–18 n = 35, median = 7, 3–10

Diabetes SOFA respiratory

n = 2, 5% n = 35, median = 3, 2–3

Days post inclusion (day 0) Antibiotic therapy

n = 38, median = 2, 1–5 yes, n = 12, 32%

‘‘n’’ refers to the number of patients. For complete detailed clinical information, see Table S1.
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Figure 5. Impact of clinical interventions on RTM diversity and composition
(A) Effect of mechanic ventilation on alpha-diversity metrics Shannon, Chao 1, and Berger-Parker index (dbp) (n = 53).

(B) Total bacterial and Legionella load (n = 53). Abundance: number of 16S rRNA copies per milliliter of sample. The comparison is based on theWilcoxon signed-

rank test with Bonferroni correction. p values are shown. Samples and taxa distribution are represented in an NMDS plot based on the Bray-Curtis dissimilarity

matrix. Taxa distribution is represented with triangles. The PERMANOVA-associated p value of the variable ‘‘mechanical ventilation’’ is included above the graph.

(C) Effect of dual therapy (macrolide and fluoroquinolone) on alpha-diversity metrics Shannon, Chao 1, and dbp (n = 50).

(legend continued on next page)
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on bacterial communities characterized through qualitative ap-
proaches.29,30 In this study, we performed a comprehensive
analysis of the RTM in a unique cohort of 38 patients hospitalized
with severe pneumonia caused by the bacterium L. pneumophila
as model of infection. We investigated the inter-kingdom
microbiome composition (archaea, bacteria, fungi, protozoa)
and analyzed its composition, diversity, and biomass as well
as the interplay of clinical variables, pathogen load dynamics,
microbiome diversity, composition, and biomass.

Our results support the ecological model of pneumonia, which
proposes that the RTM equilibrium is disrupted during infection,
leading to dysbiosis characterized by low microbial diversity,
high microbial burden, and host inflammation.20 The pulmonary
microbiome of cystic fibrosis patients associated with infections
shows similar biomass and alpha-diversity ranges.31,32 In
contrast, analyses of healthy individuals revealed lower biomass
(104–105) and higher diversity than present in samples from
pneumonia patients.11,33 Here we found that pulmonary micro-
biomes with the highest biomasses had the lowest diversity
and were enriched in opportunistic bacterial and fungal patho-
gens such as Pseudomonas, Stenotrophomonas, or Candida.
This phenomenon is well known in other human-associated
microbial communities such as the gut microbiome, where low
diversity and compositional profiles different from healthy ones
are linked to disease.34 Although high biomass is expected to
occur in dysbiotic microbiomes with low diversity and enrich-
ment in pathogens, few studies include quantification in this re-
gard and even less in the analyses of the RTM. Our results thus
suggest that high biomass could be used as a risk index for sec-
ondary infections or co-infections.

We discovered that the microbiome of Legionnaires’ disease
pneumonia patients is characterized by an outgrowth of Firmi-
cutes and Proteobacteria, a typical characteristic of lung dysbio-
sis.35 At the genus level, the RTM contained a combination of
oral commensals and respiratory or opportunistic pathogens
such as Enterobacteriaceae, Haemophilus, Legionella, Prevo-
tella, Staphylococcus, Stenotrophomonas, Streptococcus, and
Veillonella. This is similar to what we found previously in the anal-
ysis of persistent legionellosis, where Legionella and Staphylo-
coccus were also abundant pathogens in BAL samples.33 We
found that the dominant microorganisms are primarily members
of the oral and respiratory microbiome that are known to cause
lung infections during hospitalization and immunosuppression
(certain Enterobacteriaceae species, Haemophilus. Parainfluen-
zae, or Stenotrophomonas maltophilia).36–38 S. maltophilia is a
nosocomial pathogen due to its inherent and acquired resistance
to many broad-spectrum antibiotics,37 and S. aureus is a critical
respiratory pathogen associated with high antibiotic resis-
tance.39,40 Moreover, commensals of the RTM, such as Prevo-
tella melaninogenica, Streptococcus infantis, and Veillonella dis-
par,41–43 are also abundant. A correlation network approach
showed that abundant bacteria are distributed mainly in a ‘‘path-

ogenic’’ and a ‘‘commensal’’ cluster. Indeed, some of the taxa
associated with Legionella-caused pneumonia are not common
members of a healthy RTM14 and are worrying antibiotic-resis-
tant bacteria44,45 such as Kocuria, Curvibacter, Acinetobacter,
Paracoccus, Pseudomonas, and Enhydrobacter. Importantly,
besides pathogenic and/or resistant bacteria, clinically relevant
fungi involved in respiratory infections such as Aspergillus are
also found to be associated with Legionella-caused pneu-
monia.46 This analysis identified intra- and inter-kingdom associ-
ations that might be critical for the microbiome equilibrium,
which deserve further research as they may represent a target
for microbiome-based therapeutic strategies. The pathogenic
species identified other than Legionella might participate and
cause co-infections or lead to secondary infections; thus, the
cluster of these bacteria should be considered in medical inter-
ventions as a target. Instead of targeting individual pathogens,
strategies disrupting the microbial interaction network might be
helpful to eliminate the entire cluster that is enriched in patho-
gens. Supporting this idea, a study of bronchiectasis, a chronic
airway disease often complicated by microbial infections,
showed that beyond antibiotic killing the common pathogen
(Pseudomonas) it also helps to eliminate Pseudomonas by
significantly affecting its microbial interactions network.47 In
contrast, the cluster of beneficial bacteria might be used for stra-
tegies to restore the microbiome equilibrium and colonization
resistance capacity, for example through prebiotics, probiotics,
or synbiotics.48

The longitudinal analyses of the RTM of 15 patients disclosed
significant differences in alpha diversity, bacterial biomass, and
pathogen abundance within and between patients. This resem-
bles what was observed for the gut microbiome and reported in
other studies of the RTM.49,50 Although the microbial community
equilibrium within patients is strongly altered by infection, hospi-
talization, and treatment for pneumonia, high loads of bacteria
persist in the RTM over time due to a replacement of species.
For example, L. pneumophila was seen to be replaced by Staph-
ylococcus or Enterobacteriaceae. The reduction of Legionella due
to antibiotic treatment probably generates an empty niche that
can now be occupied by bacteria that are resistant to the antibi-
otics used.51 Indeed, Staphylococcus and Enterobacteriaceae
are known to possess various resistance mechanisms against
several classes of antibiotics.52,53 The quantification of the path-
ogen biomass showed that a high L. pneumophila load is associ-
atedwithmore severe disease, and it is also higher in patientswith
co-morbidities such asmale gender, underlying disease, or immu-
nosuppression. In men, we observed a higher burden of Legion-
ella and a microbiome enriched in Proteobacteria, known to be
associated with dysbiosis and inflammation,33,35,54 and we pro-
vide an explanation for the higher severity andmortality of Legion-
naires’ disease pneumonia in men.
Among clinical factors, invasive mechanical ventilation was

significantly associated with low-diversity microbiome and

(D) Total bacterial and Legionella load (n = 50). Abundance represents the number of 16S rRNA copies per milliliter of sample. The comparison is based on the

Wilcoxon signed-rank test with Bonferroni correction. p values are shown. Samples and taxa distribution are represented in an NMDS plot based on the Bray-

Curtis dissimilarity matrix. Taxa distribution is represented with triangles. The PERMANOVA-associated p value of the variable ‘‘dual therapy’’ is included above

the graph.

n, number of samples.
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specific compositional profiles enriched in Enterobacteriaceae
and Staphylococcus.55 In this regard, it has been shown that
the microbiome in ventilated intensive care unit (ICU) patients
is more perturbed than in non-ventilated individuals, exhibiting
a lower alpha diversity that decreases with the duration of me-
chanical ventilation and dominance of only one or few spe-
cies.29,30,56,57 A study analyzing the RTM of children admitted
to the pediatric ICU showed that the RTMcomposition shifted af-
ter mechanical ventilation and antibiotics to profiles dominated
by Enterobacteriaceae and Staphylococcus, which supports
our results.58 However, only few studies have evaluated the ef-

Figure 6. Predicted inter-kingdom RTM in-
teractions
(A) Relative abundance (%) of the overall most

prevalent fungal genera of the RTM. The taxonomy

is based on the UNITE database from QIIME

software (n = 29).

(B) The inter-kingdom (bacteria, archaea, and

fungi) network considers the most abundant taxa

(mean over 103 16S rRNA copies per milliliter of

the sample and 10 for the ITS) (n = 17). The

network is based on the ASV abundance tables

collapsed at the last identified taxonomic level.

Significant positive associations are shown

(p < 0.05). Each node represents a taxon color-

coded by phylum. The main clusters of nodes are

highlighted. Gray, connections within a cluster;

red, connections between clusters; bold, fungal

taxa. Only the closest taxa to fungi are shown. A

complete, detailed network is shown in Fig-

ure S3E.

n, number of samples.

fect of mechanical ventilation on the mi-
crobiome, making it challenging to estab-
lish conclusions.55 We also cannot rule
out that the decrease in diversity is
caused by co-factors such as the
patient’s health state. Most patients
with the lowest diversity, high dominance
of one or few species, and presence
of a pathogen(s) required ventilation
and dual therapy. These results can
be the basis for further studies to
search microbiome-based biomarkers
of severity.

Here we revealed that a significant
drop in diversity associated with invasive
mechanical ventilation and its duration
occurs, that commensals are under-rep-
resented, and that enrichment in harmful
pathogens, including resistant bacteria,
took place, which might promote
polymicrobial and/or secondary infec-
tions. Another significant clinical factor
associated with RTM during pneumonia
is hospitalization and treatment duration.
We show that the diversity and richness
rapidly decrease with time, favoring

higher dominance and changes in the composition generally to-
ward resistant bacteria such as S. aureus and a replacement of
bacteria over time, as we observed by analyzing patients individ-
ually. Indeed, it has been shown that microbiome dysbiosis in-
creases with hospitalization time in ICU patients.59 Taken
together, these data indicate that pneumonia and medical inter-
ventions could favor a decrease in alpha diversity and changes in
the composition of the RTM that are critical during the first days
of hospitalization.
Antibiotic treatments are known to impact the human micro-

biome. However, here we showed that the standard dual therapy
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of macrolides and fluoroquinolones (the most commonly used
ones are spiramycin + levofloxacin) led to a stronger decrease
in diversity and richness than the dual therapy b-lactams (amox-
icillin) andmacrolides (pristinamycin, spiramycin, clarithromycin)
or macrolides combined with cefalosporins (spiramycin + cefo-
taxime, spiramycin + ceftriaxone). Each combination of antibiotic
treatments is associated with different, specific microbiome
profiles but all antibiotics have a strong short-term and long-
term effect on the microbiome composition. However, treatment
variations between patients do not allow us to draw definitive
conclusions, as too many variables are under consideration.
Large cohorts of patients need to be analyzed in combination
with animal models and in vitro studies to understand the spe-
cific effects associated with the use of different antibiotics and
different antibiotic combinations.

Recent studies suggest that interactions of organisms of
different kingdoms, in addition to bacteria-bacteria interactions,
play a significant role in the ecology of the RTM.5 Interestingly,
archaea (M. oralis), protozoa (T. tenax), and fungi (highlighting
C. albicans) were present in various samples, patients, or time
points analyzed, suggesting that they might be resident mem-
bers and not transitory in the respiratory tract of hospitalized in-
dividuals. The potential inter-kingdom interactions identified
support the theory that these taxonomic groups are relatively
stable in the respiratory microbiome during pneumonia, possibly
impacting human health. M. oralis has also been detected
recently in sputum and BAL samples of hospitalized individ-
uals.60 C. albicans is an opportunistic fungus that is often pro-
moted by extensive antibiotic usage and mechanical ventilation
in hospitalized patients.61,62 Despite the difficulties associated
with the identification of these taxonomic groups due to experi-
mental procedures, classification methodologies, and their un-
der-representation in databases, the presence of domains of
life other than bacteria need to be considered in clinical microbi-
ology, in particular in immunosuppressed patients where
their abundance seems to be higher andmight have an important
influence on the success of the treatment and disease
progression.

Taken together, herewe showed that: (1) pneumonia caused by
L. pneumophila in hospitalized individuals is characterized by two
main clusters of ‘‘commensal’’ and ‘‘pathogenic’’ bacteria that
may be the base for futuremicrobiome-based therapies; (2) a con-
stant biomass of bacteria during hospitalization and antibiotics
treatment suggests a species niche replacement occurring after
clinical interventions that needs further research; (3) high biomass
of bacteria and fungi (>107, >106) might be risk biomarkers of co-
infection and/or secondary infections by opportunistic pathogens;
(4) high Legionella biomass correlates with disease severity and is
linked to co-morbidities, suggesting that quantification of the
pathogen should be included in medical monitoring of patients;
(5) invasive mechanical ventilation, long hospitalization periods,
and combined antimicrobial therapies strongly alter the RTM, an
effect that should be considered in the clinic; and (6) the inter-
kingdom microbiome may play a more critical role than consid-
ered so far and should be studied further. Therefore, the interac-
tion of the RTM equilibrium and the pathogen load dynamics,
together with clinical interventions, are crucial factors in the
severity and outcome of bacterial pneumonia.

Limitations of the study
As RTM research is a new field, the study faces limitations in
design, sampling, experimental, and computational approaches.
According to the incidence of legionellosis, we analyzed an
exceptionally large cohort with respect to sample size. However,
the invasiveness of the sampling procedure (i.e., bronchoscopy)
challenges the sample collection in respiratory studies, and thus
the study is primarily observational. Another limitation is that mi-
crobiome analyses are based on marker gene sequencing.
Metagenomics is more informative but is technically challenging
because of the low microbial biomass and high cell content of
respiratory samples. Future studies using novel methods based
on microbial DNA enrichment and host DNA depletion should
enable the application of omics for low-biomass samples.63

Data analysis is also challenging, as most species remain
unidentified and in particular significantly affect non-bacterial
microbial communities. Finally, separating specific effects of
clinical or environmental variables of the human RTM is
challenging because of several confounding factors. More
studies combining omics applied to large-size and/or longitudi-
nal clinical samples, experimental models (in vitro, animals),
and advanced computational and statistical approaches (i.e.,
machine learning) will shed light on RTM ecology in health and
disease.
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ITS2 GCTGCGTTCTTCATCGATGC N/A

Vahl730F TAATACTGCTGTAG TTAAAACGCCC N/A

R-1200 CCCGTGTTGAGTCAAATTAAGC N/A

Software and algorithms

QIIME2 Qiime2 website http://qiime2.org/

R CRAN https://cran.r-project.org/

Rstudio posit https://posit.co/download/

rstudio-desktop/

sparCC github https://github.com/bio-developer/sparcc
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human participants
Written informed consent was obtained for all participants. Ethics approval was obtained from the national review board for biomed-
ical research (Comité de Protection des Pesonnes Sud Est IV, France; ID-RCB 2016-A01021-50) in September 2016 and from
Agence Sanitaire de Sécurité du medicament et des produits de santé (ANSM) in August 2016, and the study was registered on
ClinicalTrials.gov (NCT03064737). The study included hospitalized patients suffering from Legionnaires’ disease pneumonia caused
by L. pneumophila serogroup 1 (Lp1) diagnosed under medical and biological criteria. 69 tracheal aspirates, 23 sputum and 5 bron-
choalveolar lavage fluids were taken from patients with clinical and/or radiological signs of pneumonia combined with isolation of L.
pneumophila and/or positive Legionella PCR from broncho-pulmonary secretions and/or positive Legionella urinary antigen tests
(UAT). For each respiratory sample, the presence of Legionella was tested by PCR using primers and probes of the R-DiaLeg kit
(Diagenode, Belgium). PCRs were prepared in a final volume of 20 mL by adding the Master Mix 5X (TaqMan Probe LC2.0, Roche
Diagnostics, France), 4 mL of primers and probe Lspp&Lp (R-DiaLegTM) or the internal control (DICD-YDL100) 2 mL, H2O (PCR grade)
2 mL and 10 mL of sample DNA. The amplification was performed on an LC2 system with the program: 95"C for 10 min followed by 45
cycles of 95"C for 10 s, 60"C for 40 s and 72"C for 1 s, and a final step of 30 s at 40"C. The samples were stored at #80"C until
processing. A total of 38 patients were included and followed over time, considering the inclusion day as day 0. Table S1 details
the main clinical information of the patients (related to Table 1).

METHOD DETAILS

DNA extraction and marker genes sequencing
DNAwas extracted from 300 mL of the sample using a PowerSoil DNA isolation kit (Qiagen) following themanufacturer’s instructions.
To analyze the bacterial composition, the V4 region of the 16S rRNA gene was amplified by PCR using the 16SrRNA Illumina
sequencing standard primers with adapters. Forward primer 515F with adaptor (50-TCGTCGGCAGCGTCAGATGTGTA
TAAGAGACAG-3)’ and reverse primer 806R with adaptor (50-GTCTCGTGGGCTCGGAGATG TGTATAAGAGACAG-3’). For each
sample, a 20 mL PCR mix was prepared, containing 5 mL of Buffer Taq (10X), 1 mL of 25 mM MgCl2, 0.5 mL of dNTPs (10 mM),
1.25 mL of each primer (10 mM), 0.25 mL of Phusion High-Fidelity DNA Polymerase (5u/mL), 0.5 mL of DMSO, 8.25 mL of nuclease-
free water and 1 mL of DNA template. PCR conditions: 95"C for 5 min followed by 25 cycles of 95"C for 30 s, 55"C for 1 min and
72"C for 1 min, and a final extension step of 7 min at 72"C. For fungal composition, we amplified the ITS region with the ITS1/
ITs2 primers. The same adaptors and reaction mix and PCR conditions as described above were used, with 30 cycles.
To analyze the protozoa composition Vahl730F_C and R-1200 primers were used. The same sequencing adaptors and reaction

mix described above were used for the PCR with the conditions: 95"C for 5 min followed by 30 cycles of 95"C for 30 s, 57"C for
1 min and 72"C for 1 min, and a final extension step of 7 min at 72"C. All amplicons were checked by electrophoresis in agarose
gels (1.4%). The Illumina libraries were prepared following the manufacturer’s instructions. High-throughput sequencing was per-
formed with a MiSeq Illumina sequencer (2 3 300 bp) by the Biomics Pole (Institut Pasteur).

Quantification of bacterial and fungal load
To quantify microbial abundance (bacteria and fungi), we set up the protocol proposed by Tckaz and colleagues for pulmonary sam-
ples27 (see details in the Figure S1 and extended experimental procedures). Briefly, themethod consists of adding synthetic, chimeric
DNA spikes to the samples (pSpike-P for prokaryotes and pSpike-F for fungi). The spikes then are co-isolated and PCR-amplified,
providing estimations of the absolute abundance of the amplicons analyzed. The microbial abundance in pulmonary samples was
estimated following microbial rRNA abundance = (number of microbial-origin reads/number of synthetic-origin reads) 3 synthetic
spike copies added to sample before DNA isolation for 16S rRNA with the prokaryotic synthetic spike and ITS with a synthetic fungal
spike.

Controls
Kit and PCR negative controls were included for all primers used. It also included a positive extraction control based on amock com-
munity (ZymoBIOMICS Microbial Community). See control results in extended experimental procedures.

QUANTIFICATION AND STATISTICAL ANALYSIS

Marker gene data processing, ecological and statistical analysis
The microbiome data analysis was following previously published guidelines.64 Specifically, the Quantitative Insights into Microbial
Ecology (QIIME2) pipeline (version qiime2-2020.8) was used to perform the quality filtering, discard chimeric sequences, merge the
paired-end reads and estimate the ASVs.65 The ASV calculation was based on DADA2 implemented in QIIME2.66 We used the SILVA
database for 16S rRNA and 18S rRNA taxonomic assignment and the UNITE for ITS data, both in the QIIME2 pipeline. Samples with
less than 1000 reads were excluded from the ecological analyses.
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The alpha-diversity prediction was based on the microbial abundance, the richness (Chao 1), the diversity (Shannon
Index), and dominance (Berger–Parker index) of the samples (see Figures 1, 3, and 5 legends). The analyses were performed
through the ‘‘microbiome’’ R package.67 To statistically compare the metrics between sample groups, we used the Wilcoxon
signed-rank test with Bonferroni correction to adjust for multiple comparisons for qualitative variables and Spearman correlation
analyses for quantitative ones, both implemented in R core (see Figures 1, 3, and 5 legends). To explore differences in compo-
sition between sample groups we used the non-metric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarity (see
Figures 1, 3, and 5 legends). The multivariate analysis of variance based on dissimilarities (PERMANOVA test, adonis2 R func-
tion) was used to test the impact of external variables in explaining differences between groups regarding microbial composition
(see Figure 4 legend). Both functions are implemented in the R package ‘‘Vegan’’.68 Only clinical factors with a minimum of 3
patients with metadata collected were analyzed. To identify those taxa associated with different groups when comparing among
conditions, we used the ANCOM-BC method adjusted by patient as main co-variate69 (see Table S3). The co-variate patient
was the most relevant in explaining variance in composition; thus, the ANCOM-BC comparisons need to be adjusted by the
patient.

We used SparCC software70 to predict a co-occurrence network based on the most abundant bacteria (minimum of 103 copies
per mL on average) and 10 copies per mL when the fungal community was included (see Figures 2 and 6 legends). Correlation
coefficients were estimated from the abundance table with 100 iterations. Only positive coefficients were considered for the
plot (>0.5). To consider a correlation significant, we selected p values <0.01 with 500 bootstraps. We used the igraph package
implemented in R software to plot the networks (force-directed layout option) and clusters based on the Newman-Girvan
algorithm.71

Extended experimental procedures
Set-up of quantification method in pulmonary samples for 16S rRNA and ITS
We adjusted the protocol proposed by Tckaz and colleagues to quantify microbial abundance (bacteria and fungi) in pulmonary sam-
ples.27 The method was tested for 16S rRNA gene analysis by spiking 30 samples (300 mL) with 3.28E+07 copies of plasmid ‘‘syn-
thetic spikes’’ before DNA extraction to quantify bacteria. The estimated samples showed abundances ranging mainly from 106 to
1010 copies permL of sample (Figure S1A). 41%of the samples belonged to a range of 107 copies permL, while 21%have around 106

copies and 38% more than 108. In three samples, we did not find spike-in reads what indicates a high microbial abundance impos-
sible to estimate with this spike-in amount or experimental manipulation error from the last group. It is useful to test spike-in quantities
to find a level that favors quantifying accurately as many samples as possible. Out test showed that in samples with abundances in
the range of 106 copies per mL representing 21% of the analyzed set, the microbial reads represented less than 8% of the total,
compromising further diversity analysis. Hence, we spiked-in the rest of the study samples with a lower number of copies of the
plasmid (3.16E+06).

Quantitative real-time PCR (qPCR), based on the 16S rRNA gene, was performed to quantify the total bacteria to compare with the
spike-in estimates. We used the primers: forward 515F (5’- GTGCCAGCMGCCGCGGTAA-3’) with adaptor (50-TCGTCGGCAGCGT
CAGATGTGTA TAAGAGACAG-3)’ and reverse 806R (50- GGACTACHVGGGTWTCTAAT-3’) with adaptor (50-GTCTCGTGGGC
TCGGAGATG TGTATAAGAGACAG-30). Standard curves were estimated by using serial 10-fold dilutions of a plasmid with 1 copy
of the gene. The PCRmixture was prepared in a final volume of 20 mL by adding 10 mL of 53 SYBR green qPCRmaster mix (Applied
Biosystems), 0.8 mL of primers (10 mM), 3.4 mL of H2O, and 5 mL of the DNA sample. The amplification was performed on a Bio-Rad
CFX qPCR instrument using the following program: 95"C for 3 min, followed by 40 cycles of 95"C for 5 s, 55"C for 30 s, and 72"C for
1 s. All reactions, including negative controls, were run in triplicate.

We found no significant differences between the qPCR and spike-in-based predictions (Wilcoxon signed-rank test paired test; p
value >0.05). It indicates that measures in the predicted ranges are comparable to qPCR predictions commonly applied in micro-
biome studies. Thus, the spike-in method quantifies precisely microbial abundance from pulmonary samples when adding before
DNA extraction.

For ITS, we tested by spiking 30 samples (300 mL) with 4.16E+03 copies of plasmid ‘‘synthetic spikes’’ before DNA extraction to
quantify fungi. The estimated samples showed abundances ranging from 104 to 108 copies permL of the sample with amedian of 105

(Figure S1B). Out test showed that the fungal reads represented as a minimum the 70% of the total in all samples allowing to perform
the diversity analyses. Then, we spiked-in the rest of the studied samples with the tested number of copies of the plasmid (4.16E+03).
We found no significant differences between the qPCR and spike-in-based predictions (Wilcoxon signed-rank test paired test; p
value >0.05). It indicates that as for the 16S rRNA, spike-in measures are comparable to qPCR predictions. The qPCRwas performed
as for the 16S rRNA but with ITS primers (50-CTTGGTCATTTAGAGGAAGTAA-3’) and reverse primer (50-GCTGCGTTCTTCATC
GATGC-3’).
Control analysis in pulmonary samples
All negative controls produced negative bands in agarose gel. Although their quantities for the library were low, we
included them for sequencing. Kit and PCR controls of 16SrRNA and ITS carried out in parallel produced a low number of
reads (less than 50 on average), indicating that contaminants did not represent enough biomass to affect the samples.
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The kit and PCR reagents control for the 18S rRNA showed less than 200 reads each, all of them classified as unknown
eukaryotes or from human origin but not Trichomonas, indicating that its presence in the samples is not a result of
contamination.
The positive control was based on a mock community (ZymoBIOMICS Microbial Community): Pseudomonas, Escherichia,

Salmonella, Lactobacillus, Enterococcus, Staphylococcus, Listeria, and Bacillus. We found all the taxa and the expected
relative abundance per each taxon (12%) compared to our prediction was not statistically significantly different (Wilcoxon, p
value >0.05).
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