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Abstract
The cytoskeleton, comprising actin microfilaments, microtu-
bules, and intermediate filaments, is crucial for cell motility and
tissue integrity. While prior studies largely focused on individual
cytoskeletal networks, recent research underscores the inter-
connected nature of these systems in fundamental cellular
functions like adhesion, migration, and division. Understanding
the coordination of these distinct networks in both time and
space is essential. This review synthesizes current findings on
the intricate interplay between these networks, emphasizing
the pivotal role of intermediate filaments. Notably, these fila-
ments engage in extensive crosstalk with microfilaments and
microtubules through direct molecular interactions, cytoskeletal
linkers, and molecular motors that form molecular bridges, as
well as via more complex regulation of intracellular signaling.
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Introduction
The cell cytoskeleton is involved in numerous aspects of
cell biology from the maintenance of intracellular ar-
chitecture and cell morphology to the realization of
complex motile behaviors. To achieve these functions,
the cytoskeleton is composed of different filamentous
networks: actin microfilaments, microtubules, and in-

termediates filaments (IFs). IFs are homo- or hetero-
polymers of proteins encoded by more than 70 different
genes and classified into 6 different classes based on
www.sciencedirect.com
sequence homology [1]. While five classes of IF pro-
teins, including keratins and vimentin, form cytoplasmic
networks whose composition is cell type-specific, the
lamins, class V of IF proteins, form ubiquitous nuclear
network. The versatile, cell-type specific filamentous
networks perform both cytoplasmic and nuclear func-
tions and their absence can result in significant disorders
impacting various cellular processes such as cell prolif-

eration, differentiation, or migration [2e6]. Mutations
in IF genes cause diseases including laminopathies,
keratinopathies, and desminopathies while alteration of
IF composition is frequently associated with cancer
progression [7e10].

Unlike microtubules and actin filaments, IFs self-
assemble without any known cofactors or nucleoside
triphosphates and do not present polarity. The self-
assembly of IFs is promoted by the presence of the a-
helical Rod domain, present in all IF proteins. Some IFs

are homopolymers (e.g. vimentin IFs), others are obli-
gate heteropolymers (e.g. keratin, neurofilaments IFs).
Although the concomitant presence of keratins and
vimentins is rare, this phenomenon can occur during the
epithelial-mesenchymal transition (EMT). During
EMT, these different types of IF proteins cannot
assemble, resulting in the presence of distinct keratin
and vimentin cytoplasmic IF network. Other IF proteins
(e.g. nestin, synemin, Glial Fibrillary Acidic Protein
(GFAP), neurofilaments, etc.) often hetero-polymerize
with type III or type IV IF proteins and are more spe-

cific to certain cell types and/or functions. Concerning
nuclear IF proteins, they can be divided into two groups:
A-type lamins (lamins A and C) and B-types lamins
(lamins B1 and B2) form two distinct nuclear networks.

The dynamics and the mechanical properties also
distinguish IFs from actin microfilaments and microtu-
bules. IFs are highly stretchable; those composed of
desmin, vimentin, keratin, or lamins can be stretched
from 240 % to 300 % of their original length before
breaking [11]. These filaments not only possess

exceptional elasticity but also exhibit a strain-stiffening
response. A unique characteristic of IF proteins is their
ability to undergo structural changes (coiled-coil a-he-
lical domains stretching) in response to external forces
[12,13]. Besides their primary function as structural
scaffold, IFs also participate in intracellular signaling.
The interplay between cytoplasmic IFs and various
Current Opinion in Cell Biology 2024, 87:102325
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cellular proteins initiates signaling cascades that govern
critical cellular processes like cell proliferation, migra-
tion, and apoptosis, fundamental both during develop-
ment and in the adult [14].

While actin, microtubules, and intermediate filaments
(IFs) were initially studied as separate networks, first
indications of cytoskeletal crosstalk emerged in the early

2000s. For instance, studies of actin filaments and mi-
crotubules at focal adhesions suggested potential cyto-
skeletal crosstalk during cell adhesion and migration
[15]. More recently, IFs have been shown to also
participate, together with the other elements of the
cytoskeleton, in essential functions such as cell adhesion,
division, and migration [6,16,17]. This raises the ques-
tion of how diverse cytoskeletal networks cooperate to
achieve intricate functions. Over the last decade, mul-
tiple direct and indirect connections between the
different cytoskeletal networks including IFs, have been

revealed both in vitro [18e20] and in cellulo [16,21,22]. In
this review, we highlight recent evidences of direct and
indirect interactions between cytoskeletal elements, as
well as their involvement in diverse signaling pathways.

Intermediate filaments physically interact
with actin and microtubule networks
Numerous in vitro studies have been carried out to reveal
the direct physical interactions between the various

cytoskeletal networks [23] (Figure 1). One of them un-
covered that the stiffness of complex in vitro actin-
vimentin networks is increased compared with pure
vimentin or actin networks, suggesting an actin-vimentin
interplay. This interaction was shown to depend on the
vimentin carboxy-terminal tail domain, suggesting but not
formally demonstrating a direct binding of the vimentin
carboxy-terminal tail to actinfilaments [24].However, this
result was not confirmed in more recent studies,
suggesting that this interaction is weak or dependent on
the buffer conditions. In an in vitro reconstituted actin-

keratin 8/18 filament systems, keratin has also been
recognized as an actin partner, involved in network re-
sponses tomechanical constraints. For small deformations,
all actin-keratins composites with varying ratios displayed
a linear viscoelastic behavior intermediate to one of pure
actin or keratin networks. In contrast, when high strains
were applied to actin-keratin composites, an increasing
stiffening behavior was observed, correlating with
increasing keratin content [25]. A direct interaction be-
tween desmin and actin was also observed in
cell-sized artificial droplets of 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE). When both networks
polymerized together in thesedroplets, they increased the
propensity for deformation and protrusions, much more
than what was observed with separate networks. Both
desmin and actin were found in these protrusions [26].

IF interaction with microtubules was initially illustrated
by the in vitro interaction of dephosphorylated
Current Opinion in Cell Biology 2024, 87:102325
neurofilaments with microtubules via the NFeH sub-
units [27]. More recently, an innovative combination of
cutting-edge techniques (microfluidics and optical
trapping) showed the direct interaction of vimentin IFs
with microtubules and its role in microtubules stabili-
zation [28]. The development of in vitro Inter-
penetrating Multicomponent Cytoskeletal Networks
(IPNs), composed of actin, vimentin IF, and microtu-

bules without crosslinker, has determined that the
vimentin presence influences the overall structure and
dynamic of the network and its rheological characteris-
tics. Specifically, the presence of vimentin IFs extends
the network’s elastic regime to longer time scales,
leading to a substantial enhancement in the relaxation
time of the IPN network [29].

Results obtained with in vitro reconstituted systems may
explain some observations made in cells. The unique
mechanical properties of IFs are reflected by their

crucial participation in cell mechanical properties [30].
The study of individual fibroblasts shows a cell active
stiffening under compressive stress, which appears
mainly dependent on vimentin IFs [31]. However,
cytoskeletal perturbations, such as reduced dynamic
instability of microtubules or partial depolymerization of
actin filaments, influence the apparent persistence
length and lateral mobility of IFs, suggesting that actin
and microtubules may influence the mechanical func-
tions of IFs [32]. Whether these interactions between
the networks are involved in their tight association in

cells [22,33] and in the role of vimentin in controlling
microtubule elongation and stability, still remains to be
determined [34,35]. At the cell cortex, vimentin IFs and
F-actin were shown to form an IPN that enhances cell
contractility, resilience, and structural integrity after
transient stretch, emphasizing the synergistic role of
actin and vimentin in shaping the cytoskeleton [36].

Accumulating evidence both in vitro and in cellulo sug-
gests that direct physical interactions between cyto-
skeletal networks can contribute to cytoskeletal
coordination and integrity, and to the overall mechanical

properties of cells (Figure 1). Although some charac-
teristics of this cytoskeletal crosstalk can be elucidated
with in vitro reconstituted systems, only the comparison
to experiments performed in cells will allow to decipher
the whole complexity of cytoskeletal interplay. This
intricacy of cytoskeletal crosstalk is certainly regulated
at the subcellular levels by the relative concentration of
the networks, of cytoskeletal linkers as well as by a
number of post-translational modifications which may
fine tune their interactions.

Crosslinkers and molecular motors
mechanically connect intermediate
filaments to actin and microtubules
While direct physical interactions between cytoskeletal
networks can influence their properties, cytoskeletal-
www.sciencedirect.com
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Figure 1

Direct and indirect interactions in tripartite cytoskeletal crosstalk. a. Cytoplasmic and nuclear intermediate filaments interact with each other and
with actin networks and microtubules, both directly (via physical interaction between the protein structures) and indirectly (via cytoskeletal linkers or
molecular motors). b. Table detailing direct (b.1) and indirect (b.2) pairwise interactions between cytoskeleton components (ND: Non-determined).
Created with the help of BioRender.com.
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associated proteins also participate in cytoskeletal
crosstalk. Numerous cytoskeletal crosslinkers facilitate
IF interplay with other cytoskeletal components, playing
pivotal roles in the maintenance of the intercellular
junctions to the realization of complex cellular processes
such as cell division. Examples include the Adenoma-
tous Polyposis Coli tumor suppressor (APC) [37],
Capping protein - Arp2/3 - Myosin I Linker 2

(CARMIL2) [38], Filamin A [39], Nebulette [40], as
well as cytolinkers from the Plakin family like Envo-
plakin, Periplakin, and Plectin (Figure 1). A recent
in vitro reconstitution shows that a mini plectin or mini-
APC including the vimentin and actin-binding sites can
trigger the formation of actin-vimentin filament bundles
and stiffen the vimentin-actin mix [41].

Plectin connects IFs to various cytoplasmic organelles and
associated processes, as well as other cytoskeleton and
associated components. In some, but not all cases, the

specific plectin isoform involved has been identified (i.e.
plectin P1b and P1d in mitochondria organization and
shape dynamic [42,43], plectin isoform 1 in nuclear
mechanotransduction [44], and plectin P1f at focal ad-
hesions [45,46]). Plectin-mediated crosstalk between the
actin and vimentin networks is essential for vascular
integrity [47]. In epithelial sheets the absence of plectin
triggers a disorganization of the keratin-desmosome
network, impacting the actin network organization and
inducing acto-myosin hyper-contractility. This leads to a
reduction in intercellular cohesion, associated with a

general destabilization of the epithelial sheets under
mechanical stress [48,49]. Other plakin family cyto-
linkers, such as envoplakin and periplakin, connect kera-
tins and actin and play a pivotal role in the microridge
protusions morphogenesis and shaping of mucosal
epithelial cells [50]. Plectin has also been involved in
mediating IF functions in cell adhesion and adhesion-
dependent migration [4]. In lobopodial cell migration,
IFs contribute with the acto-myosin network in the for-
mation of a high-pressure compartment in front of the
nucleus, required for directional forward movement.
Plectin polarizes the distribution of myosin II at the front

of thenucleus andpromotes the formation of a perinuclear
vimentin cage. In response to myosin activity, plectin in-
teracts with vimentin in a mechanosensitive manner and
facilitates the nuclear piston mechanism [51].

As cells divide, vimentin undergoes a crucial redistri-
bution towards the cell cortex to form a complex
network intertwined with actin, resulting in a change in
morphology and cell rounding. Absence of the vimentin
tail region alters vimentin redistribution and leads to
mitotic defects. Furthermore, disruption of actin fila-
ments induces vimentin IF bundling near chromosomes

[52]. The direct interaction of the carboxy-terminal
region of vimentin with actin may be involved. How-
ever, a comparative interactomic analysis of F-actin in
interphase cells compared to mitotic cells identified
Current Opinion in Cell Biology 2024, 87:102325
plectin as a potential regulator of cortical architecture.
Vimentin is recruited to the mitotic cortex in a plectin-
dependent manner to coordinate the structure and
mechanics of the actin network for successful mitosis in
a confined environment [53]. While plectin appears an
unmistakable IF partner, only the characterization of the
interactomes of all IF proteins will reveal the potentially
extensive list of cytoskeletal linkers bridging IFs to the

cytoskeletal components.

Another class of essential connectors between cyto-
skeletal elements are molecular motors such as dynein,
kinesin, and myosin. They have been involved in IFs
transport along microtubules and actin microfilaments
[34,54,55]. They control the turnover of IFs in immobile
cells and the polarized rearrangement of the IF network
along the polarity axis in migrating cells. Transport of IFs
along microtubules by both minus-end directed dynein

and plus-end directed motors such as kinesin-1 has
raised the question of the coordination of motors
allowing the directional movement along elastic fila-
ments. Both analytic and stochastic modeling of IF
transport revealed the importance of dynein and kine-
sin-binding properties as essential parameters allowing a
directional transport. Moreover, the filament elasticity
plays a key role in promoting motor coordination
[56,57]. Comparison between the analytic and stochas-
tic models revealed that stochastic fluctuations effec-
tively promote the collective movement of IFs and

increase regulatory efficiency through the biochemical
properties of cargoemotor interactions [58]. To inves-
tigate actin-based retrograde transport, cells were
treated with nocodazole to disrupt the microtubule
network. In these conditions, IFs move towards the
center of the cell where they accumulate. Mathematical
modeling suggests that a spatially dependent IF trap-
ping or a spatially dependent speed of actin-dependent
transport can explain the establishment of this steady-
state situation [59]. Further analysis of IF transport is
still required to understand how the coordination of

microtubule-based and actin-based transport can
orchestrate the organization of the IF network, which in
turn influences actin and microtubule organization
and functions.
Intermediate filaments participate in
intracellular signaling which coordinates
the different cytoskeletal networks
While physical direct or indirect interaction between
cytoskeletal networks is clearly essential to cell archi-
tecture and mechanics and to tissue homeostasis, the
cytoskeletal crosstalk also involves regulatory proteins
and signaling cascades (Figure 2).

Intermediate filaments have been shown to influence
microtubule organization and function by modifying
tubulin acetylation. Microtubules acetylation and
www.sciencedirect.com
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Figure 2

IFs-mediated cytoskeletal crosstalk and intracellular signaling pathways. Legend: Filamin A (FLNA), p21-activated kinase 1 (PAK1), Vimentin (Vim),
phosphorylated-Vimentin (p-Vim), Capping protein Arp2/3 Myosin-I Linker 2 (CARMIL2), Actin Capping protein (CP), Myosin X (MyoX), Membrane-type I
matrix metalloproteinase (MT1-MMP), Paxillin (Pax), Cell division control protein 42 homolog (Cdc-42), Focal Adhesion Kinase (FAK), Guanine nucleotide
exchange factor H1 (GEF-H1), Ras homolog family member A (RhoA), Linker of Nucleoskeleton and Cytoskeleton Complex (LINC). Created with the help
of BioRender.com.
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deacetylation mainly rely on two different enzymes: a-
tubulin acetyltransferase 1 (a-TAT1) and histone
deacetylase 6 (HDAC6). Oncogene expression in fibro-
blasts leads to an up-regulation of HDAC6, which de-
creases microtubule acetylation and induces cell
stiffening. The decreased acetylation of microtubules
results in the structural collapse of the vimentin filament
network [60], possibly because microtubules acetylation

modulates vimentin transport along microtubules [34].
Conversely, PLK4-induced-centrosome amplification in
human retinal epithelial cells leads to an increase in
microtubule acetylation and induces vimentin IFs
repositioning towards the cell periphery. The reposi-
tioning of centrosomes and vimentin can be rescued by
inhibiting tubulin acetylation through aTAT1 depletion
[61]. Overexpression of HDAC6 may also influence
vimentin filament functions by modifying the vimentin
interactome (cytoskeletal and cell-extracellular matrix
adhesion components), as recently shown in oncogene-

expressing fibroblasts [62]. Whether this is due to a
change in the vimentin filament structure or in the or-
ganization of the vimentin network is not clear. The
interplay between vimentin and microtubule acetylation
appears bi-directional. Vimentin increases the level of
stable acetylated microtubules in mouse embryonic fi-
broblasts, although the role of HDAC6 or a-TAT1 in this
regulation remains to be investigated. Vimentin impact
on microtubule stability participates in cell polarity by
mediating centrosome repositioning during wound
healing-induced cell migration [63]. During human

parainfluenza virus type 3 infection, vimentin promotes
a-TAT1 degradation and inhibits microtubule acetyla-
tion and viral replication [64], illustrating another func-
tion of vimentin-microtubule crosstalk.

Besides, vimentin IFs also control the dynamics of focal
adhesions [5]. This regulation encompasses their asso-
ciation with focal adhesion components as well as their
role in microtubule or actin organization or their influ-
ence on Rho family of GTPases, which act as master
regulators of the cytoskeleton. Vimentin acts as an
adaptor protein, which activates and clusters of b1
integrins in fibroblasts plated on collagen matrices. It also
contributes to the recruitment of Paxillin to activate the
small G protein Cdc42, a major actin cytoskeleton orga-
nizer, directly influencing focal adhesion-mediated
signaling to promote the maturation of focal adhesion,
cell protrusion, and efficient cell migration [65]. Inter-
estingly, Cdc42’s direct effector, PAK1 phosphorylates
vimentin to facilitate cell adhesion and cell migration rate
in transformed human fibroblasts [66]. Moreover, PAK1
interacts with Filamin A (FLNA), an actin and vimentin
crosslinker to promote the formation of fibroblast pro-

trusions on fibronectin matrix [39], further confirming
the tight connection between vimentin IFs and focal
adhesions. Another recent study nicely illustrates the
influence of vimentin in maturation, stability, dynamics,
arrangement, and more importantly in the orientation of
Current Opinion in Cell Biology 2024, 87:102325
focal adhesions, to maintain the directionality of cell
migration in fibroblasts [67]. This regulation may rely on
a dynamic interaction between vimentin and FAK, a
crucial focal adhesion component [67,68]. The effect of
vimentin IFs on focal adhesion orientation could involve
the control of acto-myosin contractility and the trans-
mission of traction forces through focal adhesions.
Vimentin may also influence cell polarization by con-

trolling centrosome positioning to promote microtubule
orientation and stability and directed vesicular traffic
required for cell persistent migration [37,63].

The crosstalk between IFs and acto-myosin contractility
has been the subject of in-depth studies in recent years.
The presence of entangled vimentin filaments in the
stress fibers was observed by electron microscopy, but
the relevance of this entanglement was unclear [22,36].
Generally, vimentin IFs tend to minimize traction forces
[4]. Vimentin depletion was shown to activate RhoA-

mediated contractility via the RhoGEF GEF-H1,
although the exact mechanism remains unclear [69].
Consistently, in case of cell stimulation by electrophiles,
disruption of vimentin and in particular of its cysteine
328 residue, allows induction of stress fibers [70]. Other
IF proteins such as nestin or keratin also appear to pro-
mote stress fiber assembly. Fhos2, a mammalian protein
of the formin family, associates with nestin to promote
the formation of stress fibers and potentially to bridge
nestin IFs with microfilaments [71]. In keratinocytes,
keratin IFs form a rigid, interconnected network of

bundles associated with stress fibers to increase the
overall cell rigidity in response to an increased matrix
stiffness. Overexpression of the dominant R416P muta-
tion in keratin 14 disrupts keratin stability, leading to a
loss of stress fibers and decrease in cell stiffness [72].
These recent examples illustrate the versatile role of IFs
in the control of the actin network and cell contractility,
suggesting that changes in the composition and possibly
in the organization of the IF networkmay have important
consequences on all actin-driven cellular functions. As
each IF protein appears to exert its function through the
regulation of distinct signaling pathways, the presence of

several IF proteins in one cell may lead to subtle adap-
tations of mechanosensitive cell responses. Such com-
plex regulation has been illustrated in airway smooth
muscles. There, a tripartite interaction involving nestin,
vimentin, and actin controls cytoskeleton signaling.
Contractile stimulation induces autophosphorylation of
Polo-Like Kinase 1 (PLK1) and PLK1-dependent
phosphorylation of nestin on threonine 315. This phos-
phorylation promotes the formation of a PLK1-Nestin
complex, enabling phosphorylation of vimentin on
serine 65. Phosphorylated Vimentin recruits cortactin

and Profilin-1 to induce actin polymerization and muscle
contraction [73]. While vimentin and nestin can co-
polymerize, in other cases, different independent cyto-
plasmic IF networks co-exist. During EMT, the vimentin
and keratin networks influence each other, creating a
www.sciencedirect.com
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new layer of cytoskeletal crosstalk [74]. Expression of
vimentin in MCF7 epithelial cells induces a hybrid
epithelial-mesenchymal state associated with a decrease
of intercellular forces and an increased expression of
genes linked to EMT. These events are paralleled by the
reorganization of the keratin network, possibly due to
vimentin-induced post-translational modification of
keratins, as suggested by a shift of apparent molecular

weight [75]. The effect of vimentin IF in cancer invasion
appears more and more diverse as vimentin was also
recently involved in ECM degradation, via aggregation of
another cytoskeletal component, the unconventional
Myosin 10 which promotes the recruitment of
membrane-type 1 matrix metalloproteinase (MT1-
MMP) at the plasma membrane, weakening the extra-
cellular matrix to enhance cancer cell invasion [76].

Crosstalk between the cytoplasmic and nuclear IF net-
works is also emerging as a pivotal regulator of nuclear

mechano-transduction. In keratinocytes, the stability of
keratin IFs and lamin expression are necessary for
regulation of stiffness-dependent chromatin remodeling.
The dominant R416P mutation in keratin 14 impairs
mechano-transduction to the nuclear lamina by
decreasing both the formation of F-actin stress fibers and
the expression of lamins A and C, which is normally
involved in stiffness-dependent chromatin remodeling
[72]. This crosstalk is likely to be mediated by the
Linker of Nucleoskeleton and Cytoskeleton (LINC)
complex linking the cytoplasmic cytoskeletal elements

with the lamin IF networks [77]. In mouse embryonic
fibroblasts (MEFs) lamins (A-type or B-type lamins)
participate in the regulation of cortical and cytoplasmic
stiffness and cell contractility by controlling the dy-
namics of LINC complex [78]. The role of lamins in
influencing whole-cell mechanics is particularly evident
during the amoeboid migration [79]. Confinement of
HeLa cells in a microscale cell squeezing system de-
creases lamin A and C expression and increases its
phosphorylation on serine 390, promoting nuclear
deformability. In parallel, vimentin depolymerization is
observed leading to a reduction of cell stiffness. Together

these changes promote myosin IIA-dependent amoeboid
migration [79] and suggest the existence of an interplay
between A-type lamins and vimentin. However, the
nature of the connection between lamin A or lamin C and
vimentin remains elusive. It would also be important to
investigate the role of vimentin-lamin crosstalk in other
cell types such as dendritic cells in which the presence of
vimentin enhances ameboid migration [80].

Moreover, interactions between IFs and other cyto-
skeletal elements such as septins SEPT9 and SEPT12

have emerged, unveiling intriguing functional implica-
tions during spermiogenesis [81,82]. This raises the
possibility of additional cytoskeletal crosstalk, whose
role in cell shape, adhesion, and dynamic behavior re-
mains to be studied.
www.sciencedirect.com
Conclusion
To conclude, IFs play a pivotal role in cytoskeletal

crosstalk, serving as critical partners and regulators be-
tween actin microfilaments and microtubules. Under-
standing the intricate crosstalk between IFs and other
cytoskeletal components is crucial for deciphering the
mechanisms underlying cell functions and tissue ho-
meostasis. Dysregulation of this crosstalk, affecting the
cytoskeleton, has been implicated in various human
diseases, including cancer, neurodegenerative disorders,
and genetic diseases. However, further investigations
are required to fully decipher the precise nature of
cytoskeletal interactions. While in vitro reconstitution

assays offer insights into the impact of direct in-
teractions between networks, they fall short in capturing
the full complexity of the molecular mechanisms within
living cells. Analyzing the interactomes of IF proteins
holds promise in providing a more exhaustive catalogue
of cytolinkers and signaling molecules involved in these
processes and may shed light on the specificity inherent
in the diverse IF proteins. The collaborative synergy
among various cytoskeletal networks prompts us to
perceive the cytoskeleton as a global, adaptable
network, regulated locally and instrumental in an array

of cellular functions. Unraveling the functional conse-
quences of this crosstalk promises to deepen our
comprehension of cellular physiology and, potentially,
reveal novel therapeutic targets for a multitude of
cytoskeleton-related diseases.
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