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Abstract 
Non-lytic viruses with enveloped pleomorphic virions (family Pleolipoviridae) are ubiquitous in hypersaline environments across 
the globe and are associated with nearly all major lineages of halophilic archaea. However, their existence in other ecosystems 
remains largely unknown. Here, we show that evolutionarily-related viruses also infect hyperthermophilic archaea thriving in deep-
sea hydrothermal vents. Archaeoglobus veneficus pleomorphic virus 1 (AvPV1), the first virus described for any member of the class 
Archaeoglobi, encodes a morphogenetic module typical of pleolipoviruses, including the characteristic VP4-like membrane fusion 
protein. We show that AvPV1 is a non-lytic virus chronically produced in liquid cultures without substantially affecting the growth 
dynamics of its host with a stable virus-to-host ratio of ∼1. Mining of genomic and metagenomic databases revealed broad distribution 
of AvPV1-like viruses in geographically remote hydrothermal vents. Comparative genomics, coupled with phylogenetic analysis 
of VP4-like fusogens revealed deep divergence of pleomorphic viruses infecting halophilic, methanogenic, and hyperthermophilic 
archaea, signifying niche separation and coevolution of the corresponding virus-host pairs. Hence, we propose a new virus family, 
“Thalassapleoviridae,” for classification of the marine hyperthermophilic virus AvPV1 and its relatives. Collectively, our results provide 
insights into the diversity and evolution of pleomorphic viruses beyond hypersaline environments. 

Keywords: pleomorphic viruses, marine hyperthermophilic archaea, hydrothermal vents, Archaeoglobales, marine viruses, virus 
evolution, archaeal viruses 

The Pleolipoviridae family includes genetically diverse archaeal 
viruses with enveloped pleomorphic virions, which encapsidate 
either single-stranded or double-stranded DNA genomes of 7– 
17 kb [1-3]. All known pleolipoviruses share a conserved block of 
genes encoding the morphogenetic module, including two major 
structural proteins and a putative nucleoside triphosphatase 
(NTPase) [2, 3]. The hallmark of pleolipoviruses is the spike protein 
VP4 (here we use HRPV1 protein nomenclature), which functions 
in host recognition and fusion of the viral and cellular membranes 
during virus entry [4, 5]. VP4 is thus far exclusive to pleolipoviruses 
and displays a unique structural fold, not observed in fusogens of 
other known viruses [4]. 

Pleolipoviruses have been isolated on haloarchaeal hosts from 
solar salterns and hypersaline lakes across the globe [6-8]. Fur-
thermore, pleolipoviruses commonly encode integrases and are 
readily detected as proviruses integrated into the host chromo-
somes in a wide range of haloarchaeal species [9-11]. Accordingly, 
pleolipoviruses represent one of the most widely distributed and 
abundant groups of haloarchaeal viruses. Recently, proviruses 
encoding pleolipovirus VP4-like fusogens were detected in the 
genomes of methanogenic archaea of the orders Methanonatronar-
chaeales and Methanomassiliicoccales [12]. Here, we extend the host 
range of pleolipoviruses to anaerobic hyperthermophilic archaea 
of the class Archaeoglobi, common inhabitants of the deep-sea 
hydrothermal vents. 

While studying extracellular cytochrome nanowires produced 
by the hyperthermophilic archaeon Archaeoglobus veneficus SNP6 
[13], we noticed that the strain produces pleomorphic virus-like 
particles (VLPs) of ∼53 nm in diameter (n = 43; Fig. 1A; for details 
see Supplementary Methods). Analysis of the A. veneficus genome 
(NC_015320) revealed the presence of a putative provirus of 17.9 
kbp flanked by direct repeats of 27 nucleotides, corresponding 
to putative attachment (att) sites  (Fig. S1), which we refer to as 
Archaeoglobus veneficus pleomorphic virus 1 (AvPV1, see below). 
One of the att sites overlapped a tRNA-Gly gene, whereas the 
other one was adjacent to the integrase gene. The identifica-
tion of a putative VP4-like membrane fusion protein, a signa-
ture protein of pleolipoviruses, in the provirus genome (Fig. 1B, 
Table S1), suggests that the observed VLPs could be produced 
by the identified provirus. We next confirmed that the virus is 
active and is released into the cell-free culture supernatants of 
A. veneficus by performing the polymerase chain reaction (PCR) 
analysis with primers targeting the excised and circularized form 
of the predicted provirus (Figs 1C, S1 and S2). 

We then evaluated the growth dynamics of A. veneficus and 
AvPV1 production over time. Similar to some other non-lytic 
archaeal viruses [8, 14, 15], AvPV1 was chronically produced at 
low rates without major adverse effects on the growth of its 
host (Fig. 1D). The virus production was most active during the 
exponential growth phase and ceased when the cells reached
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Figure 1. Characterization of the AvPV1; (A) electron micrographs of pleomorphic VLPs negatively stained with 2% uranyl acetate (scale bar, 100 nm); 
the arrow indicates an A. veneficus extracellular cytochrome nanowire [13 ]; (B) genome map of AvPV1. The ORFs are represented with arrows indicating 
the direction of transcription; (C) detection of AvPV1 in both cell and supernatant fractions in cultures of A. veneficus SPN6 by PCR; the experimental 
approach used is depicted in the schematic of Fig. S1 ; the agarose gel electrophoresis displays the PCR-amplified products: Lane 1, provirus integrated 
within the host chromosome (PCR amplification across the attL site, 412 bp); Lane 2, the excised and circularized form of the AvPV1 genome (PCR 
amplification across the reconstituted attV site, 108 bp); Lane 3, amplified fragment of the 16S rRNA gene of A. veneficus SNP6, 138 bp; (D) cell growth 
and virus production; the number of cells was estimated through a Thoma cell counting chamber over a period of 56 h; the titer of AvPV1 genomes in 
the supernatant of liquid cultures was assessed by qPCR using primers targeting the circular form of the virus genome; error bars represent standard 
deviation from three independent measurements; (E) virus genome fold change after induction using different stressor agents; the number of virus 
genomes in the supernatant was assessed by qPCR; samples were taken 0, 4, 8, 12, 24, and 48 h postinduction; error bars represent standard deviation 
from two independent measurements; stars indicate the significance levels based on the two-tailed t-test; ns, not significant; the P values are .5511, 
.0495, .0383, .0111, and .0083 from left to right; (F) comparison of the published crystal structure of the fusion protein of the haloarchaeal pleolipovirus 
HRPV6 (PDB: 6QGL) [4 ] to the AlphaFold2 structural model for the VP4-like fusion protein of AvPV1; terminal ends containing the transmembrane 
domains were trimmed for the convenience of presentation; protein structures are colored using the rainbow scheme from blue (N-terminus) to red 
(C-terminus). 

stationary phase. The virus-to-host ratio fluctuated around 1 
( Fig. 1D), mirroring the recent metagenome-derived estimates 
across ecosystems [16]. To study whether this equilibrium can 
be destabilized, we challenged A. veneficus cultures with different 
environmental stressors. A modest but significant increase of 
∼2-fold was only observed when cultures were exposed to a cold 
shock of 4◦C for  2 h (Fig. 1E), a physiologically relevant factor 
in deep-sea ecosystems. These results suggest that the virus has 
evolved toward a stable relationship with its host, but this balance 
can be altered by changing environmental conditions. 

The genome of AvPV1 contains 31 open reading frames (ORFs) 
(Fig. 1B, Table S1 in Data S1). BLASTP analysis showed that only 
two of the encoded proteins display significant similarity (E-
value≤1e-5) to proteins of other known viruses. However, more 
sensitive profile–profile comparisons with HHpred revealed that 
AvPV1 carries a block of genes characteristic of pleolipoviruses. In 
particular, ORF4 and ORF6 encode homologs of the two major 
structural pleolipovirus proteins, VP3-like integral membrane 
protein and VP4-like fusogen, respectively (Table S1 in Data S1). 
Structural modeling of the AvPV1 VP4-like protein confirmed that 
it has the same V-shaped fold as the fusogens of bona fide ple-
olipoviruses (Fig. 1F, Fig. S3A). In addition, ORF8 and ORF10 encode 
homologs of the conserved HRPV1 protein ORF6 of unknown 
function and the putative NTPase, respectively (Fig. 1B, Table S1 
in Data S1). Similar to gammapleolipovirus His2 [2], AvPV1 
appears to encode a second divergent copy (ORF5) of a putative 

spike/fusion protein (HHpred probability of 87.9%). Unfortunately, 
we could not obtain a reliable AlphaFold structural model for this 
protein, likely due to lack of homologous in databases. Overall, 
these results indicate that AvPV1 is distantly related to ple-
olipoviruses of halophilic archaea and is the first representative 
of this virus lineage associated with marine archaea. 

To assess the diversity and distribution of AvPV1-like pleomor-
phic viruses in extreme geothermal environments, we searched 
for AvPV1 VP4-like homologs in the Whole Genome Shotgun 
and non-redundant protein sequence databases at the National 
Center for Biotechnology Information (NCBI) and the Integrated 
Microbial Genomes/Virus database using TBLASTN or BLASTP 
(E-value≤1e-5). The searches yielded 19 contigs originating from 
geographically remote hydrothermal vents. Eight of the contigs 
corresponded to complete or nearly complete viral genomes 
(Fig. 2A and B, Table S2 in Data S1, Data S2). Three of the 
complete viral genomes were detected as proviruses integrated 
in the genomes of Archaeoglobus profundus DSM 5631, Geoglobus 
acetivorans SBH6, and Geoglobus ahangari 234, suggesting that 
hyperthermophilic pleomorphic viruses are primarily associated 
with members of the class Archaeoglobi (Table S2 in Data S1). 
The identified viruses exhibit a similar arrangement of the core 
structural genes to that of AvPV1, but all of them lack the second 
copy of the spike protein gene (Fig. 2A). Similar to AvPV1, the VP4-
like fusogen of the identified viruses also exhibits a V-shaped 
fold (Fig. S3B–D). There are notable differences between viruses
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Figure 2. Characterization of hyperthermophilic pleomorphic viruses and their VP4-like membrane fusion proteins; (A) alignment of complete or 
nearly-complete genomes of pleomorphic viruses originating from marine deep-sea hydrothermal vents; ORFs are depicted by arrows that indicate 
the direction of transcription; functional annotations are depicted above the corresponding ORFs; homologous genes are shown using the same colors 
and are connected by shading in grayscale, with intensity reflecting the amino acid sequence identity; HJR, Holliday junction resolvase; NT, 
nucleotidyltransferase; PH, pleckstrin homology domain; PIN, PIN domain protein; RHH, ribbon-helix–helix protein; TGM, transglutaminase; wHTH, 
winged helix-turn-helix domain; Zn finger, zinc finger domain-containing protein; (B) geographical distribution of all hyperthermophilic pleomorphic 
viruses retrieved in this study; (C) maximum-likelihood analysis of VP4-like fusogens; clades of VP4 homologs encoded by viruses associated with 
different archaeal lineages are indicated with different colors; the scale bar represents the number of substitutions per site; circles at nodes indicate 
bootstrap support >90%; the complete version of the tree can be found in Fig. S6 ; (D) number of glycosylation sites (N-X-S/T, where X is any amino acid 
except proline) in VP4-like fusogens of pleomorphic viruses infecting Archaeoglobi, Halobacteria, Methanonatronarchaeia, and  Methanomassiliicoccales hosts; 
stars indicate the significance levels based on the unpaired t-test; n.s., not significant; the P values are <.0001, <.0001, .2996 from left to right. 

associated with Archaeoglobus and Geoglobus hosts. In particular, 
the two groups of viruses encode at least two non-orthologous 
groups of integrases of the tyrosine recombinase superfamily. 
Furthermore, viruses of Geoglobus encode a putative rolling-
circle replication endonucleases (RCRE) of the HUH superfamily, 
likely responsible for the genome replication initiation ( Fig. 2A, 
Table S3 in Data S1). Although alphapleolipoviruses also replicate 
their genomes using the rolling-circle mechanism [17, 18], the 
RCRE encoded by Geoglobus viruses was most closely related to 

homologs from pGT5/pTP1 family plasmids of Pyrococcus and Ther-
mococcus species [19, 20], which also inhabit hydrothermal vents, 
suggesting niche-enabled horizontal gene exchange between 
viruses and plasmids in deep-sea hydrothermal vents. Consistent 
with the high sequence divergence between the structural 
proteins of Pleolipoviridae and AvPV1-like viruses (Table S3 in 
Data S1, Fig. S4), whole-proteome-based phylogenomic analysis 
placed AvPV1-like viruses outside of the family Pleolipoviridae 
(Fig. S5). Thus, we suggest that AvPV1 represents a new virus
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family, tentatively named “Thalassapleoviridae” after Thalassa, the 
primordial Greek goddess of the sea. 

To study the relationships between pleomorphic viruses 
associated with hyperhalophilic (class Halobacteria), hyperther-
mophilic (Archaeoglobi), and methanogenic (Methanomassiliicoccales 
and Methanonatronarchaeia) archaea, we performed maximum 
likelihood phylogenetic analysis of the VP4-like fusogens and 
phylogenomic analysis based on the complete proteomes of 
the corresponding viruses. The four groups of viruses formed 
well-supported monophyletic clades in both analyses (Fig. 2C, 
Figs S5 and S6). In the absence of an objective outgroup, we 
rooted the tree with VP4 from Methanomassiliicoccales, a group 
of archaea assigned to a different phylum (Thermoplasmatota) 
than the other three archaeal lineages, all in Halobacteriota. 
Archaeoglobi VP4 homologs were at the base of the clade including 
Halobacteria, Archaeoglobi, and  Methanonatronarchaeia, with viruses 
of haloarchaea and Methanonatronarchaeia forming monophyletic 
sister groups (Fig. 2C, Figs S5 and S6). The VP4 phylogeny is largely 
congruent with the archaeal species tree, suggesting divergence 
of the four groups of pleomorphic viruses concomitantly with the 
divergence of the corresponding host organisms, with no evidence 
of horizontal virus transfer and host-switching events between 
different archaeal lineages. 

Comparison of structural models of the VP4-like fusogens from 
the four groups of viruses revealed a similar number of salt 
bridges and hydrophobic clusters (Fig. S7A and B, Table S4 in Data 
S1, Data S3). The homologs from viruses of hyperthermophilic and 
thermophilic Archaeoglobi, and Methanonatronarchaeia, respectively, 
had significantly higher numbers of predicted N-glycosylation 
sites (N-X-S/T, where X is any amino acid except proline) com-
pared to viruses associated with Halobacteria and Methanomas-
siliicoccales which thrive at moderate temperatures (Figs 2D, S7C, 
Table S5 in Data S1). AvPV1 was an outlier and had fewer N-
glycosylation sites (n = 5) compared to other Archaeoglobi viruses. 
We hypothesize that increased glycosylation is an adaptation to 
high-temperature environments ensuring VP4 stability. By con-
trast, compared to viruses of Archaeoglobi, VP4-like proteins of 
viruses associated with Halobacteria and Methanonatronarchaeia, 
both extreme halophiles, exhibited more extensive negative sur-
face charge, a near-universal adaptation to hypersaline environ-
ments (Fig. S8). Thus, comparison of the VP4 structural models 
revealed differential adaption of the corresponding viruses to 
their respective environments. 

AvPV1 is both the first relative of pleolipoviruses infecting 
hyperthermophilic archaea and also the first virus described for 
any member of the class Archaeoglobi. Our results demonstrate 
that pleomorphic viruses are globally distributed not only in 
hypersaline but also marine geothermal ecosystems, where they 
establish a stable relationship with their hosts. 
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