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Abstract

Background

The effective reproduction number (Rt) quantifies the average number of secondary cases

caused by one person with an infectious disease. Near-real-time monitoring of Rt during an

outbreak is a major indicator used to monitor changes in disease transmission and assess

the effectiveness of interventions. The estimation of Rt usually requires the identification of

infected cases in the population, which can prove challenging with the available data, espe-

cially when asymptomatic people or with mild symptoms are not usually screened. The pur-

pose of this study was to perform sensitivity analysis of Rt estimates for COVID-19

surveillance in France based on three data sources with different sensitivities and specifici-

ties for identifying infected cases.

Methods

We applied a statistical method developed by Cori et al. to estimate Rt using (1) confirmed

cases identified from positive virological tests in the population, (2) suspected cases

recorded by a national network of emergency departments, and (3) COVID-19 hospital

admissions recorded by a national administrative system to manage hospital organization.

Results

Rt estimates in France from May 27, 2020, to August 12, 2022, showed similar temporal

trends regardless of the dataset. Estimates based on the daily number of confirmed cases

provided an earlier signal than the two other sources, with an average lag of 3 and 6 days for

estimates based on emergency department visits and hospital admissions, respectively.

Conclusion

The COVID-19 experience confirmed that monitoring temporal changes in Rt was a key indi-

cator to help the public health authorities control the outbreak in real time. However, gaining
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Bruhl D, Paireau J (2023) Monitoring the

reproductive number of COVID-19 in France:

Comparative estimates from three datasets. PLoS

ONE 18(10): e0293585. https://doi.org/10.1371/

journal.pone.0293585

Editor: Kaspar Staub, University of Zurich,

SWITZERLAND

Received: September 12, 2022

Accepted: October 17, 2023

Published: October 31, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0293585

Copyright: © 2023 Bonaldi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

the results presented in the study are available

from https://github.com/christophe-bonaldi/

Monitoring-R-effective.

https://orcid.org/0000-0001-8939-6205
https://doi.org/10.1371/journal.pone.0293585
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293585&domain=pdf&date_stamp=2023-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293585&domain=pdf&date_stamp=2023-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293585&domain=pdf&date_stamp=2023-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293585&domain=pdf&date_stamp=2023-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293585&domain=pdf&date_stamp=2023-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293585&domain=pdf&date_stamp=2023-10-31
https://doi.org/10.1371/journal.pone.0293585
https://doi.org/10.1371/journal.pone.0293585
https://doi.org/10.1371/journal.pone.0293585
http://creativecommons.org/licenses/by/4.0/
https://github.com/christophe-bonaldi/Monitoring-R-effective
https://github.com/christophe-bonaldi/Monitoring-R-effective


access to data on all infected people in the population in order to estimate Rt is not straight-

forward in practice. As this analysis has shown, the opportunity to use more readily available

data to estimate Rt trends, provided that it is highly correlated with the spread of infection,

provides a practical solution for monitoring the COVID-19 pandemic and indeed any other

epidemic.

Introduction

The effective (or time-varying) reproduction number, Rt, represents the average number of

secondary cases at time t of an outbreak caused by an infected person during the infectious

period. If Rt is greater than 1, each infected person transmits the virus to more than one person

on average, meaning that the epidemic grows. If Rt is less than 1, an infected person infects

less than one person on average, resulting in the decline of the epidemic.

The near real-time estimation of Rt makes it possible to monitor the outbreak over time

and evaluate the effectiveness of strategies implemented to control the infection by reducing

Rt and maintaining it to values below 1 [1,2]. As the COVID-19 outbreak has shown, along

with other available epidemiological data, R constitutes also an important indicator to help

guide appropriate health policies and policymakers decisions [3–7].

Several methods have been developed to estimate Rt in an epidemic context, although the

majority are based on transmission models [8–10]. These require many parameters, time, and

expertise or incidence data from times later than t which limit their use in real practice.

Accordingly, these methods do not allow for the real-time or near real-time monitoring of var-

iations in Rt. In 2013, a team of modelers from Imperial College London published a simpler

method for estimating the effective reproduction number [11,12]. Drawing on this method,

Santé publique France, the French Agency for Public Health, has produced daily Rt values at

the national and regional levels to monitor the spread of COVID-19 in near real-time since

May 27, 2020. The aim of this paper is to assess the ability of the method to monitor variations

in Rt based on three data sources with different levels of sensitivity and specificity.

Methods

Data collection

To monitor the spread of COVID-19 in France, three data sources were used to estimate Rt.
The daily number of confirmed cases of COVID-19 was obtained from the SI-DEP database

(Système d’Information de Dépistage en Population–Population-based Screening Information

System), which records data on all virological testing carried out in France (metropolitan and

overseas territories) to diagnose COVID-19 [13]. More precisely, SI-DEP includes the results

of reverse transcriptase-polymerase chain reaction (RT-PCR) tests carried out by all medical

laboratories and hospitals for the diagnosis of SARS-CoV-2, as well as antigenic tests per-

formed by medical laboratories, pharmacists, physicians, and nurses. The SI-DEP system,

which was specifically created to monitor the COVID-19 pandemic, has been fully operational

since May 13, 2020. In France, the main indications for conducting COVID-19 tests were to

confirm a diagnosis of suspected COVID-19, to carry out a control test to end isolation, or to

obtain a COVID-19 certificate. In addition, local screening strategies could be implemented

on an ad hoc basis, particularly in the case of clusters.

Rt was also estimated from the OSCOUR network (Organisation de la surveillance coordon-
née des urgences–Coordinated emergency surveillance network). This national surveillance
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network, which collects emergency department (ED) visits from about 700 French EDs (94%

of national all-cause ED visits), is the main component of syndrome-based surveillance of ED

carried out by Santé publique France [14,15]. We used the daily number of ED visits with sus-

pected COVID-19 diagnosed by the emergency physicians taking care of the patient. To stan-

dardize practices for the classification code of suspected COVID-19 in the system and to

ensure consistency in the diagnosis of COVID-19 by physicians, some recommendations

detailing the clinical picture of patients suspected of being infected were sent to all EDs. These

recommendations were important at the start of the pandemic, as COVID-19 was an emerging

disease. The symptoms were not specific and could be confused with other illnesses such as

influenza.

Finally, the third data source was the daily number of hospital admissions for COVID-19

recorded in the SI-VIC database (Système d’information unique des victimes–National victim

information system). The SI-VIC system is primarily used to help health authorities monitor

the number of persons hospitalized because of a health emergency and anticipate its conse-

quences for the organization of hospitals. We included admissions to both general wards and

intensive care units but excluded emergency, psychiatric, long-term, and rehabilitation care.

These three datasets differ in terms of their sensitivity and specificity to identify COVID-19

cases in the population. Not all infections are tested and thus included in the SI-DEP (sensitiv-

ity default). The OSCOUR network includes symptomatic individuals, often not tested in the

ED, with a proportion not being COVID cases (specificity default). The COVID-19 patients

seen in the ED are also likely to have more severe symptoms such as respiratory distress as

opposed to moderate or mild symptoms (sensibility default). SI-VIC data were highly specific–

all hospitalized patients were confirmed COVID-19 cases–but it only recorded hospitalized

COVID-19 cases.

Statistical method

The method used for estimating the time-varying reproduction number based on Cori et al.

[11] was implemented in R software (version 4.1.1, R Foundation for Statistical Computing,

Vienna, Austria) using the EpiEstim package.

EpiEstim is considered the most computationally efficient and ready-to-use software that is

currently available [16,17]. In short, the method can be divided into two main steps. First, the

time series of daily counts of patients were smoothed using cubic smoothing splines to remove

random daily variations and weekend effects. Second, the reproduction number was estimated

with EpiEstim using a 7-day sliding window and under the assumption that the serial interval

(time between symptom onset in an index case and symptom onset in a secondary case) fol-

lowed a gamma distribution with a mean of 7 days and a standard deviation of 5.2 days. The

parameters for the gamma distribution were fixed according to the model by Salje et al. [18].

Uncertainty intervals for Rt were provided by the 95% credibility intervals from the estimated

Rt posterior distribution in the Bayesian framework of the EpiEstim method. A comparison of

the daily patterns of the estimated Rt from the three datasets ran from May 27, 2020, to August

12, 2022.

Results

Fig 1 shows the daily case counts recorded in each database in metropolitan France from May

13, 2020, to August 12, 2022. As expected, the absolute number of cases reported by each sys-

tem differed substantially, with much larger volumes for the SI-DEP data compared to the two

other data sources. The three databases had a weekly cycle, although this was particularly evi-

dent for the SI-DEP data for which screening activity was down on weekends due to the weekly
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closure of many private medical laboratories and pharmacists. Regardless of the level of the

counts, temporal curves showed similar patterns, particularly when comparing OSCOUR and

SI-VIC data. In the three data sources, a rapid decline in case counts occurred just after the

implementation of national lockdowns to stop the second and third pandemic waves observed

in France. The lockdown from October 29 to December 14, 2020 imposed confinement mea-

sures like movement restrictions, closure of non-essential shops but schools remained open.

The lockdown between April 3rd and May 2nd, 2021 was less restrictive for movements and

shopping but imposed closure of schools.

Fig 1. Daily RT-PCR or antigenic confirmed COVID-19 cases (top), daily number of emergency department

consultations with suspected COVID-19 (middle), and daily number of new hospital admissions for COVID-19

(bottom) between May 13, 2020, and August 12, 2022, in metropolitan France. A base-10 log scale is used for the Y-

axis. Blue curves are smoothed counts using cubic smoothing splines. Shaded areas indicate the second nationwide

lockdown from October 29 to December 14, 2020, and the third from April 3rd to May 2nd, 2021.

https://doi.org/10.1371/journal.pone.0293585.g001
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Fig 2 shows the temporal variations of Rt estimated from each dataset. As desired, Rt
decreased and fell below 1 after the implementation of nationwide lockdowns. However, dur-

ing the second confinement, we observe a rebound in the estimate, which increases to a value

close to 1 at the end of the confinement. For the entire period, the three curves were closed,

except for a few weeks in 2020 between mid-July and late September. However, this period was

marked by a sluggish increase in the pandemic, with a very small number of daily cases

reported by the three information systems (Fig 1). In particular, this resulted in wider credibil-

ity intervals for the Rt estimates.

Fig 3 shows the distribution of the differences between the daily estimates calculated using

the three datasets. The median differences were similar and close to zero, with the extreme dif-

ferences observed near the peaks and troughs of the time series for the Rt values (Fig 2). Over-

all, a slight time lag is perceptible between the Rt curve estimated from SI-DEP and the curves

estimated from the two other datasets: based on the maximum correlation, a lag of 3 and 6

days was observed for OSCOUR and SI-VIC, respectively (Table 1).

Discussion

In France, the estimates of the instantaneous reproduction number Rt used to monitor the

spread of COVID-19 showed similar trends regardless of the dataset used: confirmed cases

among the tested population (SI-DEP), suspected cases in ED visits (OSCOUR), or hospital-

ized patients (SI-VIC). Estimates based on the daily number of cases identified from the viro-

logical test results (SI-DEP) provided an earlier signal that the two other data sources. This

finding was predictable due to the nature of the data recorded by the three information sys-

tems, which collect data on cases at different infection stages. Indeed, the average time between

symptom onset and testing is around 1–2 days (mean delay observed in the SI-DEP data),

while hospitalizations occur approximately 6 to 7 days after the onset of symptoms [18]. This

is consistent with the lag of 6 days observed between Rt estimated from hospitalization data

(SI-VIC) and Rt estimated from virological test results (SI-DEP). Cases collected during an ED

Fig 2. Estimates of the daily reproduction number (Rt) throughout the COVID-19 pandemic from May 27, 2020,

to August 12, 2022 in metropolitan France (mean as solid lines and 95% credible interval as shaded areas) based

on confirmed cases among the tested population (SI-DEP), suspected cases in emergency department visits

(OSCOUR), and hospitalized patients (SI-VIC). Shaded areas indicate the nationwide lockdown periods (October 29

to December 14, 2020, and April 3rd to May 2nd, 2021).

https://doi.org/10.1371/journal.pone.0293585.g002
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visit generally corresponded to patients with deteriorating symptoms such as respiratory dis-

tress, which often take place after symptom onset but before possible hospitalization, which is

consistent with the slight lag of 3 days in Rt estimated with OSCOUR compared to SI-DEP

estimates.

As noted, the major discrepancies observed for a few weeks in 2020 (from mid-July to Sep-

tember) between the three estimates corresponded to a period of low incidence. During this

period, an accurate estimate was not possible, because the Rt values were particularly volatile.

Fig 3. Boxplot of the differences between the daily estimates of Rt depending on the datasets used from May 26,

2020, to August 12, 2022, in metropolitan France. Red points highlight the mean differences.

https://doi.org/10.1371/journal.pone.0293585.g003
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Various factors such as active case finding and contact tracing during this period with the

identification of outbreak clusters (mainly asymptomatic people) can cause large variations in

the number of confirmed cases. In addition, for a few months at the start of the pandemic until

the end of 2020, a significant number of cases reported by the ED were not tested, although

with the increasing availability of tests and especially antigen tests over time, an increasing pro-

portion of cases notified through the OSCOUR system were confirmed cases. This might

explain why the Rt series became more similar over time.

The instantaneous reproduction number found using the results of virological tests

(SI-DEP) provided higher peak and trough values than the estimates based on the number of

suspected cases in ED visits or hospitalized patients. The number of confirmed cases in tested

patients are sensitive to factors such as screening control strategies or contact behaviors of con-

firmed cases, which could explain why the peak and trough values are higher. Differences

between the extreme values of the Rt estimates seem notably higher since late 2021. This period

corresponds to the emergence of three factors influencing the evolution of the pandemic: (1)

the greater use of spontaneous testing before and during the Christmas and New Year period,

which increased the number of identified positive cases, particularly asymptomatic cases; (2)

the effect of vaccinating a significant proportion of the population, especially the most vulnera-

ble; and (3) the emergence of more contagious but less severe variants, thereby reducing the

incidence of severe cases in ED and hospitals. As a result, the Rt estimates showed greater dif-

ferences in the extreme values, although the overall trend remained robust regardless of the

data used for the estimation.

Over the entire period studied, estimates of Rt have fluctuated constantly. The largest waves

are correlated with the emergence of new variants such as the Alpha variant at the end of 2020,

the Delta variant in the summer of 2021 and the Omicron variant at the beginning of 2022.

Contextual events such as the Christmas and New Year period could explain the peak observed

in 2021. We also noticed that during the second lockdown, the number of reproductions had

surprisingly rebounded after reaching a minimum value, returning to a value close to 1 when

the lockdown ended. The second national lockdown was less strict than the first one (from

March 17 to May 3, 2020), but all schools remained open. This could suggest that children and

adolescents—who present a low risk of infection or if they are infected it is likely to be mild—

may have been transmitters of the virus into the household during this period. It should be

noted that we did not observe this phenomenon during the third lockdown, which was charac-

terized by a reversed strategy with the early closure of schools before the Easter school

holidays.

The EpiEstim package provided a straightforward method to estimate time-varying instan-

taneous reproduction numbers using time series of incident cases (confirmed cases, ED visits,

or hospitalizations). We retrospectively showed that using this method to monitor the dynam-

ics of the COVID-19 pandemic in France was effective in detecting temporal variations in the

Table 1. Pearson correlation between the daily reproduction numbers (Rt) for COVID-19 from May 27, 2020, to August 12, 2022, in metropolitan France, estimated

based on confirmed positive cases in the tested population (SI-DEP), suspected cases in emergency department visits (OSCOUR), and hospitalized patients

(SI-VIC) according to the temporal lag (in days). The bold figures highlight the maximum correlation.

SI-DEP OSCOUR Lag (days)

0 1 2 3 4 5

Correlation .889 .906 .916 .920 .918 .910

SI-VIC Lag (days)

0 4 5 6 7 8

Correlation .822 .907 .916 .921 .920 .914

https://doi.org/10.1371/journal.pone.0293585.t001
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reproduction number and monitoring the effectiveness of interventions. The implementation

of EpiEstim requires knowledge of the serial interval distribution, which we assumed to be

gamma distributed with a mean of 7 days and a standard deviation of 5.2 days based on the

model by Salje et al [18] and consistent with the analysis of the first transmission chains in

France [19]. We used the same distribution over the whole study period. One limitation of this

approach is that it does not account for temporal variations in the serial interval distribution.

Such variations can occur due to changes in people’s behavior or policy interventions adopted

in a country to limit the spread of the disease [20]. For instance, it has been demonstrated that

case isolation can reduce the serial interval [21]. Other studies found lower serial intervals

such as around 5 days in the meta-analysis of Rai et al [22]. In addition, recent studies reported

even shorter serial intervals in SARS-CoV-2 with the new Omicron variant—appeared in

France at the end of November 2021—compared to the Delta variant [23,24]. Varying the dis-

tribution parameters of the serial interval can affect the magnitude of the daily estimates of Rt
with higher values (when Rt> 1) when the mean increased [20]. Conversely, as the standard

deviation of the serial interval increases, the estimate of Rt decreases [25] (see Supporting

information). It should be noted that in Cori’s method, the serial interval is used as a substitute

for the generation interval (the time elapsed between the infections of an infector and an

infected person). But replacing the generation interval with the serial interval tends to bias the

estimate of Rt [26]. In particular, when the variance of the serial interval is higher than that of

the generation interval, Rt will consequently be underestimated. As illustrated in the article by

Ganyani et al. [27] for COVID-19, the standard deviation of the generation interval is generally

smaller than that of the serial interval. However, this does not affect the time when Rt crosses

the threshold of 1, which is one of the most important indicators for public health decision-

makers.

Over the whole period, the estimated Rt does not exceed the value of 2.1, obtained from

SI-DEP data in July 2021. The new Omicron variant that appeared in France at the end of

November 2021 was supposed to be much more contagious than the Delta variant, which was

the majority variant. However, when this new variant appeared, the peaks in the Rt did not

exceed 1.8, at the end of December 2021. This observation is not consistent with the average Rt
of 3.4 reported by Liu et al. [26] for the Omicron variant. However, we can assume that the

impact of vaccination—over 75% of the French population had full vaccination coverage by

December 2021—limited the spread of the virus. The estimated Rt was therefore much lower

than the peak observed in July 2021, when the delta variant was in the majority and vaccina-

tion coverage was lower. In addition, there were 2 major waves: the first starting in November,

but probably still linked to the delta variant, and a rebound in mid-December linked to the

spread of the Omicron variant in combination with the end-of-year festivities. Again, immu-

nity induced by the vaccine or contamination probably helped to limit the spread of the vari-

ant. Finally, it should also be noted that preventive measures like masks on public transport,

widespread teleworking, reception of a limited number of customers depending on the surface

area in shops or subject to vaccination certificate, etc. were still in force at that time in France

(until 12 February 2021 for the most part). This may also have helped to limit the spread of

this variant in France.

The size of the sliding window over which the Rt estimates are calculated was fixed to 7

days in our analysis. This time window acts as a smoothing parameter with more pronounced

smoothing (along with narrower credible intervals) as the window increases in size [11]. How-

ever, a wider window makes the estimates less responsive which means it constrains the ability

to observe the most recent changes in the reproduction numbers. In our case, a 7-day sliding

window was considered a good compromise between responsiveness and smoothness of the

estimates.
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The estimation of the reproduction number is theoretically based on all infected cases in

the population. In practice, however, it is often difficult to identify all infected cases in the pop-

ulation [16], particularly when a large proportion does not show symptoms as in the COVID-

19 outbreak. Cori et al. [11] demonstrated with simulations that their method is robust as long

as the proportion of detected cases or the fraction of asymptomatic cases remains stable over

time, which we assumed in our study. In addition, this analysis shows that under the current

conditions with a long observation period, the method can be reasonably applied to data such

as hospitalized patients or ED reports. We can therefore assume that all the data strongly cor-

related with the number of infected cases in the population are suitable for estimating the Rt
temporal trends, provided that this correlation remains relatively stable over time.

Monitoring changes in the Rt has proven to be a major indicator for guiding public health

authorities and stakeholders for fitting infection control strategies in real time. In France, vari-

ations in the Rt were widely and regularly communicated to the general public, with the Rt
becoming a simple pedagogical tool to explain the need to reinforce individual preventive

behaviors or implement collective protective measures when the number of reproductions

exceeded 1. The use of the popular package EpiEstim to estimate the daily Rt with input data of

varying quality since the beginning of the outbreak showed the robustness of the method.

Daily data relating to the total number of infected cases in a population is usually not available

during a large outbreak. This may require the development of infrastructure to test people and

record the test results, which is often challenging to set up, particularly in some developing

countries. Along with the simplicity of the method of Cori et al., the opportunity to use easy-

to-obtain data from ED consultations or hospitalizations, provided that these data are strongly

correlated with the propagation of the infection, provides a concrete solution for monitoring

the COVID-19 pandemic and, more broadly, any epidemic.
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Methodology: Christophe Bonaldi, Juliette Paireau.

Supervision: Daniel Lévy-Bruhl.
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