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Comparing methods for constructing 
and representing human pangenome graphs
Francesco Andreace1,2*   , Pierre Lechat3, Yoann Dufresne1,3 and Rayan Chikhi1 

Background
In recent years, the majority of studies on human genetics have been conducted on the 
basis of comparing new samples against a single, standard reference sequence. This 
reference sequence is a linear succession of nucleotides that acts as a blueprint of the 
human genome. It is routinely used to align raw sequencing data to it in order to find 
variations between genomes, e.g., single-nucleotide polymorphisms (SNPs), insertions, 
or deletions (indels). It also is the backbone of the UCSC Genome Browser  [1] which 
enables inspection of genomic and epigenomic features. Despite updates that have 
improved the quality of the human reference sequence in the last two decades, its linear 
form severely limits the ability to capture population genetic diversity. For instance, the 
locations of frequently observed structural variations cannot be easily integrated into a 

Abstract 

Background:  As a single reference genome cannot possibly represent all the vari-
ation present across human individuals, pangenome graphs have been introduced 
to incorporate population diversity within a wide range of genomic analyses. Several 
data structures have been proposed for representing collections of genomes as pange-
nomes, in particular graphs.

Results:  In this work, we collect all publicly available high-quality human haplotypes 
and construct the largest human pangenome graphs to date, incorporating 52 individ-
uals in addition to two synthetic references (CHM13 and GRCh38). We build variation 
graphs and de Bruijn graphs of this collection using five of the state-of-the-art tools: 
Bifrost, mdbg, Minigraph, Minigraph-Cactus and pggb. We examine dif-
ferences in the way each of these tools represents variations between input sequences, 
both in terms of overall graph structure and representation of specific genetic loci.

Conclusion:  This work sheds light on key differences between pangenome graph 
representations, informing end-users on how to select the most appropriate graph 
type for their application.
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linear reference. To see this, consider the difficulty of designing a suitable coordinate 
system in the presence of (possibly nested) structural variants. Having a single genome 
as a reference sequence also introduces an observational bias towards the chosen alleles 
that were integrated into that sequence, negatively impacting many primary analyses 
such as reads mapping, variant calling, genotyping, and haplotype phasing. As a result, 
our ability to precisely characterize structural variants, SNPs, and small indels is limited 
[2–4]. The GRCh38 human reference genome is estimated to miss up to 10% of our spe-
cies genetic information [5].

Improvements in sequencing data quality and length, as well as genome assem-
bly methods, are providing a fast-expanding collection of haplotype-resolved human 
genome assemblies. If adequately combined together, these high-quality individ-
ual genomes may offer a powerful alternative to the linear reference. There now is an 
active line of research on pangenomes, i.e., data structures that represent a collection 
of genomic sequences to be analyzed jointly or to form a reference [3, 6]. Pangenome-
based approaches have been shown to improve biological analyses. Pangenomes are at 
the basis of bioinformatics tools that perform high-quality short read mapping [4], geno-
typing of SNPs, indels, and SVs [7], RNA-seq mapping [8]; de novo variant calling [2]; to 
store, compress and retrieve high-quality genomes [9]; to condensate all the information 
from a high number of genomes to then visualize specific regions or perform ad-hoc 
analysis, particularly on complex loci, SVs, and tandem repeats [8]. These results pave 
the way for new applications, e.g., genome-wide association studies, where more precise 
identification of variants can improve the scope of genetic studies in aging, human dis-
eases, and cancer [3, 6].

Several pangenomic data structures have been proposed: multiple sequence align-
ments, de Bruijn graphs, cyclic and acyclic variation graphs, and haplotype-centric 
models that use the Burrows-Wheeler transform  [3]. Each of these approaches aims to 
represent a collection of genomic sequences in an efficient way, to store, visualize, and 
retrieve differences of interest between the considered genomes. Graph-based pange-
nome data structures, such as the de Bruijn graph and the variation graph, appear so far 
to be the most advanced in their ability to handle large amounts of input data. They are 
capable of representing tens to hundreds of human haplotypes simultaneously. Varia-
tions graphs use a sequence graph and a list of paths to store input haplotypes, while de 
Bruijn graphs store all haplotype k-mers annotated by their haplotype(s) of origin.

Scaling pangenome graph data structures to store hundreds of genomes is a challenge 
that requires significant computational resources and engineering efforts. Many soft-
ware tools have been created, here we briefly describe major ones. Pantools  [10] and 
Bifrost  [11] are two methods that have been developed to generate pangenomes for 
analysis on large collections of genomes, mostly for applications in phylogenetics and 
bacterial genomics. The PanGenome Graph Builder (pggb) [12], Minigraph-Cactus 
and TwoPaCo [13] are methods for building general-purpose pangenome graphs. Min-
igraph [14] builds a particular type of pangenome graph by aligning sequences in an 
iterative way to a reference template. Minimizer-space de Bruijn graphs (mdbg) [15] are 
variants of de Bruijn graphs that can efficiently represent very large collections of bacte-
rial pangenomes (e.g., 600,000 bacteria). vg [2] builds variation graphs from a reference 
sequence and a variant calling file (vcf ) that contains a list of variations from it.
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Many human pangenomes have been generated, e.g. using Pantools [10] (7 genomes), 
Minigraph  [14] (94 haplotypes), Minigraph-Cactus  [16, 17] and pggb  [8] (94 
single chromosomes), and TwoPaCo  [13] (100 simulated genomes). Lastly, a draft ver-
sion of a human reference pangenome constructed using pggb and the Minigraph-
Cactus pipeline has appeared in a very recent article from the Human Pangenome 
Reference Consortium  [8]. These pangenomes are still limited by some factors: at the 
present moment, the number of high-quality haplotype assemblies is still low, even if it 
is expected to grow in the future; the vcf files containing variation are limited in terms 
of bias, type of variation or number of samples; the population representation, even if 
opened up in recent years to more ethnicities, is still affected by sampling bias.

Results
In this article, we provide a comprehensive view of whole-genome human pangenomics 
through the lens of five methods that each implement a different graph data structure: 
Bifrost, mdbg, Minigraph, Minigraph-Cactus, and pggb. We examine sev-
eral features of pangenome graphs, in particular their scalability and how they repre-
sent genetic diversity. To this end, we collected all publicly available high-quality human 
haplotypes and attempted to construct pangenomes of various complexity with each 
selected tool. Although vg has been widely used as the basis of relevant pangenome-
based discoveries, for example on fast and accurate short read mapping [4], we decided 
to not consider it in our analysis for two main reasons: the bias introduced by the ref-
erence sequence that is used as the backbone of the graph (and associated to the vcf ) 
together with the limited capacity of this method to integrate structural variations from 
many genomes. We believe both aspects are drivers of the use of pangenome graphs.

Scalability and characteristics of pangenome graph construction tools

We ran the above five tools on three datasets consisting of 2, 10, and 104 human haplo-
types, respectively (Table 3). We compared the computational performance of construc-
tion algorithms as well as characteristics of the produced pangenome graphs. The goal 
is to assess the ability of each method to scale to data available in the near future, i.e., 
thousands or even millions of human genomes [5].

The performance of each tool is evaluated in terms of running time, peak memory, 
disk space required by the output data structure (graph and annotations). We also com-
pared the number of nodes, edges and connected components as indicators of the com-
plexity of the graph. Results are displayed in Table 1.

In terms of running time, mdbg is two orders of magnitude faster than other tools on 
all considered datasets, taking around two minutes on the H2 dataset and half an hour 
on H104. Bifrost is the second fastest on H104 (18 hours), and Minigraph is the 
second fastest on H2 (8 minutes). Minigraph-Cactus takes one order of magnitude 
more time than Minigraph. We could not obtain graphs for pggb and Minigraph-
Cactus on H104 as for the first the execution did not finish after 2 weeks and the sec-
ond returned an error.

In terms of memory usage, mdbg consistently uses less than half the memory of other 
tools (31 GB on H104), followed by Minigraph (61 GB on H104). On H2 all tools used 
between 8 and 66 GB of memory.
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All tools used reasonable disk space to store the resulting graph, ≤ 12 GB for H10 
and ≤ 38 GB for H104. Although Minigraph-Cactus and pggb retain all variations 
and are the only two tools able to reconstruct the input haplotypes directly from the 
graph, they are the second and third most efficient in term of disk space (for Mini-
graph-Cactus, 3.6 GB on H2 and 7 GB on H10). While Bifrost and Minigraph 
perform all computation in memory, pggb, Minigraph-Cactus, and mdbg store 
intermediate files on disk, taking comparable space to the input size (up to 3× for 
Minigraph-Cactus).

Different tools yield different pangenome graphs topologies

Graph metrics such as the number of nodes, edges and connected components provide 
useful insights on the level of detail of the represented variations and on the complexity 
and accessibility of the information inside the pangenome.

The number of graph nodes varies between 17,000 and 11 millions for the H2 data-
set across all tools. In all cases, the number of nodes is at least 3 orders of magnitude 
smaller than the number of bases in the haplotypes, indicating that pangenome graphs 
are effective at compressing linear parts of the haplotypes. Tools which discard varia-
tions (Minigraph and mdbg) yield in the order of 104–105 nodes across all datasets, 
while tools which retain all variation (Bifrost, Minigraph-Cactus and pggb) 
yield in the order of 106–107 nodes. In all cases going from the H10 dataset to the H104 
dataset increases the number of nodes by 5x, indicating that graph complexity grows 
sublinearly with the number of added haplotypes.

The number of connected components varies between 2 and 1402 across all meth-
ods and datasets, and the number of large components (i.e., those with more than 1% 
of total base pairs) varies between 1 and 30. If chromosomes were separated perfectly, 
pangenome graphs should contain exactly 24 connected components (one per nuclear 
chromosome, excluding mitochondria). Minigraph produces 24 large connected 
components as the number of chromosomes in the reference CHM13 v2.0 (25 includ-
ing mitochondria). Bifrost and Minigraph-Cactus yield graphs with less than 
25 connected components while mdbg and pggb have more than 25. In the Bifrost 
dBG, the vast majority of sequences (> 99.99%) are in a single giant component, as chro-
mosomes are joined because they share common k-mers. In mdbg, such joining does 
not occur on dataset H2, which has 24 large enough components (each containing > 1% 
of bases), possibly due to the absence of long and similar enough regions between chro-
mosomes. Minigraph does not map any mitochondrial sequence from the input hap-
lotypes to the reference, while they do get included into Minigraph-Cactus graphs.

Even if it is common practice to analyze pangenomes chromosome by chromo-
some  [8, 17], in this analysis we purposely used entire genomes as input instead. 
This was done for two reasons: i) to highlight the scalability of the tools, and ii) 
because separating chromosomes prevents the identification of inter-chromosomal 
inversions, translocations, and transposable elements, even if most of the gener-
ated inter-chromosomal events are probably alignment artifacts. The effects of this 
choice can be seen in the pggb and the Minigraph-Cactus H10 variation graphs 
of Fig. 1. In the pggb graph 19 chromosomes are linked into a single giant compo-
nent, while chromosomes 17, 18, 20, X, and Y are in other large components. This 
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giant component consists of 25 M nodes that contain 83% of the total basepairs. 
The remaining 859 components represent only 4.7% of the total bases due to small 
sequences in the input haplotypes. In the Minigraph-Cactus graph all chromo-
somes are linked into a single giant component except chromosome 18 that is in 
a separate component, and the sexual chromosomes (X and Y) that are connected 
together into another component.

Fig. 1  The complete pangenome construction scheme and visualization. A The overall workflow, using 5 
different tools on 3 different datasets; B complete 104 haplotypes variation graph built by Minigraph; 
C focus on part of HLA (MHC) region in chromosome 6 from panel B; D focus on DRB1-5 locus of HLA from 
panel C; E, complete 10 haplotypes variation graph built with pggb; F 10 haplotypes variation graph built 
with Minigraph-Cactus; G 104 haplotypes pangenome mdbg; H 10 haplotypes Bifrost dBG. All 
graphs except those produced by Minigraph have been simplified using gfatools and rendered using 
Bandage. VG is for variation graph
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Interpretation of variation in pangenome graphs: focus on two HLA loci

The ability to detect and annotate variations among input haplotypes defines the scope 
of each pangenome graph construction method. Previous work  [18] recommends to 
build graphs on a specific loci rather than the entire genome for the purpose of i) identi-
fying genomic diversity and ii) mapping raw reads to divergent regions, specifically dif-
ficult-to-map repeats. Here we evaluate how pangenomes built from entire haplotypes 
represent specific biologically relevant loci.

Extraction of HLA‑E and a complex HLA region from complete pangenome graphs

We extracted from complete pangenomes the regions corresponding to two loci of the 
Human Leukocyte Antigen complex, also known as HLA. These regions are highly med-
ically relevant as they contain many disease-associated variants  [19]. The first locus is 
the HLA-E gene, that is part of the nonclassical class I region genes, spanning 4.8 kbp, 
and is relatively conserved across populations. It has been shown to have a significant 
association with hospitalization and ICU admission as a result of COVID-19 infec-
tion [20]. The second is an HLA complex region comprising the HLA-A gene, part of 
the classical, highly polymorphic class I region. It is around 58 kbp long and contains 
the HLA-U, HLA-K, HLA-H, and HCG4B genes. We extracted these two regions from 
pangenome graphs using a custom script that yields a subgraph corresponding to a given 
set of sequences and their variation. The script uses a different recommended method 
for each of the pangenome graph types. In a nutshell, we extracted regions using exact 
coordinates when possible and resorted to sequence-to-graph alignment otherwise (see 
Appendix “Loci extraction method” section for details). While on variation graphs and 
mDBGs nearby nodes of an aligned region correspond to variations of the locus, this is 
not always true for standard dBGs. Extracting accurate and complete loci representation 
is an unsolved challenge for dBGs.

HLA‑E: a low complexity region 

Figure  2 shows how the different tools represent HLA-E over datasets H2, H10, and 
H104. As expected, Minigraph does not detect any variation, since the SNPs that 
characterize the region are too small to be considered in the construction steps of their 
algorithm. pggb, on the contrary, has 2 SNPs in H2 and 3 in H10. Bifrost detects the 
same SNPs as pggb in H2 and H10. Both of them represent the exact same variations 
and render the same haplotype paths. mdbg captures the heterozygosity of a large region 
containing the HLA-E locus as the number of samples grows. As the mdbg graph is built 
in minimizer space, nodes represent long genomic segments (in the order of hundreds 
of thousand of base-pairs). In H10 and H104, the minimizer-space representations of 
the haplotypes are identical; however, differences in flanking regions of the graph cre-
ate variations that are captured in extra nodes that are also extracted in this region. On 
H2, Minigraph-Cactus detects 3 variations as the dataset used is different, contain-
ing the CHM13 reference and just one haplotype of HG006 (as in Minigraph), as dis-
cussed in the “Datasets and haplotypes collection” section.

Figure  2 also illustrates how pangenome complexity grows with the number of 
genomes: the Bifrost H104 subgraph has the most variation across all methods, high-
lighting that dBGs represent variations exhaustively in large graphs. On the other hand, 
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pggb has the most straightforward method for extracting subgraphs, and also repre-
sents variants exhaustively in datasets H2 and H10, but could not scale to the H104 
dataset.

HLA complex locus: high complexity region 

Figure 3 is the counterpart of Fig. 2 for the complex locus part. In this case, the overall 
interpretability of the region is more challenging, as the number and the structure of the 
variations is different than in HLA-E. It is also more difficult to compare across tools. 
Base-level variations, e.g., SNPs, are not visually recognizable in Fig. 3 in the methods 
that retain them (i.e., pggb, Minigraph-Cactus, and Bifrost) due to the large 
sizes of graphs.

There are notable differences in how tools represent the variation, which is well-illus-
trated in the H2 dataset. While Minigraph renders H2 as a single sequence plus a large 
structural variant (SV) of ≈ 52 kbp, pggb separates it into two paths that differ by ≈ 
54 kbp in length. Bifrost represents a detailed bubble that contains many variations 
inside each path. In mdbg, even extracting the complete locus is a challenge as many 
of the subgraph nodes were not selected by our procedure. Minigraph-Cactus adds 
base level divergences between haplotypes on top of Minigraph SV graph.

These differences between representations are further accentuated in the H10 data-
set. For it, pggb tends to separate the haplotypes into different paths, Bifrost renders 
consistently the same compacted representation and Minigraph neglects most of the 
small differences but is able to display accurately the general picture, and Minigraph-
Cactus, as in H2, adds small variations on top of Minigraph structure.

Uncovering characteristics of graphical pangenome tools

The data structures generated by pangenome building tools are expected to facilitate 
comparisons between the input genomes. In addition, pangenome graphs should be 
stored in such a way to be easily used by downstream applications. We identify 8 impor-
tant features for pangenome graph construction tools: (i) stability, (ii) editability, (iii) 
accessibility by downstream applications, (iv) haplotype compression performance, (v) 
ease of visualization, (vi) quality of metadata and annotation. Two other but important 
features, scalability, and interpretability of produced graphs, were already discussed in 
the “Scalability and characteristics of pangenome graph construction tools” and “Inter-
pretation of variation in pangenome graphs: focus on two HLA loci” sections. Table 2 
summarizes some of the following considerations on the relative strength of the tools.

Editability and dynamic updates

As more high quality assemblies will be generated in the near future, haplotypes may 
be added to a pangenome, or replaced by improved versions. Updating an existing data 
structure instead of rebuilding it from scratch is both computationally and energetically 
efficient. However, many succinct data structures currently used in pangenome repre-
sentation are static, i.e., cannot be updated. Some methods allow a restricted set of edit-
ing operations. Minigraph allows to add new haplotypes on top of an already built 
graph. Bifrost provides C++ APIs to add or remove (sub-)sequences, k-mers and 
colors from the ccdBG. pggb, using odgi  [21], allows specific operations that delete 
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and modify nodes and edges and add and modify paths through the graph. As Mini-
graph-Cactus can be opened with odgi, it supports the same operations as pggb. 
The current mdbg implementation uses a dynamic hash table, but does not expose an 
interface that supports updates.

Stability 

Counter-intuitively, a pangenome graph construction tool may in some cases generate 
different outputs when executed multiple times with the same haplotypes as input. This 
unstability could be due to a permutation in the order of the sequences given as input, 
or non-determinism in the construction algorithm. Yet in order to facilitate the repro-
ducibility of results, pangenome building tools should generate an unchanged output 
from the same set of input sequences, independently of the particular run or the order 
in which these are given. We performed two tests to evaluate tool stability: (i) we run the 
tools 3 times using as input the same H10 dataset and ii) we run the tools twice on shuf-
fled input sequences, i.e., changing the order of the haplotypes of H10.
Bifrost and mdbg constructed exactly the same pangenome on every test, as by 

definition, de Bruijn graphs are stable. Minigraph generates identical graphs on iden-
tical inputs, but generates slightly different graphs when the input is permuted. Indeed 
the construction algorithm of Minigraph is order-sensitive as it augments the exist-
ing graph structure by aligning the next given haplotype to it and adding divergent 
sequences. Minigraph-Cactus generates slightly different graphs on identical 
input. pggb generated slightly different graphs while maintaining the same haplotype 
sequences in the paths. The overall representation of the input genomes is therefore pre-
served, while the topology of the variation graph varies. The first two of the three phases 
of the pggb pipeline (all-vs-all alignment and graph imputation) produce the same 
result on different runs with the same input but differences arise when the order of the 
input haplotypes changes. Most of the differences in the graph topology are thus due to 
the final smoothing steps.

Accessibility by downstream applications

To facilitate their adoption, pangenome representations should be easily processed by 
downstream analyses. De Bruijn graphs are challenging to analyze due to their high 
number of nodes, edges, and redundancy (the k − 1-overlaps between nodes). Though 
De Bruijn graph representations usually support queries of presence/absence on nodes 
(as in Bifrost), they lack tools able to perform more elaborate analyses such as those 
discussed in the “Interpretation of variation in pangenome graphs: focus on two HLA 
loci” section, e.g., incorporating haplotype information at the k-mer level. On the other 
hand, variations graphs with paths provide more flexibility, i.e., as in pggb and Min-
igraph-Cactus with the odgi visualization toolkit. Finally, in Minigraph, which 
considers a narrower spectrum of variants, the absence of path information prevents 
haplotype-level analysis; haplotypes would need to be manually mapped back to the 
graph. The choice of the pangenome building tool depends on the envisioned applica-
tion. pggb and Minigraph-Cactus graphs have been shown to outperform linear 
references for short-read mapping, genotyping, and RNA sequencing mapping [8]. As 
these two methods are complex pipelines based on multiple tools where parameters 
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have been carefully set, they can be more challenging to install and run than single inte-
grated tools. Minigraph alone can also be used if the focus is on structural variation 
instead of SNPs or small indels, and to quickly produce a pangenome graph for complex 
loci visualization and interpretation. The dBG-based approaches show that, for exam-
ple with Bifrost, they retain the same base-level information as more computational-
heavy variation graph approaches, but the lack of tools to use them for analysis limits 
their adoption.

Haplotype compression

Building a graph pangenome can be seen also as a way to store, compact and retrieve the 
input haplotypes. As the number of new assemblies is growing faster than the data stor-
ing capacity, pangenomes can potentially help save storage space. This is highlighted by 
the disk space reported in Table 1, which is consistently smaller than the sum of haplo-
type sizes for all methods and datasets.

In order to losslessly retrieve the input genomes from a pangenome, the representation 
has to store all variations from the original haplotype sequences as paths in the graph. 
pggb and Minigraph-Cactus fall into this category while the other three considered 
tools do not store paths, or do not consider all variations, thus they are lossy.

Table 1  Time, memory, final disk space, nodes, edges, total connected components and connected 
components with more than 1% of base pairs comparison of Bifrost, mdbg, pggb, Minigraph 
and Minigraph-Cactus for different number of haplotypes in input. Minigraph-Cactus 
times include the Minigraph graph construction step. pggb was not able to complete its 
execution on the largest dataset in more than 2 weeks thus it is not considered. Minigraph-
Cactus failed to compute the 104 HAP dataset

Haplotypes Metric Bifrost pggb Minigraph Minigraph-
Cactus

mdbg

2 Time (hh:mm:ss) 1:21:25 15:45:30 00:08:33 3:11:59 00:02:38

Memory (GB) 53 24 38 66 8

Disk space (GB) 4.8 4.3 2.9 3.6 4.4

Nodes 9482 k 8492 k 34 k 10,851 k 17 k

Edges 13,108 k 11,503 k 48 k 14,702 k 23 k

Conn comp 2 1402 25 4 174

Conn comp > 1% bp 1 30 24 4 24

10 Time (hh:mm:ss) 2:27:29 117:08:09 2:03:29 15:57:05 00:05:46

Memory (GB) 102 71 49 154 18

Disk space (GB) 12 7.6 2.9 7 9.7

Nodes 27,468 k 29,315 k 133 k 37,767 k 67 k

Edges 37,584 k 40,282 k 190 k 51,595 k 93 k

Conn comp 3 864 25 3 40

Conn comp > 1% bp 1 5 24 3 1

104 Time (hh:mm:ss) 18:38:28 — 46:22:00 — 00:31:38

Memory (GB) 122 — 61 — 39

Disk space (GB) 29.4 — 3.2 — 38

Nodes 106,339 k — 632 k — 270 k

Edges 293,839 k — 912 k — 396 k

Conn comp 17 — 25 — 1097

Conn comp > 1% bp 1 — 24 — 1
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Of note, the GBZ tool [9] enables graph pangenomes that store paths in the GFA 
file format to be stored in a lossless compressed form. It uses a Graph Burrows-
Wheeler transformation to compress the graph in a more efficient way than using 
gzip [9]. Using GBZ, the pangenomes generated by pggb and Minigraph-Cactus 
are losslessly compressed with space gains of 3.5–5×.

Ease of visualization

Visualizing large graphs which exceed hundreds of thousands of node is a challenge 
that exceeds the scope of pangenomics. The H104 pangenomes are difficult to visu-
alize. Among the visualization tools considered by the Human Pangenome Reference 
consortium  [6], only Bandage is able to display the Minigraph or mdbg H104 
graphs, which contains a few million nodes. We reduced the number of nodes and 
edges of pggb, Minigraph-Cactus and Bifrost H10 graphs by collapsing iso-
lated subgraphs representing SNPs or indels up to 10k bp (using the command gfa-
tools asm -b 10000 -u).

Fig. 2  Representations of the HLA-E locus by five graph construction methods over three increasing large 
human pangenomes. Nodes highlighted in red contain part of the locus sequence. The number of nodes and 
edges displayed below each graph concerns the whole subgraph (both red and gray nodes). Minigraph, 
on H2, H10, and H104, and mdbg, on H2, have only a portion of one node highlighted since the 4.8 kbp 
region is contained inside a single, long node
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Quality of metadata and annotation

 Augmenting pangenome structures with information from other omics data would 
increase pangenome relevance in biological discoveries. As biobanks are rapidly 
growing, more data is available on regulatory regions, transcriptomics, CNVs and 
other medically relevant traits  [22, 23]. Pangenome data structures could leverage 
such information and some of the considered tools offer basic functionality in this 
sense. Bifrost provides a function to link data to graph vertices through C++ 
APIs. pggb and Minigraph-Cactus, using odgi, offer annotation capabilities 
through insertion of paths or BED records. Minigraph and mdbg do not offer any 
annotation feature. Specifically, in order to enhance a pangenome graph with meta-
data (for example with genes and regulatory regions known variants), it is desirable 

Fig. 3  Representations of the complex HLA region by five graph construction methods over three increasing 
large human pangenomes. See caption of Fig. 2 for details
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to maintain compatibility with methods and data formats that use a linear reference. 
One could conceivably project data from a graph to a reference genome to continue 
downstream analyses using linear coordinates. A simple method to achieve this com-
patibility, in our view, is to store the reference genome of interest inside the graph 
pangenome that supports retrieving such a reference. Variation graphs built using 
pggb or Minigraph-Cactus, due to their locally acyclical and directed construc-
tion and their use of haplotype paths, store all the coordinates needed for such a 
task. Haplotype paths play an important role as they avoid additional mapping to the 
graph, by using the odgi tool to extract or inject the required information. Mini-
graph does not store haplotype paths and requires mapping sequences to the graph 
to restore haplotype information. On the other hand, De Bruijn graphs, using associ-
ated color data, can record the membership of k-mers to a reference sequence, yet 
one cannot fully reconstruct a haplotype unless k-mers positions are also stored.

Discussion
Five state-of-the-art pangenome graphs construction tools were compared on the rep-
resentation of up to 104 human haplotypes. The approaches significantly differ in terms 
of speed, graph size, and representation of variations. We find that it remains computa-
tionally prohibitive to generate human pangenome graphs for hundreds of haplotypes, 
especially while retaining all variations. Each approach has its own set of strengths, and 
ultimately the choice of the method depends on the downstream application. In addi-
tion, several takeaway points emerged from our analysis.

Table 2  Relative strengths of five pangenome graph construction tools. Explanation of rows: (1) 
efficacy of construction algorithm, measuring wall-clock time; (2) degree to which variants (e.g., 
SNPs) are retained; (3) ability of a tool to perform well on large datasets, both in comparison to other 
tools but also compared to smaller datasets; (4) ability to modify the produced data structure to 
add or remove haplotypes; (5) property of producing the same result irrespective of perturbations, 
such as permutation of the input order, and repeating the same run; (6) existence of tools (and 
operations) that can be applied to the resulting graphs; (7) whether input haplotypes information 
is retained by the tools, and if so, its space efficiency; (8) whether the entire graph can be directly 
visualized and interpreted; (9) easiness of “zooming in” a specific genomic region and interpret 
variants; (10) summarizes the functionalities provided by the tools to annotate the pangenomes 
with genomic data; (11) ability to share information between the graph and a linear reference

Metric Bifrost pggb Minigraph-
Cactus

Minigraph mdbg

1) Construction speed • • ◦ • ◦ ◦ • ◦ ◦ • • ◦ • • •

2) Variations • • • • • • • • • • • ◦ • • ◦

3) Scalablilty • • • • ◦ ◦ • ◦ ◦ • • ◦ • • •

4) Editability • • • • • ◦ • ◦ ◦ • • ◦ • ◦ ◦

5) Stability • • • • ◦ ◦ • ◦ ◦ • • ◦ • • •

6) Accessibility by downstream applications • ◦ ◦ • • • • • • • • ◦ • ◦ ◦

7) Haplotype compression performance • • ◦ • • • • • • • ◦ ◦ • ◦ ◦

8) Ease of visualization • ◦ ◦ • • ◦ • • ◦ • • • • • •

9) Loci visualization and interpretability • ◦ ◦ • • ◦ • • • • • ◦ • ◦ ◦

10) Metadata and annotation • • ◦ • • • • • ◦ • ◦ ◦ • ◦ ◦

11) Compatibility with a linear reference coordi-
nates

• ◦ ◦ • • • • • • • • ◦ • ◦ ◦
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First, our focused analysis of HLA loci revealed that de Bruijn graphs and variation 
graphs represent genomic variations equally well as pangenomes. This is of particular 
importance as also shown by the draft human pangenome references [8]: pangenomes 
are pivotal to trace complex and clinically relevant loci. While de Bruijn graphs are faster 
to construct, more stable, and scale better in terms of input size, the resulting graphs 
are challenging to interpret downstream. Variations graphs on the other hand are more 
practical to analyze at the expense of a less efficient construction step. Their visualiza-
tion are more straightforward to interpret, mostly due to not having cycles, and provide 
insights into loci differences.

Second, we can highlight two categories of pangenomic methods that have distinct 
application domains. pggb, Minigraph-Cactus and Bifrost store all possible var-
iations, and keep haplotype information as paths or colors. They provide a complete pic-
ture of the set of variations in the input genomes which makes them difficult to analyze. 
They can be used for a large variety of genomic analysis, as shown for pggb and Min-
igraph-Cactus  [8]. Minigraph and mdbg generate ’sketched’ pangenome graphs 
that consider only large variants, ignoring smaller differences, and are more efficient to 
construct and visualize. They can be used for large scale characterization of variation in 
population, as proven for bacteria [15].

Third, every tool possesses an exclusive set of features. pggb facilitates downstream 
analyses using the companion tool odgi. It allows to precisely extract and browse any 
locus of interest. It is the only tool that generates variation graphs without a reference. 
It also keeps a lossless representation of the input sequences. Minigraph generates a 
pangenome graph based on a reference sequence taken as a backbone. It shines in the 
representation of complex structural variations, but does not include small or inter-
chromosomal variations. The pipeline Minigraph-Cactus, which uses the Cactus 
base aligner, can be used to add small-level variations on top of the Minigraph graph 
and to keep a lossless representation of the input sequences. Bifrost illustrates that 
classical de Bruijn graphs are scalable, stable, dynamic, and store all variations. However, 
extracting information from them remains a challenge. Lastly, mdbg is the fastest con-
struction method which generates an approximate representation of differences between 
haplotypes. As discussed in the “Accessibility by downstream applications” section, these 
features enable different genomic analyses and downstream applications.

Conclusions
In conclusion, our results highlight the strengths and weaknesses of current pangenome 
construction tools for human applications, with a specific focus on how do they rep-
resent specific loci of medical relevance. We also provide insights on the features they 
possess and point out their best application domains. In our view, future directions for 
human pangenomes building tools should focus on tackling efficiency bottlenecks, aim-
ing to represent hundreds to thousands of haplotypes. Representations should further 
be lossless and represent the input haplotypes as paths in the graph. Such features would 
unlock many other applications such as lossless compression of haplotypes and cancer 
copy number variant analysis. Finally, we recognize the need for more user-friendly 
tools that can be used by biologists and that can translate complicated questions into 
graph queries. While odgi begins to address these questions in variation graphs, other 
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approaches have not yet provided user-friendly interfaces. A package similar to odgi 
for de Bruijn graphs would help fully realize their potential.

Methods
Datasets and haplotypes collection

In order to evaluate the state of current human pangenome representations, we sought 
to build a human pangenome that contains all publicly available high-quality human 
haplotypes. We collected from two different sources 102 different haplotypes from the 
genome of 51 individuals, and also used the two reference genomes, GRCh38 from 
the Genome Reference Consortium (GRC) [24] and CHM13 v2.0 cell line of the T2T 
Consortium [25]. Five haplotypes correspond to Google Brain Genomics DeepConsen-
sus [26] assembly dataset: they are hifiasm assemblies of PacBio Hi-Fi reads corrected 
with DeepConsensus. The average of their N50 is 37.99 Mbp. The remaining haplotype 
assemblies as well as the T2T reference are from the Human Pangenome Reference Con-
sortium (HPRC) year-1 freeze [6], and GRCh38 is from the GRC. Their average N50 is 
40.3 Mbp. Since HG002 is contained in the DeepConsensus data, the HPRC HG002 hap-
lotypes were not used. The origin and the sex of the individuals are diverse and provide 
a fair representation of the diversity in human population: out of 51 total individuals, 21 
are males and 30 are females and they represent 14 different ethnic groups, from USA to 
Africa and Asia. We did not perform any additional selection, regarding sex and ethnic-
ity, on these public datasets as our main goal was to use as many genomes as possible. 
However, the HPRC stated that the genomes were selected to represent genetic diversity 
in humans [8]

To evaluate the scalability of pangenome construction tools, we created three data-
sets of increasing size: (1) 2 haplotypes from the same individual, HG006; (2) 10 haplo-
types from 5 different individuals (HG002, HG003, HG004, HG006, and HG00735); and 
finally, (3) all of the 104 haplotypes. To test whether the order of the input sequences 
matters, we considered various random orderings for the 10 haplotypes in Dataset 2. 
Since Minigraph needs a reference sequence as the first haplotype in order to cor-
rectly build the graph, we generated specific 2 and 10 haplotype datasets with the first 
haplotype replaced by the reference genome CHM13. This was applied to the Mini-
graph-Cactus pipeline as well as it uses Minigraph variation graphs (Table 3).

Pangenome graph construction tools

We evaluated tools that generate graph pangenomes as variation graphs and colored 
compacted de Bruijn graphs. Variation graphs are generally locally acyclic while de 

Table 3  Description of the three datasets generated to test the scalability of the tools. Data sources: 
1 Google Brain Genomics  [27]; 2 Human Pangenome Reference Consortium  [28]; 3 1000 Genomes 
Project [28]; 4 Telomere to Telomere Consortium [28]

Haplotypes Project Bases

2 Google1 5.9 Gbp

10 Google, HPRC2 30 Gbp

104 Google, HPRC, 1KG3, T2T4 313.6 Gbp
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Bruijn graphs have cycles. In variation graphs, nodes represent sequences and edges 
represent immediate sequence adjacency without overlap. Variation graphs are gen-
erally easier to visualize and to interpret while challenging to construct at scale and, 
apart from pggb, require a reference genome. In de Bruijn graphs (dBG), nodes are 
k-mers (string of length k) and edges are (k-1)-overlaps between nodes. In practice, 
dBGs are represented in a compact way where all nodes along unbranching paths are 
compacted into unitigs. The resulting graph is called compacted De Bruijn Graph, 
where nodes are unitigs and edges represent (k-1)-overlaps. As shown in Fig.  1, de 
Bruijn graphs result in large graphs that pose visualization and interpretation chal-
lenges, in particular as there is no alignment to a reference (Table 4).

•	 Bifrost constructs dynamic, colored compacted de Bruijn Graphs (cdBG). It 
first generates a standard dBG using an efficient variant of Bloom Filters and then 
computes the compacted dBG from it. Colors, i.e., identifiers representing the sam-
ple origin of each k-mer are added by storing an array per k-mer. A human genome 
cdBG typically consists of a single large connected component, as common k-mers 
are shared between chromosomes. This pangenome representation contains all the 
variations present in input sequences.

•	 mdbg builds a variant of de Bruijn graphs called a minimizer-space de Bruijn Graph 
(mdbg), which is efficient to construct as it only considers a small fraction of the 
input nucleotides. Color information is currently not supported in the implemen-
tation. Similarly to Bifrost, a mdbg also typically represents a human genome as a 
single large connected component, albeit with orders of magnitude less nodes. Min-
imizer-space de Bruijn graphs mostly discard small variants, yet are sensitive to het-
erozygosity which creates branches in the graph.

•	 Minigraph constructs a directed, bidirected and acyclic variation graph iteratively 
by mapping new haplotypes using a combination of the minimap2 tool and the graph 
wavefront alignment algorithm. The first input sequence acts as a backbone for the 
whole representation. The sample(s) of each node are stored in a rGFA output file. 
Minigraph considers only variations longer than 50 bps hence it is oblivious to iso-
lated SNPs and small indels: even if it produces base-level alignment for contigs, the 
graphs are not a base-level resolution. The resulting graph is divided into connected 

Table 4  URL, version, pangenome representation, and parameters of the three analyzed tools. 
pggb/0.2.0 used wfmash v0.7.0, seqwish v0.7.3, and smoothxg v0.6.1

Tool Github repository Graph type Version Parameters

Bifrost pmelsted/Bifrost De Bruijn graph 1.0.5 -k100 -c

pggb pangenome/pggb variation graph 0.2.0 -p 98 -s 10000 -k 311 -G 
13033,13117

-O 0.03 -v -t 8 -T 8 -A -Z

Minigraph lh3/Minigraph variation graph 0.18 -cxggs

Minigraph-Cactus ComparativeGenomics variation graph 2.2.3 –maxLen 10000 –delFilter 
10000000Toolkit/cactus

mdbg ekimb/rust-mdbg De Bruijn graph 1.0.1 -k 10 -d 0.0001 –minabund 
1 –reference
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components that correspond to the chromosomes present in the first given input 
genome.

•	 Minigraph-Cactus is a variation graph construction pipeline that combines 
Minigraph to generate a structural variations graph and Cactus base aligner to 
generate base-level pangenome graphs of a set of input assemblies and embed hap-
lotypes paths. Cactus [16] is a highly accurate and scalable reference-free multiple 
whole-genome alignment tool, that in this pipeline considers the reference sequence 
used by Minigraph to ensure that the resulting variation graph is acyclic. The final 
graph is further normalized using GFAffix[29]. The pipeline allows to generate multi-
ple graphs, one for each chromosome, or produce a single graph that includes inter-
chromosomal variants.

•	 pggb is a directed acyclic variation graph construction pipeline rather than a single 
tool. It calls three different tools: pairwise base-level alignment of haplotypes using 
wfmash [30], graph construction from the alignments with seqwish [31], graph sort-
ing and normalization with smoothxg and GFAffix [29, 32]. The resulting variation 
graph represents variations of all lengths present in the input sequences.

Appendix
Benchmark infrastructure

Running time of pangenome construction tools was measured as wall clock time and 
peak memory as maximum resident set size using the time command. Other metrics 
were obtained with custom Python scripts. All benchmarks were performed on a Super-
micro Superserver SYS-2049U-TR4, with 3 TB RAM and 4 Intel SKL 6132 14-cores @ 
2.6 GHz, using 8 cores.

TwoPaCo

We did not consider TwoPaCo as it is redundant with Bifrost. Both methods con-
struct the same de Bruijn graphs. TwoPaCo is a method for constructing ccdBG by find-
ing junction k-mers at the boundaries of unitigs or in branching nodes. It consists of 
two main steps in which it approximates the dBG with a Bloom filter in order to reduce 
the size of the problem and then runs a two pass highly parallel algorithm on it. It con-
structs ccdBGs similarly to Bifrost. Bifrost is faster, supports edit operations, and 
accepts also reads other than assemblies as input. We tested both tools on NCBI data-
sets from three different known human variation regions part of the human leukocyte 
antigen (HLA) complex: HLA-A, MICB and TAP1. These loci have different number of 
sequences and have complexity and length. The resulting graphs have exactly the same 
k-mer content and substantially equal topology. The difference is that TwoPaCo consid-
ers sequences with IUPAC ’N’ bases while Bifrost does not and that in some cases 
TwoPaCo renders some unitigs split in two or more consecutive nodes.

Loci extraction method

For Bifrost and mdbg graphs, nodes corresponding to the input sequences are 
identified with GraphAligner  [33] and the subgraph is extracted using the 
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Bandage reduce function. As the aligned nodes are not expected to represent the 
full diversity of the population in the pangenomes, the considered portion of the 
graph contains also nodes up to a certain distance from the aligned ones: 1 for mdbg 
and 3 for Bifrost. This number is based on the size of the sequences spelled by the 
nodes and on the considered variations. Artifacts, mostly tips, that are not part of the 
locus of interest are removed with a custom python script. For Minigraph gener-
ated graphs, the Minigraph own alignment function has been used to identify the 
nodes and then Bandage is used to extract the subgraph. For pggb, first we gener-
ate a bed file of the position of the region of interest in every haplotype used to con-
struct the graph. The ranges are derived from aligning them to the locus sequence(s) 
using minimap2 [34]. The graph corresponding to the region is then extracted using 
the odgi extract and odgi view functions. For Minigraph-Cactus we use the 
same strategy as pggb, with the difference that the bed file is only for the reference 
CHM13, present in the graph. The annotation of the specific loci in the subgraph is 
done using nodes from the alignment with Minigraph or GraphAligner to the 
subgraph. This makes it possible to highlight multiple sections in the region, as, for 
example, genes and pseudogenes of interest.
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