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Abstract

Because SARS-CoV-2 constantly mutates to escape from the immune response, there is a

reduction of neutralizing capacity of antibodies initially targeting the historical strain against

emerging Variants of Concern (VoC)s. That is why the measure of the protection conferred

by vaccination cannot solely rely on the antibody levels, but also requires to measure their

neutralization capacity. Here we used a mathematical model to follow the humoral response

in 26 individuals that received up to three vaccination doses of Bnt162b2 vaccine, and for

whom both anti-S IgG and neutralization capacity was measured longitudinally against all

main VoCs. Our model could identify two independent mechanisms that led to a marked

increase in measured humoral response over the successive vaccination doses. In addition

to the already known increase in IgG levels after each dose, we identified that the neutraliza-

tion capacity was significantly increased after the third vaccine administration against all

VoCs, despite large inter-individual variability. Consequently, the model projects that the

mean duration of detectable neutralizing capacity against non-Omicron VoC is between 348

days (Beta variant, 95% Prediction Intervals PI [307; 389]) and 587 days (Alpha variant,

95% PI [537; 636]). Despite the low neutralization levels after three doses, the mean dura-

tion of detectable neutralizing capacity against Omicron variants varies between 173 days

(BA.5 variant, 95% PI [142; 200]) and 256 days (BA.1 variant, 95% PI [227; 286]). Our

model shows the benefit of incorporating the neutralization capacity in the follow-up of

patients to better inform on their level of protection against the different SARS-CoV-2

variants.
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Trial registration: This clinical trial is registered with ClinicalTrials.gov, Trial IDs

NCT04750720 and NCT05315583.

Author summary

Developed vaccines against SARS-CoV-2 have been a turning point against the ongoing

Covid-19 pandemic. When the Wuhan virus was dominant, they help to dramatically

reduce the number of severe cases as well as infection and transmission rates. For mRNA

vaccines, it was in great part explained by the high level of induced antibodies a few

weeks/months after injection and linked to high neutralizing capacity, the ability to pre-

vent viruses to enter and infect target cells. However, decreasing antibody concentration

over time and apparition of variants escaping their neutralizing action dramatically

reduced the initial vaccine efficacy. As a countermeasure, additional injections were used

to re-establish significant antibody population and ensure a long-term neutralizing activ-

ity against emerging variants. To infer if this multi-dose strategy fulfills such task, we con-

struct a model of the evolution of the induced antibodies and their neutralizing capacity

against different variants. This model helps us to quantify the gain brought by each new

injection on both antibody population and their neutralizing ability against all tested vari-

ants as well as the dramatic differences between them. We also predict the long-term evo-

lution of neutralizing activity, years after last injection, and thus discuss the longevity of

the induced protection by vaccine.

Introduction

The discovery and the rapid availability of several vaccines against SARS-CoV-2 has been a

turning point in the combat against Covid-19 [1]. Although their efficacy may vary to some

extent, it is undisputable that large scale vaccination campaigns have dramatically reduced

both the risk of severe diseases [2–4] and, to a lesser extent, the rates of transmission and dis-

ease acquisition [5–7], resulting in millions of saved lives [1, 8, 9].

However vaccine efficacy has been jeopardized by the apparition of various Variants of

Concern (VoCs) that partially escape immune protection. A clear decrease in the neutraliza-

tion capacity has been observed [10, 11] which has translated to a substantial reduction of effi-

cacy against transmission and disease acquisition with Delta and Omicron variants, and, to a

lesser extent, to a decrease of efficacy against severe Covid-19 disease [12, 13]. The concern

caused by a potential loss of protection against VoCs has been further enhanced by the natural

waning immunity and the progressive reduction in antibody levels over time [14–16]. This has

supported boosting strategies with one or two additional vaccine doses to maintain a high level

of protection. However the optimal time to administer boosters, and how these times may vary

for different VoCs, remains unclear.

To characterize in detail the duration of protection against SARS-CoV-2, it is therefore

essential to measure not only total anti-S IgG antibodies over time, as typically done in large

observational studies, but also how this translates in terms of neutralization capacity. The lat-

ter requires intensive in vitro measurements, but it provides a much more accurate descrip-

tion of the level of protection present in the sera of Covid-19 vaccine recipients [17, 18].

Then, a detailed characterization of the immunological or virological factors modulating the
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duration of protection can be obtained by using mathematical models of immune marker

dynamics [19].

Here we propose to use for the first time a mathematical model to analyze the joint kinetics

of anti-S IgG antibodies and neutralization capacity after repeated vaccine injections against

the main VoCs. For that purpose we relied on data from a cohort of Bnt162b2 vaccine recipi-

ents, in which both antibody kinetics and neutralizing activity were measured longitudinally

[11, 20, 21]. We built on previous models of antibody kinetics [22, 23] to develop a novel

approach to quantify the kinetics of neutralizing activity, and we use this model to characterize

the effects of repeated vaccine administrations on it. We finally use the model to discuss the

duration of protection conferred by the measured humoral activity induced by Bnt162b2

against VoCs.

Materials and methods

Ethics statement

This study was approved by the Ethics Committee ILE DE FRANCE IV. The cohort was

approved by the national external committee (CPP Ile-de-France- IV IRB No. 00003835).

Study participants did not receive any compensation. At enrolment a written informed con-

sent was collected for all participants.

Data

Population study. Data originate from a cohort of N = 29 subjects who received up to

three injections of Bnt162b2 (ClinicalTrials.gov:NCT04750720 and ClinicalTrials.gov:

NCT05315583). In brief SARS-CoV-2 naive patients were recruited in Orléans, France

between August 27, 2020 and May 24, 2022. Individuals were followed for up to 483 days after

their first vaccine injections (see more details on the data in [11, 20, 21]). Two patients without

longitudinal follow-up and 1 immunocompromised individual were not included in our analy-

sis. In total, N = 26 individuals were analyzed (see Table 1). Briefly, all subjects received at least

2 doses, administered on average 27 days after the first injection. N = 22 subjects received a

third injection, administered on average 269 days after the first injection. During the follow-

up N = 12 had a positive PCR, and only data prior to infection were analyzed, leaving an aver-

age follow-up of 11 visits and a median follow-up time of 362 days.

Longitudinal markers of immune response. Two types of measurements were available

at each visit: 1) anti-spike binding IgGs, measured in BAU/mL) neutralization titers of sera

Table 1. Characteristics of the analyzed population.

Characteristics Median Median Time of vaccination

[Min; Max] or n (%) [Min; Max]

since first dose since second dose

Men 14 (54%)

Age 59 [33; 95]

Follow-up duration after first-dose (days) 368 [168; 483]

Number of follow-up visits 14 [2; 18]

Number of vaccination doses

1st 26 (100%) - -

2nd 26 (100%) 22 [17; 60] -

3nd 23 (88%) 243 [175; 385] 221 [154; 361]

https://doi.org/10.1371/journal.pcbi.1011282.t001
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provided in ED50, which is the effective dilution required to neutralize 50% of an arbitrary

viral load of reference (eg, the higher the ED50 the larger the protection level). Neutralization

capacity was assessed against historical strain (D614G), Alpha, Beta, Delta, and Omicron vari-

ants (strains BA.1, BA.2, and BA.5).

In brief IgGs markedly increased after each dose, but rapidly declined over time, with a rate

that did not substantially differ after the second or the third dose (Fig 1A). In contrast the

kinetics of neutralizing activity was much more heterogeneous, and was characterized by large

differences against the different VoCs. Further the neutralizing activity was markedly

increased after the third dose against all Omicron variants, albeit remaining at much lower lev-

els than against the other VoCs (Fig 1B, 1C and 1D).

Model for neutralizing antibody response

Mechanistic model for antibody kinetics. We rely on a simplified and rescaled version of

a previously published model in the context of vaccine against Ebola infection [23]. In brief,

after each dose, cells transfected with Bnt162b2 generate antigen, noted V, which triggers the

constitution of a memory compartment, noted M, at a rate ρ. This memory compartment is a

general one accounting for all cell populations able to differentiate into secreting cells upon

antigen presence. These can be activated or memory B-cells either circulating or present in

Fig 1. A: longitudinal evolution of the binding antibody concentration of anti-S IgG. B-C-D: longitudinal evolution of

the neutralizing activity against VoCs after the first (B, see S1 Fig for a zoomed version), second (C) and third (D)

vaccination dose. Squares represent median values, and plain horizontal lines represent the minimal and maximal

encountered values among subjects. The lower limit of detection (LOD) is equal to 6 BAU/mL for IgG and 30 for ED50.

Given the limited number of samples available, data were grouped, using a one week sliding window after the first

dose, 20 days in the first 100 days following the second or third infection, and 50 days for the other data points.

https://doi.org/10.1371/journal.pcbi.1011282.g001
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germinal centers. So, M can differentiate into secreting plasma cells, noted ~S, at a rate μV.

These cells then produce antibodies, noted Ab, at a rate θ. V, S, and Ab are degraded at rates

δV, δS, and δAb, respectively, leading to the following ODE system:

_V ¼ � dVV

_M ¼ rV � mVM

_~S ¼ mVM � dS~S

_Ab ¼ y~S � dAbAb:

ð1Þ

Assuming that individuals are naive of infection, and noting t1 the time of first injection, the

initial conditions are given by: Mðt1Þ ¼ ~Sðt1Þ ¼ Abðt1Þ ¼ 0.

To model the effect of repeated doses, we consider that V is a function presenting disconti-

nuity at time of first, second and third injection (t1, t2, t3). By denoting k = 1, . . ., 3 the dose

number, on each interval [tk, tk+1], solving previous ODE for V gives us VkðtÞ ¼ V0e� dV ðt� tkÞ

where V0 is the initial antigen concentration, assumed equal from all doses.

Because this model is not identifiable when only Ab are measured, we derived a structurally

identifiable approximated model described in Eq 2; see Appendix A.1 in S1 Appendix for a

description of this simplification. Briefly, it consists of rescaling the model for S ¼
ðmV0M1Þ

� 1~S and assuming that M can be replaced by its steady-state value Mk if equilibrium is

reached quickly after each injection:

_S ¼ fMk
e� dV ðt� tkÞ � dSS

_Ab ¼ WS � dAbAb
ð2Þ

where fMk
¼

Mk
M1

is the fold-change for steady-state memory compartment after kth injection

compared to the first one (by definition fM1
¼ 1). Of note, we also tested the full model which

does not assume a steady state value for M. This leads to identifiability issues mainly due to μS
estimation for which only a lower bound (μS> 20) can be found. For such values for μS, the

compartment M nearly instantaneously reaches its steady-state. Accordingly, both full and

simplified models provide virtually similar predictions for Ab (see Appendix A.2 in S1 Appen-

dix). Finally, we also tested a more complex model accounting for a delay between vaccine

injection and antibody production (also in Appendix A.2 in S1 Appendix). However the

model did not improve data description, which was probably due to the limited amount of

information available on antibody kinetics in the couple of days following vaccine injection.

Moreover, the model proposed by Balelli et al. [23] initially contains two populations of secret-

ing cells S and L, differing by their life expectancy. In our case, preliminary statistical analysis

conclude that there was no statistical differences between model adjustments when accounting

for S and L or S only (results not shown). This allows us to reduce the number of unknown

parameters. This is crucial for parameters related to cell kinetics known to be very different for

newly developed mRNA vaccines comparing to viral vector ones and for which no values have

been previously inferred. Thus, the retained model (2) is complex enough to account for the

effect of multiple injections on antibody concentration evolution while avoiding identifiability

issues. We define ZODE ¼ ðfM2
; fM3

; dV ; dS; W; dAbÞ the vector of model parameters defining the

dynamics of the system.

Functional model for neutralizing activity. After modeling antibody concentration evo-

lution in the previous section, we aim to model their neutralizing activity. This means in our
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case proposing a model describing the evolution of EDn
50

with respect to Ab. We consider the

following linear model:

EDn

50
ðtÞ ¼ Fðn; tÞAbðtÞ:

The function F(ν, t) represents the relationship between the concentration of binding antibod-

ies in BAU/mL and its neutralization capacity against the VoC ν. It is variant-specific and

time-varying, let us first derive its expression for the strain D614G before moving to any arbi-

trary VoCs. After t1, we assume a proportional relationship between Ab and neutralizing activ-

ity against D614G i.e F(D614G, t) = γ (equivalently EDD614G
50
ðtÞ ¼ gAbðtÞ). After additional

injections, we assume there is a neutralization gain quantified by the fold-change f2 after t2 and

f3 after t3 i.e. F(D614G, t) = γf2 when t 2 [t2;t3] and F(D614G, t) = γf3 for t� t3. Now, we

account for VoCs specific neutralizing activity by modifying baseline value γ by the fold-

changes fν such that F(ν, t) = F(D614G, t)fν = γfν when t 2 [t1;t2] and F(ν, t) = F(D614G, t)fν =

γfνf2 for t 2 [t2;t3]. We assume that the relative gain brought by third injection can be also

VoC-specific. That is why we introduce the fold-changes gν to quantify this gain i.e. F(ν, t) = F
(D614G, t)fνgν = γfνf3gν for t� t3. This piece-wise constant function can be then expressed in a

general form:

Fðn; tÞ ¼ gfnð1t<t2
þ f21t2½t2 ;t3 �

þ f3gn1t�t3
Þ:

The choice of this model is the result of exploration based on the minimization of an adjust-

ment criteria. In particular, the current model only quantifies the effect of the repetition of

injections on affinity enhancement. Other factors can play a role as the elapsed time since anti-

gen presentation, for example to account for the progressive Memory B-cells repertoire expan-

sion [24, 25]. An alternative neutralization model only considering the time factor has been

developed. This supplementary analysis is described in Appendix B in S1 Appendix but lead to

a less accurate model (in terms of AIC). A general model accounting for both factors, the num-

ber of injections and the elapsed time, has been also tested leading to non-significant improve-

ments over the retained model and at the expense of identifiability problems (results not

shown). We also investigate the possibility of a variant-specific fold-change after second injec-

tion. This was discarded due to practical identifiability issues. More generally, our model

assumes a simple linear relationship between antibody concentration and neutralization, with

no saturation effect. The fact that a more physiological model assuming a nonlinear relation-

ship did not improve data description (see Appendix B in S1 Appendix) suggests that the level

of Antibody observed in this study remains within the linear range of neutralization. Finally,

we acknowledge the existence of other ways than our descriptive approach to link Ab and

EDn
50

, as in Padmanabhan et al. [26] in which a mechanistic relationship between these quanti-

ties is constructed. Still, their model definition involves measurements, such as infection events

or neutralizing antibodies, which are not at our disposal, especially for emerging VoCs, mak-

ing their model intractable for our prediction purpose.

We define η = (ηODE, γ, fν, f2, f3, gν) the vector of model parameters that have to be estimated

from the observed data. Description of the model parameters can be found in Table 2.

Observation model. The structural model used to describe the log-transformed concen-

tration of binding antibodies in BAU/mL for the ith individual (i = 1, . . ., N) at the jth time

point (j = 1, . . ., ni) is:

YBAU
ij ¼ log

10
ðAbðZi; tijÞÞ þ eBAUij ;

where eBAUij is the residual additive error which follows a normal distribution of mean zero and

constant standard deviation σBAU. The vector ηi is the specific value for individual i of vector η.
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We also consider a log-transformation of EDn
50

raw measurements for the variant in the list

{D614G, Alpha, Beta, Delta, BA.1, BA.2, BA.5}. For the ith individual at the jth time point, we

have:

Yn

ij ¼ log
10
ðEDn

50
ðZi; tijÞÞ þ enij;

where enij is the residual additive error for variant ν which follows a normal distribution of

mean zero and constant standard deviation σν.
Statistical model for parameters over time and injections. Fixed parameters. Here, not

all parameters can be jointly estimated via likelihood when only concentration of binding anti-

bodies and antibody neutralizing activity are measured. Further, the model predictions were

found largely insensitive to the choice of the degradation rate of V and S. Using a profiled like-

lihood approach [27], we fixed their half-life to 0.25 and 51 days, respectively.

Inter-individual variability. In the vector η, some parameters have to be individual-spe-

cific to account for inter-individual variability. It is the case for ci ¼ ðW; fM2
; gÞ. We suppose it

Table 2. Model parameters and estimation. Fcn:fold-change in neutralization.

Parameter Description Unit Fixed Effect [IC95%] Random Effect [IC95%]

fM2
Fold change for M equilibrium after second injection dimensionless 7.1 [4.2; 12.0] 0.9 [0.8; 1.0]

fM3
Fold change for M equilibrium after third injection dimensionless 18.5 [15.0; 26.0]

ϑ Initial acceleration for Ab production [A].days−2 24.5 [15.8; 38.0] 0.5 [0.3; 0.7]

δAb Antibody degradation rate days−1 0.08 [0.07; 0.09]

γ Proportion of neutralization provided by first vaccination [V].[A]−1 0.3 [0.2; 0.5] 0.7 [0.5; 0.9]

fAlpha Fcn for variant Alpha unitless 1.3 [1.0; 1.8]

fBseta Fcn for variant Beta unitless 0.2 [0.1; 0.3]

fDelta Fcn for variant Delta unitless 0.3 [0.2; 0.4]

fBA.1 Fcn for variant BA.1 unitless 0.005 [0.003; 0.009]

fBA.2 Fcn for variant BA.2 unitless 0.013 [0.005; 0.029]

fBA.5 Fcn for variant BA.5 unitless 0.016 [0.011; 0.022]

f2 Fcn for second vs. first injection unitless 8.2 [4.0; 16.9]

f3 Fcn for third vs. first injection in original strains D614G unitless 18.8 [10.0; 42.9]

gAlpha Fcn for third vs. first injection in variant Alpha unitless 5.8 [3.0; 11.8]

gBeta Fcn for third vs. first injection in variant Beta unitless 2.3 [1.3; 4.2]

gDelta Fcn for third vs. first injection in variant Delta unitless 1.1 [0.6; 1.5]

gBA.1 Fcn for third vs. first injection in variant BA.1 unitless 13.5 [7.5; 24.3]

gBA.2 Fcn for third vs. first injection in variant BA.2 unitless 5.4 [2.5; 11.9]

gBA.5 Fcn for third vs. first injection in variant BA.5 unitless 1.7 [1.2; 2.5]

σBAU Measurement error for YBAU = log10(Ab) + eBAU 0.24 [0.23; 0.25]

σD614G Measurement error for YD614G ¼ log
10
ðEDD614G

50
Þ þ eD614G 0.47 [0.44; 0.50]

σAlpha Measurement error for YAlpha ¼ log
10
ðEDAlpha

50 Þ þ eAlpha 0.59 [0.53; 0.64]

σBeta Measurement error for YBeta ¼ log
10
ðEDBeta

50
Þ þ eBeta 0.47 [0.41; 0.53]

σDelta Measurement error for YDelta ¼ log
10
ðEDDelta

50
Þ þ eDelta 0.42 [0.40; 0.44]

σBA.1 Measurement error for YBA:1 ¼ log
10
ðEDBA:1

50
Þ þ eBA:1 0.44 [0.36; 0.52]

σBA.2 Measurement error for YBA:2 ¼ log
10
ðEDBA:2

50
Þ þ eBA:2 0.48 [0.40; 0.56]

σBA.5 Measurement error for YBA:5 ¼ log
10
ðEDBA:5

50
Þ þ eBA:5 0.34 [0.30; 0.40]

δV Induced vaccine antigen declining rate days−1 2.7 (fixed)

δS Death rate of S cells days−1 0.01 (fixed)

https://doi.org/10.1371/journal.pcbi.1011282.t002
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follows a log-normal distribution such that:

ci ¼ c0expðuiÞ;

where ψ0 is the fixed effect and average mean value in the population. The vector ui is individ-

ual random effects, which follow a normal distribution of mean zero and standard deviation

O, and account for heterogeneity across individual. We assume that other parameters in vector

η except error measurements are also estimated in log-transformation and are common to all

individuals in the population. Altogether, the vector of parameters to estimate is given by θ =

(η, O, σBAU, σν).
Estimation procedure. Parameters were estimated (and named ŷ in the following) with the

SAEM algorithm implemented in MONOLIX software version 2022R1 [28] allowing to handle

left censored data [29]. Likelihood was estimated using the importance sampling method and

standard error were obtained by asymptotic approximation and inversion of the Fisher Infor-

mation Matrix. Graphical and statistical analyses were performed using R version 3.4.3.

Simulation of long-term humoral response. Next, we used the model to predict the

long-term evolution of Ab and EDn
50

over time. To account for uncertainty in our predictions,

we used a Monte-Carlo sampling method, where K = 1000 replicates of parameters values θ(k)

were sampled in the posterior distribution of the parameter estimates to derive 95% prediction

intervals (PI) of the predicted trajectories.

Finally we used these predictions to calculate the time to reach a given threshold value. To

take into account between-subjects variability, we added a second layer to our Monte-Carlo

sampling method and we sampled N = 100 replicates in the population parameter distribution.

We used these predictions to derive the probability of having a concentration of binding anti-

bodies greater than given thresholds, in particular higher than 264 BAU/mL, which corre-

sponds to the standard threshold of protection defined by Feng et al. [30] and adopted by

WHO. The level of neutralizing activity has been identified as a correlate of protection for vac-

cine efficacy against the historical strain [31, 32]. However, to date, no threshold for EDn
50

value ensuring protection has been isolated for D614G, let alone for the new VoCs. So, for a

range of threshold values, we calculated the probability that the neutralizing activity against

each VoC would be higher than these values over time, especially if this activity was still detect-

able at a given time. In this way, we can compare the longevity of neutralizing activity between

VoCs even in the absence of a clear threshold of protection for each of them.

Results

Mechanistic model for humoral response

We first aimed to investigate whether there is a proportional relationship between the evolu-

tion of concentration of binding antibodies and its neutralization capacity. Fig 2 displays the

observed relationship from data between antibody concentration and EDn
50

for each VoC after

each injection. First, we notice that these ratios are different for the variants. Then, we com-

pared the evolution of these ratios with respect to the previous vaccination. In most cases, the

ratios improved significantly, indicating an intrinsic gain in neutralization that cannot be

explained by the variation in antibody concentration alone, justifying the need to quantify this

phenomenon precisely. This is supported by the linear regressions of EDn
50

on Ab after each

injection presented in Table 3 (made with the R package Censreg [33] to account for censored

data). These regressions indicate an increased correlation between EDn
50

and Ab with respect to

the injection numbers for most of VoCs (already pointed out by Goel et al. [34] for D614G and

Beta).
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Fig 2. Evolution of the predicted ratio EDn
50
=BAU for each VoC after successive vaccine doses. Each circle represents a ratio EDn

50
=BAU computed when both

measurements for EDn
50

and BAU where available for a given patient at a given observation time. Most of patients contribute several times due to the repeated

measurements made over time after each dose. All predictions below the limit of detection for EDn
50

were removed to avoid overoptimistic EDn
50
=BAU ratio when

replacing EDn
50

values by detection threshold. This explains why very few values are available for Beta and Delta and none for Omicron strains for one dose case.

Comparison between vaccine dose was done using Wilcoxon test with Holm correction, p-values are given above the brackets.

https://doi.org/10.1371/journal.pcbi.1011282.g002
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Estimation of model parameters can be found in Table 2. This estimation indicates that

multiple injections both increase antibody concentration and intrinsic affinity per constant

antibody unit. Regarding antibody concentration, estimation of mechanistic parameters indi-

cates a significant increase in the size of the memory compartment. It increased by fM2
¼ 7:1

(95% Confidence interval CI [4.2; 12.0]) after the second injection and by fM3
¼ 18:5 (95% CI

[15.0; 26.0]) after the third injection compared to the first one. Of note, the estimated value for

δAb approximately corresponds to an half-life of 9 days, which is close to the typical range of 10

and 21 days [35].

Regarding neutralization per constant antibody concentration unit, we found that there are

two main influencing factors: the repetition of the injections and the VoC. Regarding repeated

injections effect for the original strain D614G, the second dose increases neutralization by a

factor f2 = 8.2 (95% CI [4.0; 16.9]) and the third one by f3 = 18.8 (95% CI [10.0; 42.9]) com-

pared to the first injection. Now regarding the neutralization capacities for emerging VoCs,

they are significantly decreased compared to the original strain, with the exception of Alpha,

where there is no significant change in neutralization compared to D614G. It ranges from a

reduction of 70% (95% CI [60%; 80%]) for Delta to a dramatic reduction of 99.5% (95% CI

[99.1%; 99.7%]) for BA.1. Still, we find that the sequential injection strategy confers a gain in

long-term neutralizing capacities for all VoCs. The second injection increases neutralization

against all VoCs by the same factor f2 = 8.2 (same as D614G). The third injection increases

neutralization in a VoC-specific manner, given by f3gν. It ranges from an increase in fold

change of 21 (95% CI [6.0; 64.4]) for Delta to 254 (95% CI [75; 1042]) for BA.1 times higher

for the third injection than for the first injection. For comparison with D614G, the neutraliza-

tion is
f3
f2
¼ 2:3 (95% CI [1.6; 3.2]) times higher for the third injection compared to second

injection. Transitively, the fold change is
f3
f2
gDelta ¼ 2:5 (95% CI [0.8; 4.8]) for Delta to

f3
f2
gBA:1 ¼

31:1 (95% CI [12.0; 77.8]) for BA.1 times higher for the third injection than for the second

injection.

Examples of fitted trajectories are given for four randomly selected patients in Fig 3. We

observe a very good adequation with most of the observations lying in the 95% prediction

intervals. To assess the capability of the model to fit our data, we also examined the visual pre-

dictive check (see Appendix C in S1 Appendix), which showed that the model well captures

the kinetics observed and its variability across individuals.

This is exemplified in Fig 4, that shows the mean markers trajectories for an average indi-

vidual (i.e random effects ui set to 0). As expected, the level of the response is higher after a

repeated number of injections for both binding antibody concentration and neutralization for

all variants. Interestingly, the neutralization curves for BA.1, BA.2, and BA.5 are significantly

Table 3. Linear regression results with censored data.

β estimation in model EDn
50
¼ aþ bAb on interval:

[t1;t2] [t2;t3] [t3;+1]

D614G 0.90 [0.01; 1.73] 2.42 [1.48; 3.47] 15.31 [8.93; 21.68]

Alpha 0.50 [-0.26; 1.24] 4.39 [2.02; 6.76] 38.65 [3.24; 74.06]

Beta 0.10 [-0.15; 0.30] 0.30 [0.15; 0.45] 1.83 [0.93; 2.70]

Delta 2.05 [-10.5; 12.30] 1.58 [1.11; 2.02] 5.86 [4.16; 7.55]

BA.1 - 0.11 [0.01; 0.22] 1.08 [0.74; 1.41]

BA.2 - 0.16 [0.02; 0.30] 0.21 [0.08; 0.36]

BA.5 - 0.15 [0.07; 0.23] 0.51 [0.31; 0.71]

https://doi.org/10.1371/journal.pcbi.1011282.t003
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Fig 3. Individual fits for four representative individuals. The solid line is the subject-specific prediction and the shaded area is the 95% prediction interval. The plain

dots and crosses represent the observed and censored data, respectively.

https://doi.org/10.1371/journal.pcbi.1011282.g003
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lower than for the other variants, with no overlap in prediction intervals. The first and second

doses elicit a neutralization response for Omicron (BA.1, BA.2, and BA.5) that remains below

the detection limit in most individuals (which is consistent with the observed data) but is dra-

matically enhanced by the third injection. Regarding the EDn
50
=BAU ratio (See S2 Fig), we find

that for the same concentration of binding antibodies, neutralization is significantly increased

after each new injections for all variants and is significantly different for Alpha, D614G, {Delta,

Beta} and {BA.1, BA.2, BA.5} variants.

Long-term predictions

As already shown in Fig 4, we can use the estimated models to predict the long-term trajecto-

ries of markers corresponding to the mean parameter values as well as 95% prediction inter-

vals. It allows to derive an estimation of the time needed to reach a certain threshold after a

three injections vaccination scheme with first vaccination at time t1 = 0, second injection at

time t2 = 27 days and third injection at time t3 = 269 days, corresponding to the mean

observed time of injection in our cohort. Binding antibodies concentration is below 264 BAU/

mL 154 (95/% PI [137; 173]) days after third vaccination. Neutralization reaches undetectable

levels between 173 days (95/% PI [142; 200]) for BA.5 to 587 (95/% PI [537; 636]) for Alpha

after the third dose.

Fig 5A displays the probability of having antibody concentration higher than the protection

threshold established by Feng et al. [30] of 264 BAU/mL each days after the last injection in

the counterfactual scenario where subjects only received one, two or three doses. The same is

done for neutralizing activity again the VoCs (Fig 5B: one, Fig 5C: two or Fig 5D: three). It is

possible to see the drastic effect of repeated injections on the levels reached by both binding

Fig 4. A: Predicted evolution of binding antibody concentration. The horizontal line corresponds to the value of 264

BAU/ml considered as a threshold against symptomatic infection. B: Predicted kinetics of EDn
50

. The horizontal line

corresponds to the LOD. In all panels, the shaded area is the 95% prediction interval.

https://doi.org/10.1371/journal.pcbi.1011282.g004
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antibodies concentration and neutralization for all variants. Strikingly, the full response dura-

tion is similar in length for the binding antibodies concentration after two or three injections.

However, whereas response higher than 264 BAU/mL is reached in 100% (95% PI [99%;

100%]) of the population after three injections, it is only reached in 82% (95% PI [65%; 90%])

of the population after two doses, and never reached in the whole population after the first

injection (value: 0% (95% PI [0%; 3%])). Table 4 provides the time needed for a proportion of

a vaccinated population to return under a certain threshold. It explores multiple thresholds

(100 BAU/mL, 264 BAU/mL, and 1000 BAU/mL for antibodies concentrations; and undetect-

ability, 100 and 1000 for neutralization) that could be investigated when and if a clear level of

correlate of protection is found. For all markers, there is a systematically and significantly

higher duration of humoral activity after three compared to two injections. After three injec-

tions, duration of neutralization against Omicron variants (BA.1,BA.2 and BA.5) is signifi-

cantly lower than for other variants for all thresholds.

Discussion

We proposed here a modeling framework to characterize the kinetics of antibodies to succes-

sive doses of Bnt162b2 vaccine. The originality of our approach is that we relied on both the

kinetics of anti-S IgG binding antibodies and their neutralization against the major VoCs that

Fig 5. A: Predicted probability of having predicted antibody concentration (anti-S IgG) greater than 264 BAU/mL.

B-C-D: Probability of having detectable neutralizing activity against VoCs after after the first (B), second (C) or third

(D) vaccination dose. Simulations were performed assuming that the second and third vaccination doses occurred at

day 27 and 269, respectively.

https://doi.org/10.1371/journal.pcbi.1011282.g005
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have emerged since 2021. Our model quantifies the benefit of successive injections and can be

used to predict the duration of detectable neutralizing activity against each VoC. After the first

dose, the model shows the significant action of each additional injection, especially of the third

one, to increase the intrinsic antibody neutralizing quality against all VoCs [34]. However,

both the maximum level achieved and the rate of decline could vary greatly between VoCs.

Accordingly, the mean duration of detectable neutralizing activity after the third dose of vac-

cine was 20, 12, 8.5, 8 and 6 months for Alpha, Delta, and Omicron BA.1, BA.2 and BA.5

respectively. Our results also highlight the wide variability in patient response, with at least 5%

of patients with undetectable neutralizing activity against Omicron BA.5 only 2 months after

the third injection.

These results were obtained based on a number of hypotheses, which we summarize below.

First, the model of antibody concentration dynamics remains simplified, with the memory

compartment simply represented by a piecewise constant function over successive doses. In

addition, the model assumes only one type of secreting cell population and thus overlooks the

complexity of the B-cell response mechanism. Our model does not integrate the possible

mechanisms causing the gain in neutralization observed over dose injections, and how this

may modulated by the time between injections. For instance, it has been suggested that longer

delay between injections could increase the Memory B-cells selection stringency in germinal

Table 4. Predicted distribution for the duration of anti-S IgG and neutralization activity above different threshold levels [95% prediction interval].

Time to anti-S IgG

Population quantiles <100 BAU/mL <264 BAU/mL <1000 BAU/mL

IgG 95% 163 [146; 185] 94 [74; 114] 0 [0; 0]

50% 223 [207; 242] 152 [135; 173] 62 [32; 76]

5% 289 [265; 305] 214 [193; 235] 119 [97; 138]

Time to ED50

Variant Population quantiles Undetectable <100 <1000

D614G 95% 327 [294; 370] 252 [207; 282] 81 [39; 115]

50% 433 [404; 471] 350 [316; 382] 186 [148; 217]

5% 557 [506; 579] 460 [420; 491] 278 [252; 328]

Alpha 95% 476 [431; 528] 401 [341; 447] 230 [172; 283]

50% 583 [539; 634] 499 [445; 551] 335 [280; 383]

5% 706 [641; 745] 609 [550; 657] 427 [382; 491]

Beta 95% 237 [194; 290] 161 [108; 199] 0 [0; 0]

50% 343 [301; 388] 259 [217; 299] 96 [44; 140]

5% 467 [407; 499] 369 [323; 405] 188 [151; 247]

Delta 95% 245 [219; 289] 170 [132; 195] 0 [0; 0]

50% 351 [323; 387] 267 [238; 297] 104 [67; 128]

5% 475 [427; 497] 377 [342; 407] 196 [169; 241]

BA.1 95% 146 [117; 183] 70 [0; 97] 0 [0; 0]

50% 252 [222; 287] 168 [139; 199] 0 [0; 0]

5% 376 [324; 398] 278 [242; 309] 97 [69; 141]

BA.2 95% 132 [98; 181] 56 [0; 89] 0 [0; 0]

50% 238 [203; 285] 155 [119; 191] 0 [0; 0]

5% 362 [307; 392] 265 [223; 301] 83 [46; 131]

BA.5 95% 62 [0; 99] 0 [0; 0] 0 [0; 0]

50% 168 [143; 203] 84 [54; 114] 0 [0; 0]

5% 292 [246; 310] 194 [156; 225] 0 [0; 52]

https://doi.org/10.1371/journal.pcbi.1011282.t004
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centers [36]. This could in turn lead to strategies to maximize antibody concentration, as sug-

gested by theoretical models [37]. This is in line with measurements made on another cohorts,

for example the one described in [38, 39] with a significantly longer delay between injections

comparing to ours. In this case, measured antibody concentration after third injection was sig-

nificantly higher than our prediction. Still, due to our data limitation (few subjects with similar

vaccination schedule), we cannot isolate and thus estimate the effect of injection schedule on

neutralizing activity. The choice of linear relationship between neutralizing activity and bind-

ing antibodies obviously omits features acting on neutralization which could have been incor-

porated in a more complete model, closer to biological mechanisms. Still, S3 Fig shows that

this choice is in adequation with general trend in our data and testing more complex relation-

ships, such as a sigmoid model, did not lead to statistical improvement (see Appendix B in S1

Appendix). Of note, this linear relationship also provided a good fit to the data on external

cohorts [40–42]. Finally, the model assumed that the second dose would result in a similar

change in protection for all variants. In the future, application of such approaches to larger

populations of individuals, with a wider range of tested vaccination schedules, may allow some

of these hypotheses to be relaxed and injection timing to be integrated into the model specifi-

cation without compromising the identifiability of the parameters.

Due to the available data and constructed model, we restrict our analysis to the humoral part

of the immune response triggered by vaccination only. Still, vaccination also induces a cellular

immune response which may contribute to the clinical protection especially against the VoCs

[43] (for a mechanistic model accounting for T-cell response, see Korosec et al. [19]). Regarding

immune response induced by infection, to this date, 11 out of 26 followed subjects were infected

with Omicron. This proportion is likely to increase as it is the case in the global vaccinated pop-

ulation. Thus, it is of great interest to model the hybrid protection induced by vaccination fol-

lowed by natural infection. Still, due to model limitation, we discarded patient data after

breakthrough infection. It would requires to deeply modify our model to integrate two different

antibody populations, one coming from vaccination and targeting the historical strain and the

other one targeting the Omicron variant. That is why this analysis is left to future works.

One of the main advantages of the model is its flexibility to easily incorporate information

on new VoCs and to use the strength of information obtained on other viral variants to update

the model as data become available. In fact, we continuously updated the model to include suc-

cessive Omicron variants. Interestingly, despite the small number of samples available, a high

degree of precision was achieved for all variants. For example, although patients had on aver-

age only two data points with detectable neutralization against the BA.2 variant, this was suffi-

cient to achieve a good precision for the estimation of the model parameters (Table 2). Also,

despite its simplicity, the estimated mechanistic model for antibody kinetics produces consis-

tent predictions for patients with a different vaccination schedule than the one considered

here (see Appendix D in S1 Appendix). Additionally, by using all available data (eg, by analyz-

ing anti-S IgG and neutralizing activity of all patients simultaneously), the model reveals some

signals of kinetics that were not visible when analyzing the individual markers separately. For

example, we identified different slopes of antibody decline that directly affect the prediction of

protection duration. Using the same data set and a simpler single-slope model, the time to

undetectable neutralizing levels after the third dose of vaccine for D416G was estimated to be

11.5 months [21], which is shorter than our estimate of 13.5 months (derived from Fig 4). In

their approach, Planas et al. [21] chose to adjust the anti-S IgG and EDn
50

decline separately for

the different VoCs without considering causal relationships between them. On the contrary,

our model assumes an influence of antibody concentration on the development of EDn
50

. Simi-

lar results are shown for the Delta variant (11.5 vs. 10.5 months, respectively), demonstrating
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the importance of a model-based approach to predict neutralizing activity in the long term.

Predictions for the Omicron strains were similar for BA.1 and BA.2, respectively 8.5 and 8

months, and show a reduction for BA.5 strains with 6 months. Interestingly, our results also

suggest a longer duration of detectable neutralizing activity than what has been directly extrap-

olated from other observational studies [38, 44, 45], although this difference may also be due

in part to the different experimental procedure used to measure neutralization.

The large and VoC-dependent variability in neutralization values argues for the use of indi-

vidualized approaches to identify patients most at risk. Although it should be acknowledged

that such an approach is hampered by the lack of an established neutralizing activity threshold

as correlates of protection, its level was found to be associated with the risk of breakthrough

infection. In a cohort of elderly nursing home residents, none of those the individuals with

ED50 above 2136 had Omicron BA.1 breakthrough infection [46]. A model-based study found

that a threshold of 1000 dramatically reduced peak viral load, suggesting that such a threshold

may be a good indicator of protection against infection [40]. Interestingly, our results show

that neutralizing levels for all Omicron variants remain largely below this value (Fig 5), consis-

tent with the current understanding that BNT162b2 is poorly effective against disease acquisi-

tion in the Omicron era [39, 46]. Fortunately, the vaccine has shown high efficacy against

severe disease to date [47, 48].

To date, the use of a fourth dose of vaccine to increase efficacy in France has been limited to

high-risk patients who were not represented in this cohort. Nevertheless, we used the model to

predict the neutralization levels that could be achieved after a fourth vaccine dose. Under the

conservative assumption, yet consistent with available observational study [49], that this injec-

tion does not increase affinity or maturation parameters, our model predicts a similar duration

of detectable neutralization as after the third dose, ranging from 172 to 256 days for the Omi-

cron variants. Assuming that the fourth dose allows a similar increase in maturation and affin-

ity as after the third dose, the model predicts that the duration of detectable neutralization

could be much longer, ranging from 610 to 694 days for Omicron variants (see this supple-

mentary analysis in Appendix E in S1 Appendix).

Supporting information

S1 Fig. EDn
50

raw data after one injection. Zoomed version of EDn
50

raw data presentation

after one injection.

(EPS)

S2 Fig. Estimated mean evolution of t 7! EDn
50
ðtÞ

AbðtÞ . Evolution of EDn
50

:BAU ratio.

(EPS)

S3 Fig. Linear regressions EDn
50
¼ b

nAb. Linear regressions EDn
50
¼ b

nAb for each VoC from

simultaneously measured neutralizing activity and binding antibody concentration. The cen-

sored data have been removed.

(EPS)

S1 Appendix. Appendixes for “Modeling the evolution of the neutralizing antibody

response against SARS-CoV-2 variants after several administrations of Bnt162b2”.

(PDF)

S1 File. Available data. The dataset used for this analysis is available in the zip file Neutraliza-

tion_Data_and_code.

(ZIP)

PLOS COMPUTATIONAL BIOLOGY Modeling of the vaccine induced neutralizing antibody response against SARS-CoV-2 variants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011282 August 7, 2023 16 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011282.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011282.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011282.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011282.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011282.s005
https://doi.org/10.1371/journal.pcbi.1011282


Acknowledgments

We thank Isabelle Staropoli, Florence Guivel-Benhassine, Françoise Porrot and all the mem-

bers of the Virus and Immunity Unit for discussion and help, as well as Fabienne Peira,

Vanessa Legros, Barbara De Dieuleveult, Aurelie Theillay, Sandra Pallay and Daniela Pires
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