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Abstract  
During the past decade, environmental research has demonstrated that archaea are abundant and 
widespread in nature, and play important ecological roles at a global scale. Currently, however, the 
majority of archaeal lineages cannot be cultivated under laboratory conditions and are known exclusively 
or nearly exclusively through metagenomics. A similar trend extends to the archaeal virosphere, where 
isolated representatives are available for a handful of model archaeal virus-host systems. Viral 
metagenomics provides an alternative way to circumvent the limitations of culture-based virus discovery 
and offers insight into the diversity, distribution and environmental impact of uncultured archaeal viruses. 
Presently, metagenomics approaches have been successfully applied to exploring the viromes associated 
with various lineages of extremophilic and mesophilic archaea, including Asgard archaea 
(Asgardarchaeota), ANME-1 archaea (Methanophagales), thaumarchaea (Nitrososphaeria), altiarchaea 
(Altiarchaeota) and marine group II archaea (Poseidoniales). Here, we provide an overview of methods 
widely used in archaeal virus metagenomics, covering metavirome preparation, genome annotation, 
phylogenetic and phylogenomic analyses, and archaeal host assignment. We hope that this summary will 
contribute to further exploration and characterization of the enigmatic archaeal virome lurking in diverse 
environments. 
 
Key words: archaeal viruses, Archaea, metagenomics, hyperthermophiles, major capsid protein, CRISPR 
spacers, host prediction, virome  
 

1. Introduction 
Recent advances in high-throughput genome sequencing and computational approaches have 
transformed our appreciation of the diversity, ubiquity and importance of archaea in natural environments 
[1-9]. Similar to bacteriophages [10-15], archaeal viruses represent one of the major factors controlling the 
diversity and metabolic activity of archaeal populations [16, 17]. Although culture-based approaches are 
revealing extraordinary morphological and genomic diversity of archaeal viruses isolated from extreme 
geothermal and hypersaline environments [18-23], only a handful of virus isolates infecting mesophilic 
archaea have been described thus far [24, 25], limiting our appreciation of their diversity and ecological 
impacts. Nevertheless, the culture-based virus discovery efforts are increasingly complemented by 
culture-independent metagenomic approaches. For instance, metagenomics has uncovered a number of 
family-level groups of viruses and mobile genetic elements associated with Asgard archaea [26-29], a 
prominent phylum Asgardarchaeota widely considered to represent the ancestors of eukaryotes [1, 2]; 
ANME-1 clade (order Methanophagales), a group of methane oxidizing archaea implicated in modulation 
of greenhouse gas emission [30]; methanogenic archaea [31, 32]; ubiquitous marine archaea of the order 
Poseidoniales [33-35] and ammonia oxidizing thaumarchaea [33, 36-38]; as well as Altiarchaeota, 
abundant primary producers in subsurface ecosystems [39]. These studies have provided precious 
insights into the parts of the archaeal virosphere which are currently inaccessible through classical culture-
based techniques. In this chapter, we provide an overview of protocols and practices used in archaeal 
virus metagenomics, covering metavirome preparation, genome annotation, phylogenetic and 
phylogenomic analyses, abundance profiling and archaeal host assignment.  
 

2. Materials 
2.1 Bioinformatics tools 
Software packages and bioinformatic tools commonly used for the analysis of archaeal virus genomes and 
proteins are listed in Table 1.  
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Table 1. Software and web servers 

Tool Available at Function Reference 

Fastp github.com/OpenGene/fastp Reads quality control [40] 
Trimmomatic github.com/usadellab/Trimmomatic Reads quality control [41] 
Megahit github.com/voutcn/megahit Sequence assembly [42] 
metaSPAdes cab.spbu.ru/software/spades Sequence assembly [43] 
Blast+ ftp.ncbi.nlm.nih.gov/blast/executables Sequence homology search [44] 
VirSorter2 github.com/jiarong/VirSorter2 Viral sequence identification [45] 
VIBRANT github.com/AnantharamanLab/VIBRANT Viral sequence identification [46] 
DeepVirFinder github.com/jessieren/DeepVirFinder Viral sequence identification [47] 
Cenote-Taker 2 github.com/mtisza1/Cenote-Taker2 Viral sequence identification [48] 
Geneious Prime Biomatters, Inc. Sequence extension and reads mapping N/A 
ContigExtender github.com/dengzac/contig-extender Sequence extension [49] 
CheckV bitbucket.org/berkeleylab/CheckV Virus genome completeness assessment [50] 
CRISPRCasFinder crisprcas.i2bc.paris-

saclay.fr/CrisprCasFinder/Index 
CRISPR spacer extraction [51] 

CRISPRDetect github.com/davidchyou/CRISPRDetect_2.4 CRISPR spacer extraction [52] 
CD-HIT cd-hit.org Sequence redundancy removal [53] 
tRNAscan-SE github.com/UCSC-LoweLab/tRNAscan-SE tRNA gene detection [54] 
Batch CD-Search www.ncbi.nlm.nih.gov Protein annotation [55] 
eggNOG-mapper eggnog-mapper.embl.de Protein annotation [56, 57] 
DRAM-v github.com/WrightonLabCSU/DRAM Viral AMGs detection [58] 
HostG github.com/KennthShang/HostG Host prediction [59] 
MArVD2 bitbucket.org/MAVERICLab/marvd2 Archaeal virus identification N/A 
WIsH github.com/soedinglab/wish Host prediction [60] 
PHISDetector github.com/HIT-

ImmunologyLab/PHISDetector 
Host prediction [61] 

RaFAH sourceforge.net/projects/rafah Host prediction [62] 
iPHoP bitbucket.org/srouxjgi/iphop Host prediction N/A 
Pharokka github.com/gbouras13/pharokka Genome annotation [63] 
HHsearch github.com/soedinglab/hh-suite Genome annotation [64] 
VIRFAM biodev.cea.fr/virfam Genome annotation [65] 
T-Coffee tcoffee.crg.eu Sequence alignment [66] 
MUSCLE www.drive5.com/muscle Sequence alignment [67] 
PROMALS3D prodata.swmed.edu/promals3d Sequence alignment [68] 
trimAl trimal.cgenomics.org/ Alignment trimming [69] 
PhyML www.atgc-montpellier.fr/phyml Phylogeny construction [70] 
FastTree www.microbesonline.org/fasttree Phylogeny construction [71] 
IQ-TREE www.iqtree.org Phylogeny construction [72] 
iTOL itol.embl.de Tree visualization [73] 
Evolview www.evolgenius.info/evolview Tree visualization [74] 
vConTACT2 bitbucket.org/MAVERICLab/vcontact2 Gene-sharing network construction [75] 
compareM github.com/dparks1134/CompareM comparative genomic analyses N/A 
Easyfig easyfig.sourceforge.net Genome map construction [76] 
Clinker github.com/gamcil/clinker Genome map construction [77] 
Cytoscape cytoscape.org Network visualization [78] 
ViPTree www.genome.jp/viptree/ Comparative genomic analyses [79] 
R package www.r-project.org/ Heatmap construction N/A 
Bowtie2 bowtie-bio.sourceforge.net/bowtie2 Reads mapping [80] 

 

 
3. Methods 

Archaea typically represent an abundant or even dominant component of the microbial communities in 
geothermal (e.g., terrestrial hot spring), hypersaline (e.g., crystallizer pond) and certain marine (e.g., 
estuary, sediments) environments [81-85]. Not surprisingly, archaeal viruses are also prevalent in such 
archaea-dominated ecosystems. Thus, to exemplify the protocols for exploration of the archaeal virome, 
in this chapter, we focus on samples originating from hot springs, hypersaline ponds and marine 
environments. Generally, preparation of the viral DNA for archaeal virus metagenomics is not different 
from that used for other prokaryotic DNA viruses and, given that there are many excellent dedicated 
studies on this topic (e.g.,[86-91]), this part will be discussed only briefly. Notably, all currently known 
archaeal viruses contain DNA genomes [92], thus protocols for RNA virus discovery will not be considered. 
For environmental samples with low archaeal abundance, whenever possible, an archaeal enrichment 
step [93] might be considered prior to collecting the viral DNA for the downstream metagenomics studies. 
 
3.1. Concentration of viral particles and DNA purification (adapted from [88-91, 94, 95])  
For environmental samples with low cellular (and viral) density, large initial volumes, in the range of tens 
or hundreds of liters, are typically processed. For instance, in the case of marine samples, ~100 L of the 
water sample can be filtered through a 5 μm pore size filter to remove large inorganic particles and 
eukaryotic cells (Figure 1). Next, the prefiltered water sample is further passed through two successive 
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0.45 μm and 0.22 μm pore size filter-columns to remove the remaining cells, mainly archaea and bacteria. 
The virus particles can be concentrated by pumping the cell-free water through a 50 kDa cutoff tangential-
flow filtration (TFF) cassette until the retentate reaches a volume of ~500 mL (see Note 1 and Note 2). 
Finally, the viral preparation can be further concentrated to ~20 mL using 30 kDa cutoff ultrafiltration cups 
or ultracentrifugation.  
 

 
 

Figure 1. A workflow for the virus metagenome preparation. 

 
Chemical flocculation is an alternative approach which has been successfully applied for concentration of 
viruses from seawater samples. This method depends on iron (III) chloride to precipitate viruses which are 
recovered by filtration onto large-pore size membranes and then resuspended using a buffer containing 
magnesium and a reductant (ascorbic acid or oxalic acid) at slightly acid pH [87, 96].  

 

Next, total nucleic acids are extracted from the virus concentrate and prepared for metagenomic 
sequencing (see Note 3 and Note 4). Generally, libraries are subjected to 150-bp, 250-bp, or 300-bp 
paired-end sequencing on Illumina platforms such as HiSeq X Ten, NovaSeq 6000 and MiSeq, 
respectively. Furthermore, the long-read sequencing, for example, provided by PacBio (Pacific 
Biosciences) or Nanopore (Oxford Nanopore Technologies), is becoming increasingly popular and 
affordable, providing single-molecule long-read sequences which can cover the entire virus genomes or 
considerably facilitate the assembly of large virus genomes [97]. 
 
3.2 Quality control of sequencing reads 
Sequencing adapters and low-quality reads (<Q20) are trimmed off by using quality control tools such as 
Fastp and Trimmomatic to obtain a clean metagenomic dataset (see Note 5).  
Example: 

'fastp -i input_R1.fastq.gz -o clean_R1.fastq.gz -I input_R2.fastq.gz -O clean_R2.fastq.gz' 

 
3.3 Sequence assembly 
In the next step, clean reads are assembled to generate metagenomic contigs. The assembly is one of 
the most memory-consuming steps. A server with at least 200 GB of RAM is required. It is advisable to 
use more than one sequence assembler, as they produce slightly different results. Tools such as Megahit 
and metaSpades are applied to assemble the clean reads into metagenomic contigs. Contigs with 
sequence length over 1 kb are retained for the subsequent analyses. 
Examples: 

'megahit -1 clean_R1.fastq.gz -2 clean_R2.fastq.gz -o output_assembly -t 48' 

'spades.py --meta -1 clean_R1.fastq.gz -2 clean_R2.fastq.gz -t 48 -m 360 -o output_assembly' 

 
3.4 Identification of viral contigs 
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It is not possible to completely eliminate prokaryotic DNA from environmental metaviromes, because 
cellular DNA can be packaged into virus capsids and be transferred from one host to another by a process 
known as general transduction [98]. Alternatively, cellular DNA can be protected from DNase digestion 
within virus-sized extracellular membrane vesicles, which are known to be produced by many archaeal 
species [99-102]. To assess the extent of contamination with prokaryotic DNA, the 16S ribosomal RNA 
gene sequences can be downloaded from the SILVA database (latest release, www.arb-silva.de/) and 
used as queries to search against the assembled metagenomic sequences. Depending on the results, 
instead of using all sequences derived from the ‘virus metagenome’, it is recommended to implement a 
step of viral sequence sorting.  
 
Tools such as VirSorter2, VIBRANT, DeepVirFinder or Cenote-Taker 2 (here and elsewhere, see Table 1 
for references) can be used to identify and extract viral sequences from the assembled contigs (see Note 
6). 
Examples: 

'virsorter run -w vir_outputVS2 -i Assembly_contigs.fasta --include-groups dsDNAphage --high-

confidence-only' 

'python run_cenote-taker2.py -c Assembly_contigs.fasta -r vir_outputCT2 -p True -m 256 -t 48 --exact_dtrs 

True' 

  
3.5 Sequences extension and sequence quality check 
The viral contigs can be extended by recruiting the sequencing reads that overlap with the edges of the 
de novo assembled contigs [103, 104]. To this end, all identified viral sequences can be pooled together 
and used as seed sequences to perform the reference assembly. Geneious Prime ‘map to reference’ 
function can be used to compare all the metagenomic reads to the seed sequences. If there are significant 
matches (i.e., ≥30 bp overlap and ≥95% overlap identity), the reads will be assembled to the corresponding 
seed sequence, yielding longer viral contigs. This procedure can be repeated until the seed sequence 
ceases to extend (see Note 7). Alternatively, sequence extension can be performed using ContigExtender.  
Example: 

'extender_wrapper.py --m1 clean_R1.fastq --m2 clean_R2.fastq --out VirContigExtension --min-overlap-

length 30 --stop-length 55 --threads 48 vir_contigs.fasta' 

  
‘Repeat Finder’ (Geneious Prime plugin) can be used to detect direct terminal repeats (DTR) and inverted 
terminal repeats (ITR) on the extended viral contigs. If the contig contains either DTR or ITR regions, the 
sequence can be considered to represent a complete circular or linear virus genome, respectively. Note 
that for formal classification, the International Committee on Taxonomy of Viruses (ICTV) only considers 
viruses with complete genome sequences [105] (see Note 8).  
 
CheckV can also be used to estimate genome completeness by examining the terminal repeats and 
similarity of the viral contigs to related viral genomes.  
Example: 

'checkv end_to_end viral_contigs.fasta checkv_output -t 48 -d ~/checkv_database' 

Note that due to its inherent dependency on viral reference genomes, CheckV shows inadequate 
performance when assessing the completeness of truly novel viral genomes which have only distant 
relatives or no relatives in the reference database. 
 
3.6 Assignment of archaeal hosts 
Arguably, the most challenging step in archaeal virus metagenomics is differentiation between viruses 
infecting bacteria and archaea and accurate assignment of viruses to their archaeal hosts. Below we 
introduce several host assignment approaches which have been previously applied to identify archaeal 
viruses in metagenomic datasets. 

 
3.6.1 CRISPR spacer targeting 
CRISPR-Cas is an adaptive immune system encoded by most archaeal species [106]. The spacer 
sequences stored in CRISPR arrays represent the immune memory of past encounters with foreign mobile 
genetic elements. Therefore, by matching CRISPR spacers to the corresponding protospacer sequences 
in the viral genomes, it is possible to identify archaeal virus-host pairs in metagenomic dataset. See an 
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example of archaeal CRISPR spacers matching an archaeal virus genome in Figure 2. This method is 
currently by far the most reliable among host prediction approaches. However, it should be noted that in 
the case of archaeal viruses, the accuracy of host prediction is typically limited to the level of family [107] 
or even order [30]. For instance, in the case of rudiviruses, viruses infecting Saccharolobus and 
Metallosphaera species were targeted by spacers from CRISPR arrays of Metallosphaera and 
Saccharolobus, respectively [107].  
 

 
Figure 2. Seven CRISPR spacers from two Haloarcula species match the genome of Haloarcula 
sinaiiensis tailed virus 1 (HSTV-1). 
 
 
To assemble the database of CRISPR spacers, all archaeal genomic sequences can be downloaded from 
the Genome Taxonomy Database (GTDB) or any other genome database. The retrieved archaeal 
genomes can then be analyzed using CRISPRDetect or CRISPRCasFinder to detect CRISPR arrays and 
extract the archaeal CRISPR spacer sequences.  
Example: 

'CRISPRCasFinder -in archaeal_seqs.fasta -out CRISPR_results -md 10 -t 15 -mr 25 -xr 55 -ms 25 -xs 55 -pm 

0.7 -px 2.5 -s 55 -fl 120 -cpuM 48' 

CD-HIT can be used to remove redundant spacers with 100% sequence identity cutoff. In order to maintain 
the targeting specificity, it is recommended to discard spacers with sequence length shorter than 25 bp. 
Example: 

'cd-hit -i archaeal_spacer.fasta -o unique_archaeal_spacers.fasta -c 1 -M 36000 -T 12 -d 0' 

 
Next, a BLASTn database should be prepared from the extracted viral contigs: 

'makeblastdb -i viral_contigs.fasta -out nt_db/viral_contigs -dbtype nucl' 

The archaeal spacers can then be used as queries to search against the viral contig database (see Note 
9 and Note 10). Hits with at least 95% coverage and 95% identity are considered as valid protospacers 
and link the protospacer-containing viral contigs to the corresponding archaeal hosts.  

'blastn -query unique_archaeal_spacers.fasta -db nt_db/viral_contigs -out ArSpacers_vs_VirContigs.xls -

outfmt 6 -word_size 7 -dust no -qcov_hsp_perc 95 -perc_identity 95 -num_threads 48' 

More than one spacer hit increases the reliability of the host prediction. The sequences of the CRISPR-
targeted viral contigs should be retrieved for the subsequent analyses.  
 
3.6.2 tRNA gene matching  
tRNAs are an integral part of the cellular protein translation system. Certain archaeal viruses occasionally 
also encode host-derived tRNA genes [18, 108]. Therefore, the tRNA gene match between a virus and an 
archaeal genome is highly suggestive of a virus-host relationship. See an example of tRNA gene match 
between an archaeal virus and its host in Figure 3. 
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Figure 3. The tRNA-Lys gene encoded by the genome of Acidianus filamentous virus 2 shares 95% 
identity with a counterpart from the genome of Acidianus brierleyi strain DSM 1651. 
 
 
The tRNA genes encoded by viral contigs can be predicted using tRNAscan-SE 2.0 with ‘-A’ option 
(archaeal mode):  

'tRNAscan-SE viral_contigs.fasta -A -o viral_tRNA.results -a viral_tRNA.fasta' 

The viral tRNA gene sequences should then be extracted and used as queries in BLASTn search against 
the GTDB archaeal sequences (or other archaeal sequence database with available taxonomy 
information).  

'makeblastdb -in archaeal_seqs.fasta -out nt_db/archaeal_seqs -dbtype nucl' 

'blastn -query viral_tRNA.fasta -db nt_db/archaeal_seqs -out Vir_tRNA_vs_ArSeqs.xls -outfmt 6 -word_size 

16 -dust no -qcov_hsp_perc 95 -perc_identity 95 -num_threads 48' 

Hits with at least 95% coverage and 95% identity can be considered as genuine matches, providing host 
assignments for the tRNA-encoding viral contigs (see Note 11).  
 
3.6.3 Matching of the viral and host attachment site(s) 
Many archaeal viruses with circular dsDNA genomes encode integrases of the tyrosine recombinase 
superfamily and are commonly found as integrated proviruses within archaeal genomes [109-114]. The 
integration involves integrase-mediated homologous recombination between identical sequences of 
variable lengths on the viral and cellular genomes, known as the viral and archaeal attachment sites, attV 
and attA, respectively [115]. In the viral genome, the attV is typically located in the vicinity of or within the 
integrase gene, whereas the most common attA site occupies the 3’-proximal regions of the tRNA genes, 
although cases of integration into 5’-distal regions of tRNA genes, intergenic regions as well as protein-
coding genes have been also described [112, 113]. The identity between the viral and archaeal attachment 
sites can be used for the host assignment for temperate viruses which integrate into the genome of their 
host [116]. See two examples of attachment site sharing between archaeal viruses and their respective 
hosts in Figure 4. 

 
To identify the attachment sites within the viral genomes, the integrase genes have to be identified first. 
This can be done using batch protein annotation tools, such as Batch CD-Search or eggNOG-mapper v2. 
Once identified, the sequences of the viral integrase genes along with the upstream and downstream non-
coding regions (≤ 500 bp) can be extracted and used as queries in BLASTn searches against archaeal 
sequences to detect the potential attachment sites. 

'blastn -query integrase_region.fasta -db nt_db/archaeal_seqs -out Vir_integrase_vs_ArSeqs.xls -outfmt 6 -

word_size 6 -dust no -perc_identity 95 -num_threads 48' 

Hits with at least 95% coverage and 95% identity can be considered as genuine matches (see Note 12).  



Zhou et al., Methods Mol Biol. 2024;2732:1-22. doi: 10.1007/978-1-0716-3515-5_1. 
 

7 

 

 
 
Figure 4. Examples of attachment sites located next to (A) and within (B) the integrase genes. A. The 
attachment site of Methanocaldococcus fervens tailed virus 1 is located next to the gene encoding the λ-
type integrase of the tyrosine recombinase superfamily (green) and is identical to the 3’-proximal region 
of the host's tRNA-Ser gene (red). B. The attachment site of Sulfolobus spindle-shaped virus 19 (SSV19) 
is located within its integrase gene (orange) and is identical to the 3’-proximal region of the host's tRNA-
Gly gene (red). 
 
 
3.6.4 MCP homology searches 
The ability to form virions distinguishes viruses from other types of mobile genetic elements and cellular 
organisms [117]. The major capsid proteins (MCP) are highly diverse, with some structurally related MCPs 
being widespread in viruses infecting hosts from different domains of life and others being specific to 
particular domains, including archaea [118]. Regardless, at the sequence level, MCPs are typically virus 
family or order specific. Therefore, homology searches using MCP as a signature protein has become one 
of the most commonly used approaches for the identification of new prokaryotic viruses in metagenomic 
dataset [33, 36, 37, 109, 119].  
To assemble a database of archaeal virus MCPs, all archaeal virus protein sequences can be downloaded 

from the NCBI virus database (www.ncbi.nlm.nih.gov/labs/virus/vssi/#/) and the MCP sequences 

extracted. Once the MCP database is assembled, open reading frames in the metagenomic viral contigs 
can be predicted using the software Prodigal with ‘-p meta’ option. The corresponding in silico translated 
protein sequences can then be used as BLASTp queries to search against the archaeal virus reference 
MCP database. 

'prodigal -i viral_contigs.fasta -a ORFs_viral_contigs.fasta -p meta' 

'makeblastdb -in Ref_ArVir_MCPs.fasta -out prot_db/ Ref_ArVir_MCPs -dbtype prot' 

'blastp -query ORFs_viral_contigs.fasta -db prot_db/Ref_ArVir_MCPs -out 

viral_contigs_vs_Ref_ArVir_MCPs.blastp -evalue 1e-5 -num_threads 48' 

BLASTp hits with E-value <10-5, ≥30% identity, ≥50% coverage, and ≥100 bit score can be considered 
significant. The corresponding viral contigs should be extracted for further analyses. More accurate host 
assignment can be inferred from phylogenetic analysis of the MCP sequences from the reference viruses 
and viruses assembled from metagenomes. 
 
3.6.5 Host-specific AMGs  
It is increasingly recognized that viruses can modulate the metabolic processes within the infected 
prokaryotes by expressing auxiliary metabolic genes (AMGs) [12]. In order to efficiently tinker with the host 
metabolism, the virus-encoded versions of the metabolic genes are usually recognizably similar to the host 
homologs [37, 38]. This property offers a possibility to trace potential virus-host pairs from environmental 
samples by analyzing the virus-encoded AMGs. Figure 5 shows an example of high sequence similarity 
between the ammonia monooxygenase subunit C (AmoC) encoded by a virus and an archaeon, 
Nitrosopumilus maritimus. 

http://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/
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Figure 5. The ammonia monooxygenase subunit C encoded by the Nitrososphaeria virus YSH_124187 
[33] shares 97% protein sequence identity with the counterpart encoded by Nitrosopumilus maritimus 
SCM1. 
 
 
Viral AMGs can be predicted using the software DRAM-v, the mode of DRAM for viral sequences (see 
Note 13). 

'DRAM-v.py annotate -i viral-combined-for-dramv.fa -v viral-affi-contigs-for-dramv.tab -o 

dramv_annotate --skip_trnascan --threads 48' 

'DRAM-v.py distill -i dramv_annotate/annotations.tsv -o dramv-distill' 

Viral AMGs should then be extracted and used as BLASTp queries to search against the archaeal 
proteome. The archaeal proteome database can be constructed using the following commands: 

'prodigal -i archaeal_seqs.fasta -a ORFs_archaeal_seqs.fasta -p meta' 

'makeblastdb -in ORFs_archaeal_seqs.fasta -out prot_db/archaeal_proteome' 

Next, the viral AMGs should be assigned to specific archaeal species using the following command: 

'blastp -query viral_AMGs.fasta -db prot_db/archaeal_proteome -out Vir_AMGs_vs_ 

archaeal_proteome.blastp -evalue 1e-5 -num_threads 48' 

Hits with at least 90% identity and 90% coverage are considered particularly indicative of a virus-host 
relationship, whereas hits with lower sequence identity should be evaluated more cautiously.  
 
3.6.6 Host prediction tools (see Note 14) 
A number of host prediction tools have been recently developed for prokaryotic viruses, e.g., HostG, WiSH, 
PHISDetector, RaFAH, iPHoP, and others. These tools rely on certain databases and yield results with 
host prediction with associated confidence scores. 
Example (HostG): 

 'python run_Speed_up.py --contigs viral_contigs.fasta --len 1000 --t 0' 

Example (iPHoP): 

'iphop predict --fa_file viral_contigs.fasta --db_dir ~/iPHoP_db --out_dir iphop_prediction --num_threads 

48' 

In addition, the tool MArVD2 has been specifically developed for the identification of archaeal viruses from 
a set of viral contigs.  

'MArVD2.py -i viral_contigs.fasta -o marvd_prediction --db-pvog ~/AllvogHMMprofiles.hmm --db-nr 

~/nr.faa --db-accession2tax ~/prot.accession2taxid --marine-jackhmmer-db 

~/pVOG_prots_ref_marine_pVOG.faa --viral-refseq-txt ~/viruses.txt --pvog-dir ~/pVOGs --cpu-count 48 -

-load-model ~/rf_model.pkl' 
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3.7. Genome annotation 
All viral contigs can be automatically annotated using such tools as Batch CD-Search, eggNOG-mapper 
or Pharokka. However, for comprehensive functional annotation of the complete or near-complete 
archaeal virus genomes, it is advisable to use sensitive hidden Markov model (HMM) profile–profile 
comparisons with HHsearch v3.3.0 against the publicly available databases: CDD, Pfam, Protein Data 
Bank (PDB), uniprot_sprot_vir70, and PHROG. In the case of Caudoviricetes, viral structural proteins can 
be also predicted using VIRFAM. 

 
3.8 Phylogenetic & phylogenomic analyses 
Relationships between related viruses can be assessed using different methods, including single gene 
phylogenies, network or phylogenomic analyses as briefly detailed below. 
 
3.8.1 Phylogenetic analysis 
For the purpose of understanding the relationship between evolutionarily related viruses, a protein 
conserved in a given group of viruses has to be selected. The commonly used viral hallmark proteins 
include MCP, portal protein or large subunit of the terminase and other genome packaging ATPases. The 
protein sequences can be aligned using tools such as MUSCLE, T-COFFEE or PROMALS3D, followed 
by removal of highly divergent, uninformative positions, e.g., using trimAl. Maximum likelihood 
phylogenetic trees can be constructed using IQ-tree or PhyML. Both IQ-tree and PhyML can select the 
amino acid substitution model best fitting the given dataset. In the case of very large datasets, approximate 
maximum likelihood trees can be calculated using FastTree. The phylogenies can be annotated and 
visualized using iTOL v5 or Evolview v3. 
 
3.8.2 Gene-sharing networks  
The relationships between the identified archaeal viruses and other known prokaryotic viruses can be 
assessed using network analysis. vConTACT2 can be used to generate the gene-sharing networks with 
the latest prokaryotic virus database. Given that nodes (viral genomes) are connected only when they 
share three gene families, ideally, the length of input viral sequences should exceed 10 kb. Alternatively, 
the relationships between the viral genomes can be explored using bipartite networks, which include two 
types of nodes, viral genomes (type 1 nodes) connected through shared gene families (type 2 nodes) 
[120]. The resulting networks can be visualized using Cytoscape.  
 
3.8.3 Viral proteomic tree 
A virus proteomic tree is a dendrogram that represents global genomic relationships between viral 
sequences calculated from comparison of all protein sequences encoded by a given set of viruses. The 
viral proteomic tree generally corresponds well with the established virus taxonomy [33, 35]. The virus 
proteomic tree can be calculated for any given dataset using ViPTree, which can be either locally installed 
or run through the web server (see Note 15).  
 
3.8.4 Estimation of the orthologous protein fraction  
For classification purposes, it is useful to know the fraction of genes shared with other viruses (i.e., the 
degree of relatedness between viruses). For example, members of head-tailed archaeal viruses of the 
same family in the class Caudoviricetes generally share ~20–50% of orthologous genes, while viruses 
from different families share less than 10% [18]. The fraction of orthologous proteins can be estimated 
using the CompareM software toolkit with the following command: 

'comparem aai_wf -e 0.0001 -p 30 -a 50 -c 4 ~/seqs output_results'  

Based on the results (see Note 16), taxonomic classification can be tentatively assigned to the sequenced 
viruses according to the established taxon-specific demarcation criteria. It is important to note that 
depending on the virus group, different parameters can be adopted, resulting in different estimates of the 
orthologous fractions. 
 
3.9 Abundance and distribution 
To gain ecological and evolutionary insights into how archaeal viruses interact with their hosts and 
environments, it is important to explore the distribution and abundance of these viruses in different 
ecosystems. This information can be obtained by recruiting sequencing reads from metagenomes to the 
identified archaeal virus genomes, using read mappers, such as Bowtie2 or Geneious. 
Example (Bowtie2): 

'bowtie2-build ref_virus.fasta ref_virus' 

'bowtie2 -x ref_virus -1 clean_R1.fastq -2 clean_R2.fastq -S results.sam' 
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The relative abundance of viruses in any particular sample or environment can be estimated by mapping 
the sequence reads from a metavirome to the reference genomes and expressed as Reads recruited Per 
Kb of genome per Gb of metagenome (RPKG). This way, the sequencing depth is normalized and is 
comparable to the distribution and abundance of the viruses in different environments. 

 
4. Notes 

1. The sample is passed through the TFF system by using a peristaltic pump and the pressure of the flow 
within the system should always be kept below 10 p.s.i. (∼62 kPa) to avoid disruption of the viral particles 
[89]. 
2. One should consider the pH of the water sample to choose the corresponding filters. Ideally, all filtration 
operations should be conducted in a cold room to minimize the enzymatic degradation of virus particles 
and/or nucleic acids. Reservoirs, e.g., 500 mL flasks or bottles and 10-, 25- and 100-liter plastic containers, 
should be sterilized before use. 
3. Filter the obtained viral concentrate through a 0.22 μm pore size filter to remove any potentially 
remaining prokaryotes. The absence of cells in the virus concentrate and the number of purified virus 
particles can be verified by fluorescence microscopy after staining of an aliquot of the sample with nucleic-
acid-staining fluorescent dyes, such SYBR Green or DAPI (4′,6-diamidino-2-phenylindole), as described 
previously [121-123].  
4. The majority of “free” DNA should be filtered out during the process of virus concentration. Nevertheless, 
an additional step of DNase treatment prior to extraction of the viral DNA from the virus particles can be 
performed to further reduce the contamination of the preparation with cellular DNA [124].  
5. The result of reads quality control can be visualized as graphical and statistical reports by FastQC 
(www.bioinformatics.babraham.ac.uk/projects/fastqc/). 
6. For tools that are reference-based, it is necessary to apply the most updated databases. For more 
reliable identification of viral contigs, at least 2 different tools can be used in parallel. 
7. It is advisable to manually check the mapping of assembled reads to avoid the possible mis-assembly. 
8. For reporting sequences of uncultivated virus genomes, the genome quality is one of the requirements 
by the Minimum Information about an Uncultivated Virus Genome (MIUViG), with other qualifiers being 
information about virus origin, assembly tool, virus identification software, genome type, taxonomic 
classification, biogeographic distribution and in silico host prediction [125]. For recommendations on 
official classification of uncultivated viruses, see [126].  
9. Since the default BLASTn parameters are not optimal for short sequences (e.g., 30 bp), it is 
recommended to use a word size of 7 and dust filtering turned off to identify the targets of CRISPR spacers 
[127, 128].  
10. Although highly reliable, the CRISPR-targeting host assignment approach is dependent on the 
richness of the CRISPR spacer database available for a particular host organism. To further enrich the 
spacer database, one may consider extracting spacers from taxonomically unclassified sequences by 
identifying group-specific CRISPRs (e.g., Asgard-archaea-specific CRISPRs [26]). In parallel or 
alternatively, additional CRISPR spacers for the archaeal groups of interest can be recovered by 
amplifying CRISPR arrays with CRISPR-specific PCR primers from the environmental sample from which 
viral metagenome is being prepared (e.g., [129]).  
11. The tRNA genes of unknown viruses (here, the extracted viral contigs) can be also searched against 
the tRNA genes of viruses for which the hosts have been assigned. The shared tRNA genes could indicate 
that the two viruses infected the same host. 
12. Some attachment sites are as short as 8 bp [112], but such hits can hardly be considered significant 
without further validation. Thus, to avoid short random matches and to improve the specificity of this host 
assignment method, we recommend using matches with nucleotide alignment length not shorter than 25 
bp. 
13. Follow this Standard Operating Procedure www.protocols.io/view/viral-sequence-identification-sop-
with-virsorter2-5qpvoyqebg4o/v3. 
14. The performance of these host-prediction tools depends on the representation of the actual host 
organism within the initial training and reference dataset. Thus, it is important to make sure that the 
suspected host species were included in the training dataset. Otherwise, reasonable results are hardly to 
be expected. We recommend using these predictions only as supporting evidence to complement the host 
predictions inferred using other methods. 
15. ViPTree web server also provides an informative genome map visualization useful for comparative 
genomics. Genome maps can be also compared using Easyfig or Clinker. 
16. The output file of compareM can be converted into a matrix using tidyr (R package) and visualized 
using pheatmap (R package). 
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