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ABSTRACT

Bioinformatics is a field known for the numerous standards and formats that have been developed
over the years. This plethora of formats, sometimes complementary, and often redundant, poses
many challenges to bioinformatics data analysts. They constantly need to find the best tool to con-
vert their data into the suitable format, which is often a complex, technical and time consuming
task. Moreover, these small yet important tasks are often difficult to make reproducible. To over-
come these difficulties, we initiated BioConvert, a collaborative project to facilitate the conversion
of life science data from one format to another. BioConvert aggregates existing software within a
single framework and complemented them with original code when needed. It provides a common
interface to make the user experience more streamlined instead of having to learn tens of them. Cur-
rently, BioConvert supports about 50 formats and 100 direct conversions in areas such as alignment,
sequencing, phylogeny, and variant calling. In addition to being useful for end-users, BioConvert
can also be utilized by developers as a universal benchmarking framework for evaluating and com-
paring numerous conversion tools. Additionally, we provide a web server implementing an online
user-friendly interface to BioConvert, hence allowing direct use for the community.

1 Introduction

Over the past few decades, bioinformatics has produced a large number of open source software tools and formats
within the academic community. Twenty years ago, in 2002, [1] was already making this observation. Nowadays,
these tools, including those designed specifically for Next Generation Sequencing (NGS), are available in various fla-
vors and levels of complexity: single software [2], libraries for developers [3], suite of applications on websites [4],
and set of NGS workflows [5, 6]. Installing and using these tools can be challenging in many ways. In particular, it
requires knowledge of numerous biological formats, making it very challenging for life scientists to i) make the files
suitable for the input of a given tool, ii) connecting the output of one tool to the input of an other tool, iii) to ex-
tract metadata from output files for subsequent analysis. To address these challenges, the open source community has
made significant progress in different areas. First of all, in the software implementation and installation perspective,
great efforts have been made to provide reusable and documented software. For example, the Bioconda [7] project
offers a large selection of bioinformatics packages (over 7,000) that are pre-compiled for various platforms. Other
resources, such as Python’s Pypi, R’s Bioconductor, and Perl’s CRAN, also provide a wealth of packages for common
programming languages in life sciences. Additionnaly, large efforts have been made in the inventory, classification
and description of bioinformatics tools. For example, EDAM ontology [8] has been developed to classify and describe
bioinformatics tools and data formats in a machine understandable way. More recently, Bio.tools [9] has been de-
signed to provide a catalogue of bioinformatics tools with their annotations (including EDAM), in order to facilitate
the search for tools to be integrated in workflows. Despite the abundance of resources, it can still be difficult for new
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users to navigate this dynamic environment and identify the best software tools for a given task. Even experienced
users may face challenges with the continuous emergence of new software and the potential for older tools to become
obsolete or lack maintenance. In particular, complex NGS analysis often requires the use of many conversion tools, in-
creasing the knowledge and expertise required to perform conversions across various omics data types (e.g., genomics,
transcriptomics, epigenetics).

Web services are frequently used in the field of life sciences, with the NCBI and EBI institutes being two significant
providers of online tools and services, including many conversion tools. For example, the EBI’s seqret service [10]
allows users to convert various standard sequencing formats, including those that are no longer supported. While
users can typically only upload a small number of files at a time, these online resources can also be accessed through
programming. For instance, the BioServices library [11] allows Python users to programmatically access web services
from within their code. Although useful, relying on online resources may not be the best solution as compared to
standalone applications. Indeed, the application programming interface (API) may change over time and may also
suffer from delay due to the upload and download of large files (a common situation in life sciences). Therefore, local
standalone software is usually a far more efficient solution.

Another challenge for users is that new data formats are frequently introduced as new technologies emerge (for exam-
ple, the FAST5 format from Nanopore [12], the consensus file from PacBio [13]). A community centered around a
common software tool for converting life sciences data would enable the integration of new technologies and software
at a faster pace. There are already many conversion tools currently available, such as ReadSeq [14], SBFC [15], Se-
qret, Gotree/Goalign [16], etc. However, they are dispersed, each of them only support a limited number of formats,
they may be difficult to install, or may not be optimized for efficient use (e.g., to be applied on huge datasets).

To overcome these limitations, we initiated BioConvert, a collaborative project that aims at providing a common inter-
face for converting life science data from one format to another. It currently supports 50 formats and 100 conversions
across various expert knowledge domains such as variant calling, phylogenetics, sequencing and sequence alignments.
In this manuscript, we describe the methodology we employed and design choices that we have implemented to facil-
itate the easy integration of new format conversions into BioConvert. We also demonstrate the ability to benchmark
multiple methods for specific conversions, in order to select the most efficient tool for each format conversion.

2 Materials and Methods

BioConvert is a software library written in Python that utilizes an object-oriented approach, where all conversions
inherit from a common class. This design ensures that developers follow a consistent set of guidelines and makes it
easier to extend the library over the long term. Our primary goal while designing BioConvert was to provide a single
command line interface for end-users, as demonstrated in the Results section.

BioConvert provides two main functionalities that are described below: i) a format conversion framework designed
to convert data between formats, and ii) a benchmark framework designed to test the efficiency of all integrated tools
and help selecting the most efficient tools for each conversion.

2.1 Conversion framework

Regarding the conversion framework, we provide two kinds of implementations. The first ones consists of original
implementations developed in Python within BioConvert, and are well adapted for simple conversions such as FastQ
to FastA sequencing data format. These native implementations have the benefit of reducing the number of external
dependencies. The second kind of implementations transparently integrates external tools in BioConvert’s own struc-
ture and call them by interacting with the host system. This approach is well adapted to more advanced conversions
involving more complex formats. In this case, it is often more efficient to use external tools, especially when they are
well-established and known to be effective. For example, BioConvert uses SAMtools [3] or BAMtools [17] software
to perform conversions of read alignment formats (SAM and BAM). This approach allows BioConvert to leverage
the strengths of existing tools while still providing a unified interface for users, which makes it highly suitable for
integration in large workflows (see Supplementary).

Since BioConvert relies on external libraries, changes to those libraries may affect the conversion process. To mitigate
this risk, BioConvert includes a comprehensive set of tests, together with test data, that can be easily extended. This is
a common practice for large libraries, and BioConvert encourages its usage. To perform these tests, input and output
files for each converter are required. These files are used for the testing suite, but they can also act as examples for
users. They are typically kept small to facilitate automatic testing with a continuous integration running on a weekly
basis or as soon as a change occurred in the library.
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BioConvert was designed for easy integration of new conversions. Technically, each conversion derives from a single
class that defines common methods and attributes. As shown in Listing 1, a conversion from format A to B is named
A2B (line 3) and must have at least one valid method performing the conversion. However, multiple methods can
be defined, typically for providing several alternative tools (see lines 7 and 11). Methods must be named with the
_method prefix followed by a user-defined identifier, and they can either use external libraries or be implemented in
pure Python. As shown in listing 1, it is possible to write a new conversion in just a few lines of code.

1 from b i o c o n v e r t import ConvBase
2

3 c l a s s A2B( ConvBase ) :
4 _ d e f a u l t _ m e t h o d = " py thon "
5

6 @ r e q u i r e s _ n o t h i n g
7 def _method_python ( s e l f , ∗ a rgs , ∗∗kw ) :
8 # Some Python code
9

10 @ r eq u i r e s ( e x t e r n a l _ b i n a r y ="EXE" )
11 def _method_EXE ( s e l f , ∗ a rgs , ∗∗kw )
12 s e l f . e x e c u t e ( " e x t e r n a l command . . . " )

Listing 1: Template of a new converter performing conversion from format A to format B. Methods are implemented
using Python and optionally external binaries.

In BioConvert, we have implemented a framework that automatically analyses code to detect new conversions, making
it easy for developers to add their own methods. When integrated in the BioConvert library, the code is automatically
parsed to extract the necessary information about the converter: i) the name of the conversion (in this case, A2B),
ii) its input and output formats (A and B), and iii) the default conversion method. This information is then made
available for users of the bioconvert standalone (e.g., in the command help), with no additional work required by
the developers. In the example given in Listing 1, we present a conversion from format A to B, and show how to
implement two methods called "python" and "EXE". It is worth noting that BioConvert allows the integration of an
unlimited number of methods for a given conversion. That is why indicating a default method is important for typical
end-users (in Listing 1, the "python" method is defined as the default on line 4). One of the major advantages of having
multiple methods available for a single conversion is that developers can easily benchmark their methods against those
already available in BioConvert using our conversion benchmark framework.

2.2 Benchmarking framework

Benchmarking is a key aspect of BioConvert, that can be performed in several ways: from within the library (for
developers), from the BioConvert command line interface (for end-users), or through a Snakemake [18] pipeline for
more intensive testing. For a given conversion and method, benchmarking results can be impacted by various factors,
including the size of the input file, the type of data, the number of threads, and the CPU and hard drive performances.
Some external tools may also require initialization time before processing the data. To help developers compare their
methods to those already available in BioConvert in the fairest way, we have implemented a benchmarking procedure
that runs conversions multiple times and computes distributions (see Results for more information).

To facilitate better comparisons, we also provide some larger input files for benchmarking purposes. Output files are
not required, as the focus of this specific test is not on measuring the exactitude of the conversion, but rather on mea-
suring the computational time required to process input files. Since input files may be large and multiple conversions
may be performed, it is not practical to store these files within the BioConvert library. To easily access these files, we
have created a Zenodo community https://zenodo.org/communities/bioconvert/ to publicly store benchmarking files.
These files are only provided when more than one method has been implemented for a given conversion.

3 Results

3.1 An extensible and robust Python library

BioConvert was developed using the Python programming language to create a flexible and extensible library. The
object-oriented approach of the language was used to implement a common parent class shared by all converters (see
Listing 1). The library provides extensive documentation available online at https://bioconvert.readthedocs.io, updated
automatically after each modification of the library. It is important to ensure that conversions remain valid after any
update. Therefore, we have included a large set of tests that are run whenever the library is updated. The coverage rate
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Figure 1: Formats and conversions available in BioConvert are represented as a directed acyclic graph. Nodes corre-
spond to formats and edges correspond to conversions. Colors indicate the degree of each format (number of connec-
tions/conversions that a node/format has in the graph).

Figure 2: The formats included in BioConvert cover NGS formats. In this graph, nodes (formats) are clustered
according to their field of expertise. We could identify several topics including variant calling, phylogeny, sequencing
data, alignments, . . .

of this test suite is higher than 90%, which is a high standard. It is integrated with the GitHub CI action framework,
with one workflow per conversion, making the integration process fast and modular.

3.2 An intuitive command line tool

BioConvert is designed to be simple and intuitive for end-users, with the goal of providing a common syntax for all
conversions that requires as few arguments as possible. To achieve this, we have implemented an implicit mode
where the type of conversion is inferred from the input and output file extensions. For example, the following command
converts an input FastQ file to an output FastA file, without explicitly specifying the type of conversion:

bioconvert test.fastq test.fasta

Listing 2: Example of an implicit conversion where extensions suffice for inferring the type of conversion required.

The mechanism behind implicit conversions is based on a registry of common file format extensions used in BioCon-
vert. Based on the extensions of the input and output file names, BioConvert infers the desired conversion. Although
it is common for FastQ files to have extensions such as .fq and for FastA files to have .fa extensions, there may be
some variations (.fastq, .fasta, etc.). This is why it is possible to register multiple extensions for a given format. In
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cases where users use non-standard extensions, the implicit mode may not be able to resolve the extensions. In these
cases, users can switch to the explicit mode by specifying the required conversion manually:
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bioconvert fastq2fasta test.FSTQ test.FSTA

Listing 3: Example of an explicit conversion where extensions can not be resolved automatically.

Because the explicit mode specifies the type of conversion, the second argument can be omitted. Consider for instance
the conversion of the SAM alignment format into its binary version (BAM). You can use the explicit mode:

bioconvert sam2bam test.sam

Listing 4: Example of an explicit conversion with an implicit output.

that will create a BAM output file with the same base filename (in Listing 4: "test") and adding the relevant extension.
Of course, you can be explicit again if you need a different output file:

bioconvert sam2bam test.sam other.bam

Listing 5: Example of an explicit conversion with an explicit output.

3.3 A versatile set of conversions for life sciences

We have described two examples of conversions involving common formats, such as sequencing and read alignment
formats such as FastQ, FastA, SAM, and BAM formats. As of the time of writing, BioConvert’s latests release
includes 50 formats and 100 conversions. Fig. 1 shows a directed acyclic graph representing all possible conversions.
Some formats are highly connected due to their common usage in sequence analysis and NGS (e.g., FastQ and
FastA). These formats have also served as a starting point for new users to add conversions to the BioConvert project.
Fig. 2 presents the same graph, with formats and conversions grouped by scientific domains. We identified eight main
domains: variant calling, sequencing, phylogeny, assembly, read alignment, coverage, annotation, and compression.
Most of the formats in BioConvert are related to NGS, due to the projects’s developers specializating in this area.
However, formats related to other omics disciplines such as proteomics could also be implemented in BioConvert.
In Fig. 1, some nodes do not have names (just a small circle). They correspond to logical gates that accept multiple
inputs or outputs. For example, the FastQ format consists of both a sequence and its quality. The sequence is stored
in FastA format, while the quality information is usually discarded if only the sequence is of interest. In BioConvert,
it is possible to convert a FastQ file into either its FastA or quality file, or to save both using the following syntax:

bioconvert fastq2fastq_qual in.fq out.fa out.qual

Listing 6: Example of conversion that produces two output files.

BioConvert also supports compressed and uncompressed input and output files for certain formats. For instance, the
fastq2fasta conversion requires no extra input from the user. It can detect common compressed file extensions
(such as bzip and gunzip), and automatically decompress input files and compress output files based on the given
extension.

3.4 Benchmarks

In BioConvert, most converters have only one method available. However, around 30% of the conversions have 2 or
3 methods, as shown in Fig. 3. One conversion, fastq2fasta, has 8 methods, which was used as a practical example
during the initial setup of the BioConvert framework.

When a conversion provides multiple methods, a default method needs to be specified. This is usually based on
expert knowledge or the best-performing method. While many benchmarks have been published for specific soft-
ware tools [19, 20, 21], local computing resources, the input file’s nature, and hard disk performance can all impact
benchmarking results. To address this, we have implemented a benchmark framework within BioConvert that can
be run locally on any input file. This is known as single-mode benchmarking. For example, the benchmark of the
fastq2fasta conversion (Fig. 4) consists of running each method N times (5 by default) to account for fluctuations
and calculate the average and standard deviation across all methods. This allows users to determine the best method
to use on their own infrastructure. In listings 2-5, users simply need to add an argument (-b) to obtain plots such as the
one shown in Fig. 4.

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.13.532455doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.13.532455


BIOCONVERT - MARCH 15, 2023

0 1 2 3 4 5 6 7 8 9 10 11
Number of methods

0

10

20

30

40

50

60

#

Figure 3: Number of methods implemented in each conversion. Most have only 1 or 2 methods.
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Figure 4: Single-mode benchmarking. BioConvert provides a sub-command to compare the computational time of
all methods available within a given converter (here FastQ to FastA). Each method is run several times to estimate
the average time for each method as well as the standard errors. In this instance, the mawk method gives the best
performance. Results and error bars may fluctuate depending on hardware performances and concurrent running
processes. Benchmark obtained with a SSD hard disk, with compressed input and uncompressed output files.

While the single-mode benchmark is generally adequate, the error bars might be wider than the gap between two
groups, and various external factors such as concurrent processes running on the same system can impact the runtime of
a particular method in the conversion process. To mitigate this issue and ensure the reliability of the benchmark results,
BioConvert also implements a multi-mode benchmark that repeats the single-mode benchmark multiple times. This
is achieved using a Snakemake [18] pipeline. By doing so, we obtain a more robust estimate of the median run time
of each conversion method. The input files (See Benchmarking framework section) used in this benchmark/pipeline
are retrieved automatically to ensure that all developers are using the same files. The benchmark can also be run
on high-performance computers or locally, with the ability to distribute processes more randomly. In the case of the
fastq2fasta conversion, we ran the multi-benchmark on a high-performance computing (HPC) infrastructure. As
shown in Fig. 5, some methods had fluctuations when run multiple times, but others were more stable, such as the
mawk method which showed low variability of the median run time.
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Figure 5: The multi-mode benchmark of the fastq2fasta conversion involves repeating the single-mode benchmark
multiple times to better understand the variability within a method and provide more confidence in determining the
fastest method. The mawk method has consistently low variation and is one of the fastest methods.
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Figure 6: Benchmarking of the bam2sam converter with four methods implemented in BioConvert. The only dif-
ference between top and bottom panels is related to the version of samtools used for benchmark (1.7 and 1.15
respectively). In the top panel, the performance of samtools and sambamba were similar, while in the bottom panel,
samtools was 2-3 times faster. This difference can be attributed to the updated version of samtools resulting in a
significantly increased performance.

The benchmark framework in BioConvert is useful not only for comparing the performance of different conversion
methods but also for optimizing the local installation of BioConvert. Developers can use the framework to verify
previous benchmark results or to evaluate the impact of software updates. For instance, in Fig. 6, the conversion from
BAM to SAM format was benchmarked using a local installation of samtools version 1.7. The results showed that
sambamba was set as the default. However, when samtools was updated to version v1.15, the benchmark results
changed significantly, and the default method was updated accordingly.
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3.5 Transitive conversion

Although BioConvert can already perform 100 conversions with 50 different formats, it also includes an experimental
feature called transitive conversion that enables users to convert a file from format A to format C through an indirect
route, provided that a path such as A→ B → C exists. For example, if a user needs to convert a FastQ file to FAA
(amino acid sequence), a user can first convert the FastQ file to a FastA file, and then use the FastA to FAA conversion.
Users can also use the transitive conversion mode with the "-a" option. It should be noted, however, that information
may be lost in the process (e.g., quality information is lost when converting from FastQ to FastA). Nonetheless, this
this feature can be useful in certain situations.

3.6 A website deployment

BioConvert is a Python-based tool that can be installed on any modern platform with Python 3. It requires several
external tools, which can be installed using Conda, for example. It may be difficult for some users to install all
dependencies. Therefore, in addition to a local installation, a web-based instance of BioConvert is also available,
hosted on the Institut Pasteur website at https://bioconvert.pasteur.cloud. The backend of the website is powered
by the flask microframework to handle the upload of user’s files or dynamically proposed conversion based on the
input file extension. The website is scalable and managed by Kubernetes, a container orchestration platform that
automates deployment, scaling, and management of containerized applications. Nonetheless, the website uses the
default conversion method only, and does not include conversions that require extra arguments. Additionally, the input
file size is limited to 1GB. Therefore, for larger files or more complex computations, it is recommended to use a local
installation. The website’s code source is available for customised deployment (see Data and Software Availability
section) .

4 Data and Software availability

The source code for BioConvert is available on GitHub under the github.com/bioconvert/bioconvert reposi-
tory, with package releases posted on pypi.org website. Additionally, pre-compiled binaries are built in the
Bioconda [7] project to ensure reproducibility, and Bioconda releases also provide biocontainers available on
quay.io/repository/biocontainers/bioconvert website.

The source code for the BioConvert website can be found on https://gitlab.pasteur.fr/salsa/bioconvert.

The BioConvert command line can easily be parallellised and executed on HPC infrastructure using Snakemake [18]
or Nextflow [22], as demonstrated in the Supplementary section.

Appropriate Apptainer containers, containing all third-party tools required by BioConvert, can be found on Zenodo as
part of the Damona project. The BioConvert container DOI is https://zenodo.org/record/7704649. Additionally, the
Sequana [6] project also provide a parallelized version called sequana_bioconvert, which is also available on pypi.org,
and provides a simple user interface to BioConvert. Indeed sequana_bioconvert downloads a ready-to-use Apptainer
container from the Damona project mentionned above. See Supplementary for installation and example.

5 Conclusion

We developed BioConvert in response to the dramatic increase in the number of bioinformatic formats and the growing
need for multiple conversions between them. BioConvert facilitates transparent conversion between many formats
by integrating external tools and libraries, or implementing its own simple conversions. With a consistent syntax,
BioConvert can handle 50 file formats and 100 conversions through a command line interface. It offers both an
"implicit" mode, which infers the desired conversion based on file extensions, and an "explicit" mode, in which the
user specifies the conversion by name (e.g. bam2sam). The library also includes a benchmarking framework to
determine the most efficient method for a given conversion. In addition, BioConvert offers a web interface that can be
deployed on web servers. BioConvert currently covers domains such as sequencing, read alignment, variant calling,
and phylogenetics, BioConvert is designed to be extensible and open to the integration of additional formats and
conversions (e.g., proteomics, systems biology).
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6 supplementary

6.1 Workflows and parellelisation

Life sciences data, particularly in NGS-related fields, can be quite large, enecessitating parallelization of conversion
most of the time. BioConvert, being a standalone application, can easily be integrated into any frmework that utilizes
embarrassingly parallel paradigm.

6.1.1 Snakemake example.

As an illustration, we provide an example that demonstrates the usage of the Snakemake [18] framework. In this
context, it is necessary to specify the input and output files, along with their respective extensions, and the conversion
command.

import glob

in_ext = "fastq.gz"
out_ext = "fasta"
command = "fastq2fasta"
location = "."

# nothing to change below
samples = glob.glob(f"{location }/*.{ in_ext}")
samples = [x.rsplit(".")[0] for x in samples]
rule all:

input: expand(f"{{ dataset }}.{ out_ext}",
dataset=samples)

rule bioconvert:
input: f"{{ dataset }}.{ in_ext}"
output: f"{{ dataset }}.{ out_ext}"
run:

cmd = f"bioconvert {command}"
cmd += f" {{ input}} {{ output }}"
shell(cmd)

6.1.2 Nextflow bioconvert pipeline.

Similarly, we provide a simple example for the NextFlow [22] framework.

nextflow.enable.dsl=2

process bioconvert {
publishDir "results", mode: ’copy ’
container "quay.io/biocontainers/bioconvert"

input:
path infile
val out_ext
val command

output:
path "${infile.simpleName }.${out_ext}"

script:
"""
bioconvert ${command} \

${infile} \
${infile.simpleName }.${out_ext} \
${infile.simpleName }.${out_ext}

"""
}
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workflow {
in_ext = "fastq.gz"
out_ext = "fasta"
command = "fastq2fasta"
inpath = "."
infiles= channel.fromPath(inpath+"/*."+in_ext)
bioconvert(infiles , out_ext , command)

}

Listing 8: example of nextflow integration

6.1.3 Sequana bioconvert pipeline.

Sequana provides NGS pipelines developed in Snakemake (sequana.readthedocs.io) [6]. It also provide a pipeline
dedicated to BioConvert that can be installed as follows:

pip install sequana_bioconvert

Then, a user that wishes to convert a set of BAM files into SAM files would need to type the following commands
without the need to install third-party tools (here samtools) or wonder about Snakemake syntax.

sequana_bioconvert --input -directory data/
--input -ext "fastq.gz"
--output -ext "fasta.gz"
--use -apptainer
--apptainer -prefix ~/ images/
--command fastq2fasta
--input -pattern "*"

This command downloads the required container automatically and perform the conversion on the input files.
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