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Abstract 

Converting cryo-electron microscopy (cryo-EM) data into high-quality structural models is a challenging 

problem of outstanding importance. Current refinement methods often generate unbalanced models in 

which physico-chemical quality is sacrificed for excellent fit to the data. Furthermore, these techniques 

struggle to represent the conformational heterogeneity averaged out in low-resolution regions of density 

maps. Here we introduce EMMIVox, a Bayesian inference approach to determine single-structure models 

as well as structural ensembles from cryo-EM maps. EMMIVox automatically balances experimental 

information with accurate physico-chemical models of the system and the surrounding environment, 

including waters, lipids, and ions. Explicit treatment of data correlation and noise as well as inference of 

accurate B-factors enable determination of structural models and ensembles with both excellent fit to the 

data and high stereochemical quality, thus outperforming state-of-the-art refinement techniques. EMMIVox 

represents a flexible approach to determine high-quality structural models that will contribute to advancing 

our understanding of the molecular mechanisms underlying biological functions. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.18.562710doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.18.562710doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.18.562710
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2023.10.18.562710
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 

Cryo-electron microscopy (cryo-EM) has become a powerful tool to determine the structures of complex 

biological systems. Recent advances in physical instrumentation and image processing algorithms have 

pushed the boundaries of what can be achieved with this technique in terms of resolution and coverage 

across a wide spectrum of system size and complexity1. While most single-particle cryo-EM density maps 

still have a resolution between 3 Å and 4 Å (Fig. S1A), the number of systems determined at atomic 

resolution is steadily increasing, with the current record set by Apoferritin, resolved in 2020 at ~1.2 Å2, 3. 

At the same time, tremendous progress in cryo-electron tomography (cryo-ET) is enabling the 

determination of the structure of complex biological systems in situ at sub-nanometer resolution4 (Fig. 

S1B). It is also becoming increasingly clear that single-structure models are not always a faithful 

representation of the three-dimensional (3D) cryo-EM density maps5. Small-scale continuous dynamics of 

functionally important flexible regions within biomolecules are typically averaged out during the 

reconstruction of 3D maps resulting in fuzzy density regions with reduced resolution. To accurately 

interpret these regions, we should therefore move away from single-structure models towards ensembles of 

conformations6, 7. In all these situations, it is of paramount importance to convert cryo-EM data into high-

quality structural models, for example for in silico structure-based drug design8 or training deep learning 

approaches on accurate structural data9. 

Over the years, a variety of different metrics have been proposed to evaluate the quality of structural models 

obtained from cryo-EM maps10-13. Generally speaking, these metrics fall into two categories: how well a 

model (or set of models) explains the observed map or directly the single-particle images (fit to the data) 

and how good the model is in terms of basic stereochemical parameters, such as length of chemical bonds, 

backbone and sidechain dihedral distributions, and clashes between close atoms. To evaluate the fit to the 

data, the most common approach is to compare the experimental map with the map predicted from a model, 

for example by calculating the cross correlation between the two maps over the entire 3D space or in the 

proximity of the structural model. In low-resolution areas, the density can be predicted either as an average 

over multiple conformations or from a single-structure model by introducing temperature factors (B-

factors), which implicitly account for intrinsic dynamics and other reasons behind the observed fuzzy 

density, such as errors in the image alignment or local damage caused by the electron beam. The main 

challenge in determining a high-quality structural model is to obtain a good balance between the fit to the 

observed density map and the overall stereochemical quality of the model. 

Several modelling approaches have been developed to refine structural models into cryo-EM maps14. These 

techniques rely on various approaches including homology modelling15, rigid-body fitting16-19, flexible 
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refinement20-28, integrative modelling29, 30, and machine learning to automate model fitting to 3D density 

maps31. Most of these methods do not optimize B-factors, and therefore, while they are extremely useful to 

create structural models that occupy the space defined by the cryo-EM density, a quantitative evaluation of 

the model fit to the experimental map with the metrics commonly used for PDB validation is challenging. 

On the other hand, a handful of methods have been proposed to model structural ensembles from either 2D 

single-particle images32-34 or 3D maps22, 35, 36. As of today, one of the most popular refinement software 

commonly used prior to depositing models in the PDB database is PHENIX23, which enables real-space 

refinement, optimization of B-factors, and modelling residues in alternative conformations. The approach 

implemented in PHENIX relies on an empirical scoring function to maximize the correlation between the 

cryo-EM map predicted from a model and the experimental map while trying to preserve stereochemical 

properties. This approach typically leads to an excellent fit to the data (Fig. S2AB) but often at the expense 

of physico-chemical properties, especially in terms of clashes between atoms (Fig. S2CD). 

Here we present EMMIVox, a computational approach to determine single-structure models as well as 

conformational ensembles using cryo-EM maps. EMMIVox is based on a Bayesian inference framework37 

to balance automatically the experimental information with state-of-the-art physico-chemical models of the 

system and the surrounding environment. Explicit treatment of data correlation and uncertainty as well as 

accurate inference of B-factors contribute to the determination of structural models with excellent fit to the 

data without sacrificing the stereochemical quality of the models. We benchmarked our approach on nine 

complex biological systems and demonstrated that EMMIVox models outperformed those obtained with 

state-of-the-art refinement techniques and deposited in the PDB database in terms of several quality metrics. 

We also illustrate how EMMIVox can be used in combination with medium-low resolution cryo-EM maps 

to refine coarse-grained models of large protein complexes and to determine conformational ensembles 

describing the structural heterogeneity hidden in low-resolution areas of atomistic cryo-EM maps. 

EMMIVox is implemented in the open-source, freely available PLUMED library38, 39 (www.plumed.org) 

and aims at setting a new standard for single-structure and ensemble refinement by optimally integrating 

cryo-EM maps with accurate atomistic and coarse-grained physico-chemical models of the system as well 

as other experimental data, when available. 
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Results 

This section is organized as follows. We first provide a general overview of the EMMIVox approach and 

illustrate its accuracy in refining both atomistic and coarse-grained single-structure models using cryo-EM 

maps at various resolutions. We then focus on ensemble refinement and present the results of our 

benchmark as well as one case study: the GPT type 1a tau filament from progressive supranuclear palsy 

neurodegenerative disease40. 

 

Overview of the EMMIVox approach 

EMMIVox is based on a Bayesian inference framework to generate a hybrid energy function that combines 

the molecular mechanics force fields used in classical Molecular Dynamics (MD) simulations with spatial 

restraints to enforce the agreement of a structural model with the density observed in the voxels of a cryo-

EM map. To balance automatically stereochemical quality of the models and fit to the data, EMMIVox: i) 

pre-filters the voxels of a cryo-EM map to reduce the correlation between experimental data points and 

therefore help avoid data overweighting; ii) uses prior models of uncertainty in the experimental data 

obtained from independent 3D reconstructions (half maps) while allowing for the presence of random and 

systematic errors in the map; and iii) builds spatial restraints weighted by the estimated accuracy in each 

voxel. Furthermore, EMMIVox exploits modern atomistic and coarse-grained force fields to accurately 

describe the physico-chemical properties of a biological system as well as its environment, including water 

molecules, ions, lipids, and small molecules. A Monte Carlo optimization of residue-level B-factors coupled 

with structural refinement guided by the EMMIVox hybrid energy function enables the determination of 

single-structure models that fit the observed cryo-EM map while preserving a high stereochemical quality. 

Instead of implicitly modelling local dynamics with B-factors, EMMIVox can be combined with 

metainference41 to obtain structural ensembles that explicitly represent the continuous dynamics of highly 

flexible regions of the system. A detailed description of EMMIVox is provided in Materials and Methods. 

 

Accurate atomistic single-structure refinement 

We first benchmarked the accuracy of EMMIVox in refining single-structure models using as test systems 

the GPT type 1a tau filament (1.90 Å, PDB 7p6a)40, the ChRmine channelrhodopsin (2.02 Å, PDB 7w9w)42, 

the Anaplastic lymphoma kinase extracellular domain fragment in complex with an activating ligand (2.27 

Å, PDB 7n00)43, a dimeric unphosporylated Pediculus humanus protein kinase (2.35 Å, PDB 7t4n)44, the 

human CDK-activating kinase bound to the inhibitor ICEC0942 (2.50 Å, PDB 7b5o)45, the major facilitator 
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superfamily domain containing 2A in complex with LPC-18:3 (3.03 Å, PDB 7mjs)46, the Escherichia coli 

PBP1b (3.28 Å, PDB 7lq6)47, the mammalian peptide transporter PepT2 (3.50 Å, PDB 7nqk)48, and the 

SPP1 bacteriophage tail tube (4.00 Å, PDB 6yeg)49. These examples include soluble and membrane 

proteins, protein complexes, as well as systems containing ordered waters, small molecules, and lipids.  

The quality of the EMMIVox models was evaluated and compared to the deposited PDBs using four key 

metrics. The physico-chemical quality was quantified by the clashscore50 and MolProbity score50, while the 

fit to the data using the correlation coefficient between predicted and observed maps in the proximity of the 

model (𝐶𝐶!"#$)51 and the EMRinger score52. EMMIVox models generally showed improved quality in all 

four metrics (Fig. 1). The improvements are particularly pronounced for clashscore that indicates the 

absence of serious clashes between atoms in the EMMIVox models, and the MolProbity score, suggesting 

a superior overall stereochemical quality. At the same time, EMMIVox models often improved the 𝐶𝐶!"#$ 

indicating a better fit to the experimental cryo-EM map, and the EMRinger scores, particularly in maps 

with resolution better than 4 Å. Overall, the four metrics indicate that EMMIVox generates single-structure 

models that improve upon current models deposited in the PDB.  

In the following sections, we will focus on the different EMMIVox components that contribute to the 

observed high quality of the models. Three key aspects affect the balance between stereochemical quality 

and fit to the data: i) the number of experimental data points (voxels) that are fit using spatial restraints; ii) 

the strength of these spatial restraints; iii) the accuracy of the cryo-EM map predictor from a model. 

Removal of correlated data leads to balanced model refinement. Neighboring voxels of a cryo-EM map 

contain correlated information, with the strength of correlation depending on the voxel size and the map 

resolution. Ignoring such correlation leads to overcounting the number of (independent) data points 

available and ultimately biasing the refinement towards (over)fitting the data at the expense of the 

stereochemical quality of the models. To address this point, we developed a pre-filtering procedure to 

subsample the set of cryo-EM voxels and reduce data correlation (Materials and Methods). We first tested 

our procedure using over 2400 cryo-EM density maps deposited in the EMDB with resolution ranging from 

1.78 Å to 4 Å. Upon removal of correlated data, the median number of voxels per model atom decreased 

as the resolution of the cryo-EM map worsened and became independent of the voxel size (Fig. S3). This 

indicates, as expected, that the amount of spatial information provided by high-resolution maps is greater 

than in medium-low resolution maps.  

We then benchmarked the quality of the EMMIVox single-structure refinement as a function of the amount 

of data removed. Removing a large portion of correlated data led to better stereochemical models compared 

to utilizing all available voxels (Fig. S4 and S5) at the expense of the quality of the fit to the entire cryo-
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EM map (Fig. S6 and S7). As fewer points were removed, the balance shifted towards the fit to the data. 

We therefore identified a correlation coefficient equal to 0.8 as the optimal threshold for data removal in 

EMMIVox refinement to guarantee a good balance between stereochemical quality of the model and fit to 

the data. In our benchmark set, this threshold corresponded on average to removing 45% (± 30%) of the 

voxels in the proximity of the deposited PDB, resulting in 13 ± 5 voxels per atom. 

Bayesian noise models reduce data overfitting. In EMMIVox, the strength of the spatial restraints used to 

enforce the model agreement with the cryo-EM map reflects the estimated accuracy (noise level) of the 

density in each voxel. Our Bayesian inference framework enables us to estimate the noise level on the fly 

based on the consistency between cryo-EM data, physico-chemical prior and potentially additional 

experimental data (Materials and Methods), and ultimately to downweigh voxels that are considered outlier 

data points during refinement. To guide noise inference, we developed priors based on the density 

variability in each voxel calculated from two independent 3D reconstructions, or half maps. In regions of 

the map where large variations are observed, our approach helps to avoid overfitting the data. 

To exemplify this point, we examined the relation between per-residue fit to the map (local 𝐶𝐶!"#$) and 

median noise level of the voxels around a given residue. This analysis illustrates that in the EMMIVox 

models residues in low-noise regions sometimes fit the map even better than in the deposited PDB, while 

in regions with high noise level the local fit to the map is often much worse (Fig. 2A and S8). In these 

regions, during refinement EMMIVox correctly reduced the weight of the experimental data in favor of the 

molecular mechanics forcefield, ultimately increasing the overall stereochemical quality of the model. To 

determine which specific physico-chemical properties of the system were better represented in our models, 

we computed the total number of atom clashes, hydrogen bonds, and salt bridges in the EMMIVox models 

and deposited PDBs across our entire benchmark (Fig. 2B). EMMIVox dramatically reduced the number 

of serious clashes observed in the deposited PDBs and optimized the positions of backbone and sidechain 

atoms so as to better describe hydrogen bond and salt bridge geometries (Fig. 2C). The improvement in 

these three physico-chemical fingerprints is more accentuated for residues in regions of the cryo-EM map 

with high noise, supporting the ability of our noise models to shift, when needed, the balance of the 

refinement towards the accurate molecular mechanics forcefield used by EMMIVox.  

Accurate cryo-EM map prediction with Bayesian inference of B-factors. During refinement and validation, 

a predictor of cryo-EM density from a 3D model (forward model) is required to measure the agreement of 

a model with the experimental map. Per-residue B-factors need to be determined to smoothen the prediction 

obtained with classical forward models derived from Gaussian fits of electron scattering factors and thus to 

explain fuzzy densities with an individual conformation. To reduce data overfitting, PHENIX adds 

restraints to avoid B-factors of residues close in space to deviate too much from each other. In presence of 
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sharp transitions between ordered and disordered regions, these additional restraints lead to under (over) 

estimating the B-factors corresponding to flexible (rigid) residues, effectively compressing the space that 

B-factors can sample. Inspired by PHENIX, we developed a Bayesian inference approach to determine B-

factors that allows these restraints to be violated, especially in regions corresponding to order-disorder 

transitions (Materials and Methods; Fig. S9). The B-factors inferred by EMMIVox contribute to a more 

accurate density prediction across the whole system and ultimately to increase the model fit to the data. 

 

Coarse-grained single-structure refinement 

For prospective use in single-structure refinement using medium-low resolution cryo-EM and cryo-ET data, 

we developed a forward model to predict density maps from coarse-grained Martini 3 models, in which 

each amino acid is represented by a few beads53 (Materials and Methods). To evaluate the accuracy of our 

coarse-grained forward model, we calculated density maps from the Martini representations of a set of 1909 

cryo-EM structures and quantified the agreement between the predicted and experimental cryo-EM data. 

For comparison, we also calculated density maps from the all-atom structures using the atomistic forward 

model. Comparing the 𝐶𝐶!"#$ with the experimental maps given by the coarse-grained and atomistic 

forward models as a function of experimental resolution revealed that they perform equally well at lower 

resolutions (>4.0 Å), while the atomistic forward model is more accurate at higher resolutions (<4.0 Å) 

(Fig. 3). These results confirm the accuracy of our coarse-grained forward model and suggest that Martini 

models may be useful for single-structure refinement of medium-low resolution cryo-EM and cryo-ET data. 

Additionally, our new forward model will be useful for validating and biasing Martini simulations using 

cryo-EM and cryo-ET data. 

 

Ensemble refinement 

When coupled with metainference41, EMMIVox can be used to model structural ensembles by interpreting 

low resolution areas of a cryo-EM map in terms of a mixture of conformational heterogeneity and noise 

(Materials and Methods). To determine the accuracy of this combined approach, we determined structural 

ensembles for all the systems in our single-structure refinement benchmark set and compared their quality 

of fit to the experimental map to the EMMIVox single-structure model (Fig. 4A and S10). The 𝐶𝐶!"#$ 

scores for structural ensembles had a median increase of 13% compared to single-structure models, reaching 

up to a 𝐶𝐶!"#$ of 0.95 for the ensemble of Escherichia coli PBP1b (3.28 Å, PDB 7lq6). The largest 

improvement was observed for the Bacteriophage SPP1 (4 Å, PDB 6yeg), whose 𝐶𝐶!"#$ score increased 

by 28.4% from 0.60 observed in the single-structure model to 0.77 for the ensemble.  
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The superior model-data fit is not necessarily due only to the larger number of parameters used in ensemble 

refinement, i.e. multiple conformations, because single-structure models can implicitly account for dynamic 

effects using residue-level B-factors to describe fluctuations around an average conformation. The 

improved ensemble 𝐶𝐶!"#$ suggests therefore that the dynamics of flexible regions might not be well 

represented by such Gaussian fluctuations. To investigate this point further, we examined in more detail 

the nature of the structural diversity observed in our EMMIVox ensembles. Across our entire benchmark 

set, 48% of residues showed a dynamic behavior that cannot be described by a unimodal distribution (Fig. 

4B), neither at the backbone nor side-chain level. When restricting our analysis to medium-to-large scale 

dynamics, defined by residue Root Mean Square Fluctuations (RMSF) greater than 6 Å, the majority of 

residues (61%) sampled multimodal conformational distributions impacting a larger portion of backbone 

atoms as dynamics increases (Fig. 4C). These results, combined with the higher ensemble 𝐶𝐶!"#$, indicate 

that unimodal, Gaussian-like distributions centered around a single-structure model with fluctuations 

proportional to the B-factors cannot accurately describe the conformational heterogeneity of the backbone 

and side chains that are averaged out in cryo-EM maps. 

To determine whether the EMMIVox ensembles overinterpret experimental noise as conformational 

heterogeneity, we compared for each system the per-residue B-factors of the single-structure model to the 

residue MSF within the EMMIVox ensemble (Fig. S11). For all systems we observed a correlation between 

these two quantities indicating that the majority of the (multi-modal) heterogeneity observed in our 

ensembles corresponds to an increased B-factor in the single-structure model. However, most systems 

contained several residues with large B-factors that were not matched by proportionately large MSFs. This 

suggests that fuzzy densities around these residues correspond to experimental noise rather than structural 

dynamics. One intriguing example is ChRmine channelrhodopsin (2 Å, PDB 7w9w). In the EMMIVox 

single-structure model we observed disproportionately high B-factors for residues 191-214 and 269-279 

(Fig. 4D, dashed box), which are located on the intracellular side (Fig. 4E). Density around these residues 

is extremely fuzzy, most likely due to the residual density from the antibody introduced to facilitate image 

alignment and/or radiation damage as this region is unprotected by the micelle during data collection (Fig. 

4E). EMMIVox correctly did not overinterpret this fuzzy density as an extremely dynamic region but 

generated an ensemble with reduced conformational heterogeneity compared to the single-structure B-

factors (Fig. 4F). This analysis, along with the previous observation that structural variety is often described 

by multimodal distributions, show that it is possible to get additional information about conformational 

heterogeneity beyond simply representing the continuous dynamics averaged in cryo-EM maps as 

Gaussian-like fluctuations proportional to the B-factors. 
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Structural dynamics from atomistic cryo-EM maps: the GPT type 1a tau filament 

As cryo-EM approaches atomistic resolution the question arises as to whether ensemble descriptions of 

density maps are still necessary54. We argue that ensemble representations are essential to extract all the 

information contained in these maps, such as the presence and location of semi-ordered water and lipids 

around proteins or local side chain flexibility, which cannot be captured by single-structure models nor by 

2D particle classification. We demonstrate this concept using as example the GPT type 1a tau filament, 

which was recently determined at 1.9 Å resolution (PDB 7p6a, EMDB 13223)40.  

Tau 1a proteins, which are thought to play a role in various neurodegenerative diseases, organize into tens-

of-nm-long filaments with fold-dependent repeating structures. With EMMIVox, we determined the 

structural ensemble of the tau 1a filament from an atomistic cryo-EM map and observed several interesting 

features. First, the location of ordered water molecules found in the deposited PDB was correctly identified 

by the water density within the EMMIVox ensemble without the use of symmetry constraints (Fig. 5AB). 

Notably, we also observed additional water density close to the ordered waters, which was not present in 

the deposited PDB. This density corresponds to a second hydration shell composed of semi-ordered waters 

in exchange with bulk solution. Second, it is known that the aromatic residues at the surfaces of fibrils may 

be important to fibril growth55. Recent NMR studies revealed that the dynamics of these aromatic rings 

vary significantly depending on the amino acid location, with surface exposed amino acids populating a 

larger number of conformations in rapid exchange compared to aromatics within the fibril core56. This 

behavior was also observed in our EMMIVox ensemble (Fig. 5CD). This raises the question as to whether 

other non-aromatic surface exposed amino acids occupy multiple conformations, and if this information 

can be extracted from atomistic cryo-EM maps. We calculated the population of the conformers of two 

surface-exposed residues from the EMMIVox ensemble: K343, which in the deposited PDB was modeled 

in two alternative conformations with equal occupancy, and K347. We confirm that K343 occupies two 

distinct conformations with equal probability of 50% (Fig. 5E). Interestingly, we also observed a previously 

unmodeled minor conformation for K347 with an occupancy of 30% compared to 70% for the major 

conformation present in the deposited PDB (Fig. 5F).  

 

Discussion  

Here we presented EMMIVox, a tool to determine accurate single-structure models as well as structural 

ensembles by combining MD simulations driven by state-of-the-art molecular mechanics force fields and 

cryo-EM density maps. EMMIVox incorporates cryo-EM data in the form of voxels using a Bayesian 

framework that explicitly accounts for data correlation and noise. The method automatically balances model 
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fit to experimental data with stereochemical quality and produces single-structure models that outperform 

the structures deposited in the PDB in terms of multiple key metrics. EMMIVox systematically reduced the 

number of serious clashes observed in deposited structures and optimized the positions of backbone and 

side-chain atoms to improve the description of physico-chemical interactions fundamental for protein 

stability, such as hydrogen bonds and salt bridges. These single-structure models can be leveraged for all 

those applications that require high-quality data, such as in silico structure-based drug design or training 

machine learning approaches.  

Even more importantly, EMMIVox can be used to determine structural ensembles that reveal the 

conformational heterogeneity hidden in low-resolution areas of cryo-EM maps. While 2D classification, 

manifold embedding and other advanced image processing techniques57-63 have the potential to identify 

distinct conformational states directly from the single-particle data, we have shown here that even atomistic 

maps still present regions in which dynamics of flexible regions is averaged out. EMMIVox relies on both 

the cryo-EM data and physico-chemical knowledge to determine structural ensembles that capture key 

information that is lost in single-structure models, such as the presence and population of minor sidechain 

conformational states, semi-ordered waters, lipids and ligands. Our analysis indicated that this structural 

variability often corresponds to multimodal conformational distributions that cannot be well described by 

Gaussian-like fluctuations around an average model and proportional to single-structure B-factors. While 

these might appear as minor details, we have shown in the past that dynamics of flexible regions extracted 

from cryo-EM maps often play a crucial role in biological function, for example for ligand recognition in 

the ASCT2 transporter64 and to understand the effect of post-translational modifications in microtubules65. 

EMMIVox presents multiple advantages with respect to our previous approach for structure determination 

from cryo-EM maps (EMMI)35. EMMIVox directly utilizes the density voxels of 3D cryo-EM density 

maps, replacing the previous representation method using Gaussian Mixture Models (GMM). While 

representing the cryo-EM density as voxels requires careful removal of correlated datapoints, it 

significantly increases usability, especially with atomistic cryo-EM density maps, for which determining 

accurate GMMs is prohibitively expensive. The direct use of voxels also enables estimation of experimental 

errors from deposited half-maps and the use of noise models for each density voxel, ensuring that various 

sources of error are not interpreted as structural dynamics when modeling structural ensembles. 

Additionally, our novel Bayesian inference approach to determine B-factors, which is unique to EMMIVox, 

enables accurate single-structure refinement and quantitative comparison of the models to the deposited 

PDBs using standard metrics of quality.  

In spite of significant improvements, EMMIVox still presents some limitations. First, the computational 

cost of EMMIVox is higher compared to the real-space refinement approach implemented in PHENIX. The 
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main reason is the use of accurate models of the environment, i.e. explicit water molecules, lipid bilayer, 

and solution ions, and of the intermolecular forces, especially long-range interactions. Furthermore, while 

single-structure refinement can be performed on a GPU-enabled Desktop computer in 10 to 24 hours, the 

determination of structural ensembles requires simultaneous use of multiple computer nodes, which may 

be out of reach for some users. Second, EMMIVox was designed to capture the underlying conformational 

distribution of the selected single-particle images used to reconstruct the 3D density map. As this data is a 

subset of the entire particle set, it is important to note that the resulting ensemble may represent local 

dynamics around a stable macrostate and not the entire conformational landscape. Furthermore, it should 

be kept in mind that the cryo-EM cooling process might perturb the room temperature ensemble by reducing 

thermal motion and enabling equilibration into lower free-energy conformations66. In EMMIVox, these 

issues are partially mitigated by using the room temperature ensemble provided by the molecular mechanics 

force field as a prior. Third, while EMMIVox has been shown to accurately and rapidly capture 

conformations present in available cryo-EM density maps, including those which are difficult to observe 

on short time scales in standard MD simulations (Fig. S12), EMMIVox may have trouble sampling 

conformations separated by large free-energy barriers. In this case, sampling issues can be alleviated by 

combining EMMIVox with various enhanced sampling techniques, such as metadynamics as recently 

proposed in the MEMMI approach67. Finally, because of these sampling limitations, an initial model that 

already fits the experimental density to a good extent is required as starting point. AlphaFold29, ab initio 

machine learning and other automated model building techniques31, 68, or flexible fitting methods such as 

MDFF21, Tempy-REFF22, and the novel maximum likelihood approach implemented in GROMACS24, can 

provide excellent starting models for accurate single-structure and/or ensemble refinement with EMMIVox. 

Despite these limitations, EMMIVox enables determining accurate structural and dynamic models using in 

vitro data, and holds promise as a valuable tool for future efforts focused on structure determination in situ. 

As the resolution of cryo-ET improves (Fig. S1B), high-quality in cell data will become readily available 

and integrative approaches that combine various sources of experimental and computational data will be 

required to obtain accurate structural models. The coarse-grained forward model implemented in 

EMMIVox will enable refining models of large macromolecular architectures from sub-nanometer 

subtomogram averaging data. Additionally, the Bayesian framework on which EMMIVox is built enables 

automatic weighting of multiple sources of in silico and experimental data, making it a perfect framework 

for integrative structure and dynamic determination in cell. This integration of a diverse set of data is further 

facilitated by the implementation of EMMIVox in the PLUMED-ISDB69 module of PLUMED38, which 

makes it possible to combine a wide range of different types of experimental data. 
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In summary, EMMIVox represents a flexible instrument to convert cryo-EM data into high-quality 

structural models. Our approach can be used to reveal dynamic properties of proteins, lipids, ligands, 

waters, and ions by extracting information from cryo-EM density maps that would otherwise be lost. These 

models can advance our understanding of the molecular mechanisms that drive biological functions, and 

provide valuable information for structure-based drug design and training of novel machine learning 

approaches. Looking ahead, we envision that EMMIVox will be an indispensable part of integrative 

structural biology pipelines and will contribute to obtaining a more complete picture of highly intricate and 

dynamic systems in biologically relevant environments. 
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Materials and Methods 

Theory of EMMIVox for single-structure refinement 

General overview. EMMIVox is based on a Bayesian inference framework37 that estimates the probability 

of a model 𝑀 given the information available about the system, including prior physico-chemical 

knowledge and newly acquired experimental data. The posterior probability 𝑝(𝑀|𝐷) of model 𝑀, which is 

defined in terms of its structure 𝑋 and other parameters, given data 𝐷 and prior knowledge is: 

𝑝(𝑀|𝐷) ∝ 	𝑝(𝐷|𝑀) · 	𝑝(𝑀)  (1) 

where the likelihood function 𝑝(𝐷|𝑀) is the probability of observing data 𝐷 given 𝑀 and the prior 𝑝(𝑀) 

is the probability of model 𝑀 given the prior information. At variance with the previous EMMI approach29, 

35, here we define the experimental data as a set of density values 𝐷 = {𝑑%} observed in the voxels of a cryo-

EM three-dimensional (3D) map. To define the likelihood function, one needs i) a forward model 𝑓%(𝑋) to 

predict the density that would be observed in voxel i for structure 𝑋 in absence of noise, and ii) a noise 

model that defines the distribution of deviations between observed and predicted data.  

Atomistic forward model. To predict the density in voxel i of a cryo-EM map from an atomistic model, we 

used the fast Fourier transform of a 5-Gaussian fit of the electron scattering factors70:  

𝑓%(𝑋, 𝑏&) =//𝐴',$ 	1
𝜋

𝐵',$ + 𝑏'
&/4
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)
*
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*

𝐵',$ + 𝑏'
&/4

7
+

$,-

.

',-

				(2) 

where 𝑋' and 𝑉% are the coordinates of atom j and the center of the voxel i, respectively. The Gaussians 

parameters 𝐴$ and 𝐵$ depend on the atom type (Tab. S1). The B-factors 𝑏& = 2𝑏𝑗
𝑓3, which are defined for 

each atom j but are identical within individual residues, enable smoothing the forward model prediction to 

describe low-resolution regions with fuzzy density using a single-structure model. The external sum runs 

over all the non-hydrogen atoms, with exclusion of the carboxylate oxygens of glutamic and aspartic acid, 

as these groups are often damaged by the electron beam. To reduce the computational cost, we further 

restricted this summation to a neighbor list of atoms with distance cutoff from the voxel center of 1.0 nm.  

Noise model. We use a Gaussian noise model for the density 𝑑% observed in voxel i.: 

𝑝(𝑑%|𝑋, 𝑏& , 𝜎%) =
1

𝜎% 	√2𝜋
exp C−

[𝑑% − 𝛼 ⋅ 𝑓%(𝑋, 𝑏&)]*

2	𝜎%*
H						(3) 
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where the uncertainty parameter 𝜎%* quantifies the level of experimental noise as well as errors in the 

forward model. These variable parameters allow to dynamically adjust the intensity of the cryo-EM spatial 

restraints during model refinement based on the accuracy in the data, which is inferred by the consistency 

between cryo-EM data, physico-chemical prior and potentially additional experimental data. High-noise 

voxels (outliers) are therefore automatically identified and downweighed in the refinement of the structural 

model in favor of the prior information. 𝛼 is a constant scaling factor between the entire set of voxels of the 

predicted and experimental maps, and it is optimized prior to production runs (Scale factor optimization). 

Data correlation and likelihood function. The data likelihood 𝑝(𝐷|𝑀) is typically expressed as a product 

of individual likelihoods 𝑝(𝑑%|𝑀), one for each experimental data point, under the assumption that these 

points are independent. In case of cryo-EM data, this assumption does not hold because neighboring voxels 

of a 3D map contain correlated information. Ignoring such correlation would lead to overcounting the 

number of independent data points and ultimately biasing the refinement towards overfitting the data at the 

expenses of the stereochemical quality of the models. To reduce data correlation, we developed the 

following pre-filtering procedure: 

1. We first selected all the voxels with non-negative density around 3.5 Å of the structure resolved in 

the deposited PDB. This includes protein atoms as well as ordered waters, ions, small-molecules 

and lipids. We sorted the selected voxels in descending order based on the value of the density: this 

constitutes our initial pool of data points 𝐷 = {𝑑%}; 

2. We started from the first voxel 𝑑- (highest density) in pool 𝐷 and calculated the density 

autocorrelation function for displacements up to a few voxels in the x, y, and z direction starting 

from this location. For each displacement, the autocorrelation function is calculated by averaging 

over multiple starting voxels in a cubic minibox of side equal to 4 Å and centered on 𝑑-. 

Equivalently, the autocorrelation can be expressed as the Pearson correlation coefficient of a series 

of density values and its space-lagged version; 

3. We removed from pool	 𝐷 all the voxels within the cubic minibox with Pearson correlation 

coefficient greater than a predefined threshold, with the exception of 𝑑-. 

4. We moved to the next voxel 𝑑*	 in pool 𝐷 in descending order of density and re-applied the filtering 

procedure of step 2 and 3; 

5. We iterated until reaching the voxel in pool 𝐷 with lowest density. 

It should be noted that sub-sampling procedures are commonly used in structural modelling with 

experimental data, for example to remove correlation between points in Small-Angle X-ray scattering 

profiles71.  PHENIX itself utilizes only the density in the positions occupied by the atoms during each step 

of refinement, which is obtained by interpolating the density in the voxels surrounding each atom23. After 
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pre-filtering the map with the procedure describe above, we assume that the 𝑁1 selected voxels can be 

considered as independent data points and write the total likelihood function as: 

𝑝(𝐷|𝑀) = 	K𝑝(𝑑%|𝑋, 𝑏& , 𝜎%)
.!

%,-

						(4) 

Priors. Experimental cryo-EM density maps may contain errors from various sources including systematic 

errors during 3D reconstruction, noise from the use of a limited number of images taken at various sample 

orientations, and radiation damage from exposure to the electron beam. Furthermore, the forward model 

used to predict a map from a structural model is intrinsically inaccurate. While these errors might be difficult 

to measure, it is critically important that they are not misinterpreted as structural dynamics during the 

generation of structural ensembles. To guide the inference of the uncertainty parameters 𝜎% that quantify 

the noise level in the map, we defined a lower bound 𝜎%!%2 for each voxel by calculating the voxel-by-voxel 

variation between two independent reconstructions, or half maps. While this quantity does not describe all 

the sources of error at play, we expect that the total error in a given voxel cannot be lower than 𝜎%!%2. We 

imposed this lower bound using the following prior for the uncertainty parameters 𝜎%72: 

𝑝(𝜎%) = 	 C
0 𝑓𝑜𝑟			𝜎% ≤ 𝜎%!%2

1/𝜎% 𝑓𝑜𝑟	𝜎% > 𝜎%!%2
						(5) 

where 1/𝜎% is a typical Jeffreys prior. 

Inspired by PHENIX, we also added a restraint to guide B-factors inference and avoid that residues close 

in space have B-factors significantly different from each other. These restraints are enforced by: 

𝑝(𝑏& , 𝜎&) = 	K
1
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exp	 R−

S𝑏'
& − 𝑏$

&T
*

2	𝜎'$*
U 						(6)
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where the product is over all pairs of B-factors corresponding to residues for which at least a pair of atoms 

is closer than 5 Å. At variance with the B-factor restraint implemented in PHENIX, our Bayesian approach 

tolerates outliers, i.e. pair of close residues with significantly different B-factors, via the introduction of the 

uncertainty parameters 𝜎& = W𝜎'$X. This approach allows us to better model during single-structure 

refinement those regions of the system that undergo a sudden transition between order and disorder. 

Finally, as structural prior 𝑝(𝑋) we used state-of-the-art atomistic force fields 𝐸33(𝑋), which enabled us 

to accurately model the system as well as the environment, including explicit water molecules, ions, small-

molecules, and lipids: 

𝑝(𝑋) = exp[−𝐸33(𝑋)/𝑘4𝑇]					(7) 
 

where 𝑘4 is the Boltzmann constant and 𝑇 the temperature of the system. 
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Marginalization. To avoid sampling the uncertainty parameters 𝜎% and 𝜎&, we marginalized the 

corresponding distributions. The resulting marginal data likelihood is: 

𝑝(𝑑%|𝑋, 𝑏&) = ] 𝑝(𝑑%|𝑋, 𝑏& , 𝜎%)	
1
𝜎%
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56
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#"$
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b					(8)	 

while the B-factors prior becomes upon introduction of a Jeffreys prior 1/𝜎𝑗𝑘: 
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where 𝜎9&!%2 is a lower bound for the B-factor uncertainty parameters set equal to 0.1 nm2. 

EMMIVox hybrid energy function. After defining all the component of our approach and marginalizing 

the uncertainty parameters, we obtain the final EMMIVox posterior distribution: 

𝑝(𝑋, 𝑏&e𝐷) ∝ 	K𝑝(𝑑%|𝑋, 𝑏&)
.!

%,-

⋅ 𝑝(𝑏&) ⋅ 𝑝(𝑋)						(10) 

where the marginal data likelihood is given by Eq. 8, the B-factors prior by Eq. 9, and the structural prior 

by Eq. 7. To sample the posterior, we define the associated hybrid energy function as: 

𝐸(𝑋, 𝑏&) = −𝑘4𝑇 log 𝑝(𝑋, 𝑏&e𝐷) = 𝐸33(𝑋) +	𝐸:;<=>?@(𝑋, 𝑏&) + 𝐸9&(𝑏&)								(11) 

The EMMIVox hybrid energy is therefore decomposed into: i) the molecular mechanics force field 𝐸33, ii) 

the spatial restraints 𝐸:;<=>?@ to enforce the model agreement with the cryo-EM map, and iii) the restraints 

𝐸9& to guide B-factors determination. A Gibbs sampling scheme is used to sample model coordinates with 

Molecular Dynamics (MD) and B-factors parameters with Monte Carlo (MC). 
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Development of the coarse-grained forward model 

Parameterization. To enable the use of EMMIVox with coarse-grained representations, we developed a 

forward model to calculate density maps from Martini 3 protein structures53. We parameterized the model 

by fitting to predictions of the atomistic forward model. In the atomistic forward model, the atomic electron 

scattering factors are given by the Fourier transform of a 5-gaussian mixture (see section Atomistic forward 

model and Eq. 2). We used the same framework for the Martini forward model, but with bead electron 

scattering factors given by a single Gaussian, i.e. only two parameters Ak and Bk for each Martini bead type 

k. We determined an individual set of Ak and Bk for each bead position in each type of amino acid for a total 

of 52 different bead types using the following procedure. To capture the conformational variation in the 

atoms mapping to each bead type, we used a set of 2906 structures to fit the parameters. These were all the 

structures obtained with single-particle cryo-EM in the period 2020-2023, with resolution ranging from 1.2 

Å to 11 Å. We divided the structures into groups of atoms, each corresponding to one Martini bead type, 

skipping any beads with missing atoms. For each group, we defined a cubic box of voxels centered on each 

atom and with side equal to 6 Å (for a total of 6859 evenly spaced voxels). In this set of voxels, we 

calculated a density map from the group of atoms using the atomistic forward model and from the 

corresponding Martini bead using the coarse-grained forward model with a grid scan of Ak and Bk. We 

scanned values of Ak from 0 to 8.0 in steps of 0.1 and Bk from 0 Å2 to 40.0 Å2 in steps of 0.5 Å2. We evaluated 

the agreement between the two forward models as a function of Ak and Bk using the squared error summed 

over all the voxels: 

𝑀𝑆𝐸(𝐴$ , 𝐵$) =
1
𝑁1

?@𝑓%@";A%2%(𝐴B , 𝐵$) − 𝑓%"A=!%#A%:B
*
						(12)

.!

%

 

where NV is the number of voxels, 𝑓%@";A%2% and 𝑓%"A=!%#A%: are the voxel densities predicted by the Martini  

and atomistic forward models, respectively. For each of the 52 Martini bead types, we averaged the MSE 

grid scan over the bead type’s occurrences in all 2906 structures and selected the set of Ak and Bk that 

minimized the average MSE (Tab. S2). 

Validation. To validate the Martini forward model and compare its accuracy with that of the atomistic 

forward model, we evaluated the agreement between predicted and experimental density maps for 1909 

cryo-EM structures. These were selected from our initial set of 2906 structures as those that could be easily 

mapped to the Martini 3 representation using the martinize2 python script without any additional 

modifications to the structures73. We calculated density maps from the atomistic and Martini  

representations using the respective forward models and calculated the 𝐶𝐶!"#$ with the experimental 

density maps. We used the same protocol described below (in Details of the single-structure refinement 
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benchmark) to preprocess the experimental maps and to optimize the B-factors and scale factors of the 

predicted maps to maximize 𝐶𝐶!"#$. The B-factors were sampled for 1000 MC steps and the scale factor 

was scanned from 0.7 to 1.3 in steps of 0.05. No data correlation filtering was used for the experimental 

maps. To evaluate the difference between the forward models as a function of the experimental resolution, 

we binned the structures by resolution (bin size equal to 1.0 Å) and calculated for each bin the average 

difference in 𝐶𝐶!"#$ between the atomistic and Martini forward models: 

Δ𝐶𝐶"A=!%#A%:>@";A%2% =
1
𝑁C
?@𝐶𝐶%"A=!%#A%: − 𝐶𝐶%@";A%2%B							(13)
.'

%

 

where NS is the number of structures in the bin. 

 

 

Theory of EMMIVox for ensemble refinement 

To model structural ensembles fitting a cryo-EM density map, we coupled EMMIVox with metainference41. 

Metainference is a general Bayesian inference approach that enables modelling structural ensembles using 

any kind of ensemble-averaged experimental data as well as prior physico-chemical information. Inspired 

by the maximum entropy/replica-averaged approach74, the metainference posterior is expressed in terms of 

several copies of the system (or replicas), which represent the conformational heterogeneity of the system. 

With a Gaussian data likelihood, as in the EMMIVox case, the metainference posterior is: 

𝑝@D@{𝑋;}, F𝜎;,%G	H𝐷B ∝J	𝑝(𝑋;) ⋅J
1

√2𝜋𝜎;,%
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[𝑑% − 𝑓%({𝑋;}	)]*

2𝜎;,%*
T

%,-

.(

;,-

	𝑝(𝜎;,%)					(14) 

where {𝑋;} are the structures of the 𝑁E replicas of the system and F𝜎;,%G the error parameters, one per replica 

𝑟 and experimental data point 𝑖. The predicted experimental observable 𝑓%({𝑋;}) is calculated as the average 

of 𝑓% over the 𝑁E replicas. Sampling of the metainference posterior is performed by a multi-replica MD/MC 

simulation driven by the hybrid energy function associated to Eq. 14. This approach has been extensively 

used to determine structural ensembles of highly dynamic and disordered systems using NMR 

spectroscopy75, 76 as well as SAXS/SANS77, 78 data. Metainference was also used to determine structural 

ensembles from cryo-EM data in our previous EMMI approach based on a Gaussian Mixture Models 

representation of the cryo-EM map29, 35. In combination with EMMIVox and the more accurate noise 

models developed here, metainference enables ensemble-refinement by interpreting low resolution areas of 

a cryo-EM map in terms of a mixture of conformational heterogeneity and noise.  
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Details of the single-structure refinement benchmark 

Details of the systems. Nine systems determined at a resolution ranging from 1.9 Å to 4.0 Å were chosen 

to benchmark the EMMIVox single-structure refinement (Tab. S3): the GPT type 1a tau filament, the 

ChRmine channelrhodopsin, the Anaplastic lymphoma kinase extracellular domain fragment in complex 

with an activating ligand, a mutant of dimeric unphosporylated Pediculus humanus protein kinase, the 

human CDK-activating kinase bound to the clinical inhibitor ICEC0942, the major facilitator superfamily 

domain containing 2A in complex with LPC-18:3, the Escherichia coli PBP1b, the mammalian peptide 

transporter PepT2, and the SPP1 bacteriophage tail tube. 

Setup and general MD details. Missing residues in the deposited PDB were modelled using GalaxyFill79 

or, in case missing residues could not be placed, with Modeller15 v. 10.1. The resulting model was then 

processed using the CHARMM-GUI80 server. Membrane proteins (PDB ids 7w9w, 7mjs, and 7nqk) were 

inserted in a homogeneous POPC lipid bilayer. Each system was solvated in a triclinic box with dimensions 

chosen in such a way that the edge of the box was 1.0 nm away from the closest model atom. K+ and Cl- 

were added to ensure charge neutrality at concentration equal to 0.15 M. The CHARMM36m81 forcefield 

was used for proteins and lipids, CgenFF for small molecules82, and the mTIP3P83 model for water 

molecules. In all simulations the equations of motion were integrated by a leap-frog algorithm with timestep 

equal to 2 fs. The smooth particle mesh Ewald84 method was used to calculate electrostatic interactions with 

a cutoff equal to 1.2 nm. Van der Waals interactions were gradually switched off at 1.0 nm and cut off at 

1.2 nm. All simulations were carried out using GROMACS85 v. 2020.5 equipped with the development 

version of PLUMED38. To optimize performances, EMMIVox is implemented in PLUMED with libtorch86 

to efficiently calculate the cryo-EM forward model and the hybrid energy function on the GPU. 

Cryo-EM map preprocessing. For each system, we downloaded the cryo-EM map as well as the two half 

maps from the EMDB database. We applied our pre-processing procedure to select the voxels within 3.5 Å 

of the model atoms and filter them to reduce data correlation, with a threshold of 0.7, 0.8, 0.9, and 1.0 (no 

filtering). The two experimental half maps were used to calculate the lower bound for the density 

uncertainty parameters. Since CHARMM-GUI processing of the deposited PDB often translates and rotates 

the input conformation, we calculated the transformation that aligns initial and final models and applied it 

to all the voxels selected for refinement. Finally, a single map data file was created with the list of voxels 

to be used by PLUMED for refinement and, for each voxel, the following information: (transformed) 

coordinates of the voxel center, density value, and uncertainty lower bound. 

Equilibration. Energy minimization was performed on each system using the steepest decent approach. A 

1 ns-long NPT equilibration was then performed with the Bussi-Donadio-Parrinello thermostat87 and the 

Berendsen barostat88, set at 300 K and 1 atm respectively. In systems containing a lipid bilayer, the pressure 
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coupling type was semi-isotropic to allow deformations in the xy plane independent from the z-axis. Next, 

NVT simulations were carried out for 2 ns using the Bussi-Donadio-Parrinello thermostat at 300 K. During 

the last two steps of equilibration, positional restraints were applied to all the heavy atoms of the protein 

and any other components contributing to the predicted cryo-EM density map. 

Modelling of ordered waters. In presence of ordered waters in the deposited PDB, a special treatment was 

required. First, resolved waters as well as all the water molecules within 3.5 Å in the initial CHARMM-

GUI solvated model (buffer waters) contributed to the map prediction via our forward model. Second, the 

positions of ordered waters were restrained during equilibration; the buffer waters were restrained to stay 

within 8 Å from a reference protein atom, defined as the closest to each water molecule in the initial model. 

Scale factor optimization. To reduce the number of free parameters to sample during the production run, 

we determined an optimal scaling factor between predicted and observed cryo-EM maps. We analyzed with 

the PLUMED driver tool the trajectory obtained with positional restraints during the NVT equilibration for 

different values of the scaling factors in the range from 0.5 to 1.5 at intervals of 0.05. For each value of the 

scaling factor, we sampled with MC the B-factors while re-reading the trajectory, with a maximum MC 

move per B-factor equal to 0.05 nm2. To optimize sampling, B-factors were initialized using an empirical 

relationship between map resolution (res, in nm) and average B-factor values (in nm2) determined from 

8000 deposited PDBs obtained from cryo-EM maps with resolution less than 5 Å: 

𝑏& = 	6.95408 ∗ 𝑟𝑒𝑠* − 0.01 ∗ 2.45697						(15) 

The scaling factor that resulted in the lowest EMMIVox hybrid energy along the entire trajectory was 

selected to be used in the production simulations described in the following section. 

Production. All single-structure refinement production simulations were performed in the NVT ensemble 

with Bussi-Donadio-Parrinello thermostat at 300 K for 20 ns (NPT ensemble with Parrinello-Rahman 

barostat89 at 1 atm for membrane proteins). Before calculating the EMMIVox hybrid energy, structural 

discontinuities due to Periodic Boundary Conditions (PBC) were fixed on-the-fly by PLUMED. 

Furthermore, to optimize performances, we: i) updated the forward model neighbor list every 50 MD steps; 

ii) sampled the B-factors every 500 MD steps with maximum MC move equal to equal to 0.05 nm2; iii) 

used a multiple-time step algorithm for PBC reconstruction and EMMIVox hybrid energy calculation with 

stride equal to 4 MD steps90. The system trajectory was saved to file every 10 ps for subsequent analysis. 

Ordered and buffer waters that contributed to the map prediction were restrained to stay within 8 Å from a 

reference protein atom, defined as the closest to each water molecule in the initial model. These restraints 

allowed: i) exchanges between the ordered molecules resolved in the PDB and their surrounding buffer 
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waters; ii) to identify additional sites of (semi)ordered molecules in the proximity of the resolved waters, 

for example a second coordination shell. 

Analysis. To generate the final single-structure refined model, we first extracted the conformation with 

lowest EMMIVox hybrid energy from the production run as well as the associated B-factors. We then 

performed an (EMMIVox hybrid) energy minimization using the steepest decent approach. During 

minimization, B-factors were sampled starting from those found in the initial model using a modified MC 

sampler in which only downhill moves were accepted. B-factors were sampled every 100 steps with a 

maximum MC move equal to 0.1 nm2. The forward model neighbor list was updated at every step. Next, 

we selected the conformation at the end of the minimization and fixed discontinuities in the structure due 

to PBC with the PLUMED driver tool. We then generated a PDB file containing only the heavy atoms of 

the systems that were used to predict the cryo-EM density map during production. This model was re-

aligned to the original cryo-EM map downloaded from the EMDB using the inverse transformation 

computed in the section Cryo-EM map preprocessing. Finally, we added to the PDB the B-factors obtained 

at the end of the final minimization. MolProbity was used to compute the clashscore and MolProbity score, 

while PHENIX v. 1.15.2 was used to evaluate the fit to the experimental map with the EMRinger score. 

We implemented the calculation of 𝐶𝐶!"#$51 in a GPU-enabled python script and generalized it to compute 

this score from a structural ensemble. At variance with PHENIX, we did not optimize an isotropic B-factor 

before the 𝐶𝐶!"#$ calculation. Despite this difference, the 𝐶𝐶!"#$ calculated by PHENIX and by our 

python script are strongly correlated (Fig. S13). For all the fit-to-data calculations, the original map as 

downloaded from the EMDB was used, regardless of the data correlation cutoff and the total number of 

voxels used in the refinement. For the analysis of physico-chemical fingerprints (Fig. 2), we used 

MDAnalysis91 v. 2.0 to calculate the number of hydrogen bonds from a single-structure model with donor-

acceptor distance and angle cutoff equal to 3.0 Å and 150 degrees, respectively. Hydrogen bonds between 

anionic carboxylate (RCOO−) of either aspartic acid or glutamic acid and the cationic ammonium (RNH3
+) 

from lysine or arginine were classified as salt bridges. Clashes between atoms with overlap between 

van der Waals radii greater than 0.4 Å were calculated with PHENIX.clashscore. 

 

Details of the ensemble refinement benchmark 

Setup. We determined EMMIVox structural ensembles fitting the cryo-EM map for all the systems selected 

for the single-structure refinement benchmark. To prepare the ensemble simulations, we first extracted the 

conformation with lowest EMMIVox hybrid energy from the single-structure refinement production run 

and identified the minimum B-factor 𝑏!%2
&  across all residues of this conformation. We then extracted 16 
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frames from the second half of the single-structure refinement production runs equally distributed in time. 

These conformations will be used as starting points of the production run described in the following section. 

Production. EMMIVox ensemble simulations were performed with the same settings used in single-

structure refinement, except for the fact that during ensemble refinement B-factors were not sampled but 

kept constant and all equal to the 𝑏!%2
&  identified in the previous step. This value of B-factors can be 

considered as either a baseline dynamic of the most rigid residue of the system or a minimum noise level 

of the best resolved residue. In both cases, using such constant B-factor during ensemble refinement 

contributes to avoiding overinterpreting noise in terms of conformational heterogeneity. 16 metainference 

replicas were used, each one simulated for 20 ns, resulting in 320 ns of ensemble trajectory for each system. 

Analysis. After the EMMIVox ensemble simulations were completed, the trajectories of all the 

metainference replicas were concatenated, resulting in the complete structural ensemble of the system. After 

fixing with PLUMED the structural discontinuities due to PBC, we re-aligned the EMMIVox ensemble to 

the original cryo-EM map downloaded from the EMDB using the inverse transformation computed in the 

section Cryo-EM map preprocessing. We then evaluated the fit to the data by calculating the 𝐶𝐶!"#$ of the 

average cryo-EM map from the EMMIVox ensemble and the experimental map. To make a fair comparison, 

we selected the voxels for the 𝐶𝐶!"#$ calculation based only on the single-structure model using the 

standard convention51. In this way, the calculation of 𝐶𝐶!"#$ for single-structure and ensemble models was 

performed on the same set of voxels. The analysis of multimodality of the conformational distribution of 

each individual residue (Fig. 4) was performed using the Folding Test of Unimodality implemented in 

libfolding92 (https://github.com/asiffer/python3-libfolding). 

 

Software and data availability 

EMMIVox is implemented as a part of the PLUMED-ISDB69 module in the development version (GitHub 

master branch) of PLUMED38 (https://github.com/plumed/plumed.github.io). The GROMACS topologies 

and PLUMED input files used in our benchmark as well as the EMMIVox refined single-structure models 

are available in PLUMED-NEST (www.plumed-nest.org), the public repository of the PLUMED 

consortium39, as plumID:23.041. Scripts to prepare and analyze EMMIVox simulations as well as complete 

tutorials for single-structure and ensemble refinement are available on GitHub 

(https://github.com/maxbonomi/EMMIVox). 
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Fig. 1. EMMIVox single-structure refinement benchmark. a-i) Assessment of the quality of the 

EMMIVox single-structure model (colored bars) and deposited PDB (grey bars) for each of the nine 

systems in our benchmark set. Models are evaluated based on their stereochemical quality and fit with the 

experimental cryo-EM map. The stereochemical quality is measured by two metrics: i) clashscore, which 

corresponds to the number of serious clashes per 1000 atoms, and ii) MolProbity score, which is a global 

measure of quality that combines clashscore, percentage of Ramachandran dihedrals in non-favored regions 

and percentage of bad sidechain rotamers. For both metrics, lower values correspond to higher quality 

models. The model fit to the data is measure by i) 𝐶𝐶!"#$, which is the cross-correlation between 

experimental map and map predicted from the model in the proximity of the structural model, and ii) 

EMRinger, which measures the precise fitting of an atomic model into the map. For both metrics, higher 

values correspond to models that better fit the data. 
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Fig. 2. EMMIVox noise models reduce data overfitting and improve stereochemical quality. a) 

Relation between individual residue fit to the experimental cryo-EM map (local 𝐶𝐶!"#$) and local error in 

the map in the proximity of each residue for the single-structure EMMIVox model (blue) and the deposited 

PDB (red) in the case of ChRmine channelrhodopsin (2 Å, PDB 7w9w). The local error is calculated from 

the difference between the two cryo-EM half maps as the median value across all the voxels associated to 

a residue by Voronoi tessellation. The same analysis for all the other systems of our benchmark set is 

reported in Fig. S8. b) Total number of clashes, hydrogen bonds, and salt bridges in the EMMIVox single-

structure models (blue) and deposited PDBs (red) across all the nine systems of our benchmark set. Dark 

and light bars indicate clashes, hydrogen bonds, and salt bridges that involve residues of the EMMIVox 

model in low and high 𝐶𝐶!"#$ regions, respectively. Relative variations of these three physico-chemical 

fingerprints between PDB and EMMIVox models are indicated on top of the blue bars, separately for low 

and high 𝐶𝐶!"#$ regions. c) Examples of salt bridges formed upon EMMIVox refinement of the deposited 

PDBs (grey). 

  

E50
K269

E16

K261

K912
E813

D65
K68

a b c

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.18.562710doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.18.562710
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig. 3 EMMIVox coarse-grained refinement. a) Difference between atomistic and coarse-grained 

(Martini 3) forward model in the agreement with 1909 experimental cryo-EM density maps. The plot shows 

the average difference in 𝐶𝐶!"#$ 	(Δ𝐶𝐶) given by the two forward models as a function of the experimental 

resolution. Error bars show the standard deviation. b-c) Example structures and cryo-EM density maps at 

medium (b: PDB 7nnh93, 4.0 Å) and high (c: PDB 7o6q94, 1.88 Å) resolution. From left to right: 

experimental density maps and density maps predicted by the atomistic and coarse-grained forward models. 

The predicted maps are colored by local cross correlation to the experimental map (low: red, high: blue) 

and the global 𝐶𝐶!"#$ 	with the experimental map is shown. 
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Fig. 4. EMMIVox ensemble refinement benchmark. a) Model fit to experimental data (𝐶𝐶!"#$) of the 

nine systems in our benchmark set for the EMMIVox single-structure models (light blue) and EMMIVox 

ensemble (dark blue). The percentage increase in ensemble 𝐶𝐶!"#$ is reported on top of the dark blue bars. 

b) Percentage of residues across the entire benchmark set that in the EMMIVox ensembles display 

multimodal conformational distributions according to the Folding Test of Multimodality. Each bar is 

decomposed into percentage of residues with only backbone (dark blue), only sidechain (light blue), and 

both backbone and sidechain (light red) multimodal distributions. Percentages calculated on all residues 

(left bar) and only on residues displaying RMSFs greater than 6 Å (right bar) are displayed separately. c) 

Percentage of residues that display multimodal conformational distributions as a function of residue RMSF. 

Colors as in panel b). d) Relation between per residue B-factor in the single-structure EMMIVox model 

and residue MSF within the EMMIVox ensemble in the case of ChRmine channelrhodopsin (2 Å, PDB 

7w9w). The red line indicates a Bayesian linear fit between these two quantities. The same analysis for all 

the other systems of our benchmark set is reported in Fig. S11. e) Cryo-EM density map of ChRmine 

channelrhodopsin (EMD-32377) overlaid to the EMMIVox single-structure model. Residues with large B-

factors highlighted in the dashed box of panel d) are colored in violet. f) EMMIVox structural ensemble of 

ChRmine channelrhodopsin. Colors as in panel e). 
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Fig. 5. Case study: the GPT type 1a tau filament. a) Ordered waters in proximity of H299 resolved in 

the deposited structure (PDB 7p6a, 1.9 Å resolution, EMDB 13223). b) Water density within the EMMIVox 

ensemble showing both ordered and semi-ordered molecules in the proximity of H299. cd) Distribution of 

the χ1 sidechain dihedral angles of residues F346 (c) and F378 (d) computed from the EMMIVox 

ensembles, along with representative conformations. These distributions indicate that exposed aromatic 

residues populate a larger number of conformations compared to buried aromatics, as previously observed 

in NMR studies of other fibrils. ef) Structural ensembles of residues K343 (e) and K347 (f) indicating the 

presence of multiple sidechain conformations. In the EMMIVox ensemble, K343 occupies two distinct 

states with equal populations, as illustrated by the distribution of the lysine sidechain nitrogen positions 

projected on a plane parallel to the fibril surface. Both states were modelled in the deposited PDB with 

equal occupancy. K347 instead was modelled in a single conformation in PDB 7p6a, while in the 

EMMIVox ensemble it occupies a second minor conformation, populated only by 27%. 
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