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Summary statement 

We describe a new and fully available method based on machine-learning to detect 

automatically cellular events (including cell extrusion, cell division and cell 

differentiation) from fluorescent movies of epithelia in vivo. 

Abstract  

Accurately counting and localising cellular events from movies is an important 

bottleneck of high content tissue/embryo live imaging. Here, we propose a new 

methodology based on deep learning allowing automatic detection of cellular events 

and their precise x-y-t localisation on live fluorescent imaging movies without 

segmentation. We focused on the detection of cell extrusion, the expulsion of dying 

cells from the epithelial layer, and devised DeXtrusion: a pipeline based on recurrent 

neural networks for automatic detection of cell extrusion/cell death events in large 

movies of epithelia marked with cell contour. The pipeline, initially trained on movies of 

the Drosophila pupal notum marked with fluorescent E-cadherin, is easily trainable, 

provides fast and accurate extrusion predictions in a large range of imaging conditions, 

and can also detect other cellular events such as cell division or cell differentiation. It 

also performs well on other epithelial tissues with reasonable retraining. Our 

methodology could easily be applied for other cellular events detected in live 

fluorescent microscopy and help to democratise the use of deep learning for automatic 

event detections in developing tissues. 

Introduction 

Epithelial tissues can be dramatically remodelled during embryogenesis or in adult 

organs undergoing fast turnover. This is often associated with high rates of cell 

elimination, which requires the fine control of the absolute number of dying cells, as 

well as their distribution in time and space. Cell extrusion is a sequence of remodelling 

steps leading to apical constriction and cell elimination from the epithelial layer without 

impairing the sealing properties of the tissue (Rosenblatt et al., 2001). This process is 

highly coordinated between the extruding cell and its neighbours: as the cell extrudes 

its neighbours are brought close to each other to maintain epithelial sealing and 

stability (Villars and Levayer, 2022).  



The tight spatiotemporal control of epithelial cell apoptosis plays an essential role 

during tissue morphogenesis (Ambrosini et al., 2017). For instance, a spatial bias in 

the distribution of cell death can locally modulate growth and final tissue shape 

(Matamoro-Vidal et al., 2022), apoptosis and cell extrusions can generate local traction 

forces to fuse tissues (Toyama et al., 2008), promote locally tissue bending (Monier et 

al., 2015; Roellig et al., 2022) or can be permissive for global tissue remodelling 

through the modulation of tissue viscosity (Ranft et al., 2010; Suzanne et al., 2010). 

Moreover, the tight regulation of the precise spatiotemporal distribution of cell 

extrusion/cell death is also essential to maintain the cohesion of the tissue, especially 

in conditions with high rates of cell elimination (Valon et al., 2021). These examples all 

rely on the precise regulation of the number and spatiotemporal localisation of dying 

cells. Yet, despite the fast progress in our understanding of the molecular regulators of 

programmed cell death and extrusion, we still fail to predict when, where and how many 

cells will die in a tissue. This most likely relies on the multiple feedback that can 

modulate death rate/cell extrusion at various spatial and temporal scales (Villars and 

Levayer, 2022), which includes the activation of the pro-survival signal ERK in the 

neighbouring cells (Bock et al., 2021; Gagliardi et al., 2021; Valon et al., 2021), long-

range coordination for cell extrusion (Aikin et al., 2020; Takeuchi et al., 2020) as well 

as positive feedbacks on apoptosis (Perez-Garijo et al., 2013). Thus, obtaining a 

comprehensive understanding of epithelial cell death regulation entails the dissection 

of multi-layered regulations integrating feedback on several spatial and temporal 

scales as well as several steps of decisions. Such a challenging question requires a 

highly quantitative dataset on the total number of cell death as well as their precise 

spatiotemporal distribution and high throughput methods to compare these values in 

various perturbed backgrounds.  

The recent advances in long-term live imaging provide a wealth of data regarding 

tissue dynamics, especially for epithelia in 2D. However, retrieving cellular events 

quantitatively in a high throughput manner remains extremely challenging. For 

instance, there are more than one thousand extrusions, distributed all over the 

epithelium in the Drosophila pupal notum in less than 12 hours (Guirao et al., 2015; 

Valon et al., 2021).  So far, quantitative analyses of cell death/extrusion were 

performed using laborious manual detection of these events (Moreno et al., 2019; 

Valon et al., 2021; Villars et al., 2022). This highly time-consuming task remains one 



of the main bottlenecks for comparing a high number of conditions with precise 

quantitative readouts. Alternatively, automatic epithelial cell death detection was 

performed through systematic segmentation and tracking of all the cells (Etournay et 

al., 2016; Guirao et al., 2015). However, this method typically entails extensive manual 

corrections even when using machine learning-enhanced segmentation (Aigouy et al., 

2020), and still represents quite an important load of work for large fields of view and 

long timescales, hindering large-scale analysis on many tissues.  

Altogether, these challenges and needs call for an automatic tool that would allow 

accurate spatiotemporal detection of cellular events without relying on systematic 

segmentation and tracking of cells. The recent progress of computer vision opened the 

possibility to automatise the detection of objects and patterns in biological images and 

image series (Hallou et al., 2021). In particular, deep learning approaches were used 

successfully to recognise cellular events such as cell division and cell death in yeast 

(Aspert et al., 2022) or in mammalian cell culture (Kabir et al., 2022; La Greca et al., 

2021; Mahecic et al., 2022; Phan et al., 2019; Shkolyar et al., 2015). However, this 

was mostly applied to transmission light microscopy and these pipelines are not 

applicable to large samples and embryos, where imaging mostly relies on fluorescent 

and confocal microscopy. As such, there is currently to our knowledge no implemented 

solution for the automatic detection of cell death and cell extrusion events from 

epithelia in vivo. 

To answer these challenges, we devised here a supervised machine-learning pipeline 

called DeXtrusion. The detection of extrusion is performed by screening the entire 

movie with sliding windows and detecting cellular events on each window. The core of 

our pipeline is based on a recurrent neural network which classifies each image 

sequence (called DeXNet). These local classifications are then post-processed 

together at the movie level to convert them to probability maps of the presence of a 

cellular event and eventually precise single-point event detection. We devised and 

applied this method on the Drosophila pupal notum, a single-layer epithelium, using 

cell-contour-labelled epithelia with tagged E-cadherin. The method is flexible enough 

to provide accurate and precise predictions with movies of different temporal 

resolutions, pixel sizes, imaging set-ups as well as different E-cadherin labelling, 

without any need for segmentation. Moreover, DeXtrusion generalises well out-of-the-

box to other epithelia (e.g.: pupal abdomen, pupal wing), which can be further 



enhanced by retraining on small data sets. The same methodology can also detect 

other cellular events such as cell division and cell differentiation. By resolving the 

bottleneck of extrusion/cell death detection, DeXtrusion will open the way for a more 

systematic and quantitative characterisation of cell death distribution in large datasets 

which will be essential to understand its multi-layered regulation. The same 

methodology could easily be applied to any cellular event detected in fluorescent live 

imaging. DeXtrusion is distributed as a Python module, available open source on 

GitLab (https://gitlab.pasteur.fr/gletort/dextrusion) along with our trained neural 

networks and scripts (Jupyter notebooks and Fiji macros) to facilitate its usage, our 

annotated datasets used for training of the pipeline are available on Zenodo (Villars et 

al., 2023) (https://doi.org/10.5281/zenodo.7586394). 

Results  

DeXNet: a neural network to recognise extrusion in cropped image sequences. 

We first aimed at detecting cell extrusion in the Drosophila pupal notum: a single-layer 

epithelium on the back of the developing Drosophila pupal thorax with a high rate of 

cell extrusion/apoptosis that follows stereotypical patterns (Fig.1A) (Guirao et al., 

2015; Levayer et al., 2016; Marinari et al., 2012; Valon et al., 2021; Villars et al., 2022). 

We used a dataset generated in the laboratory covering a large number of extrusion 

events (6700 in the training set and 2320 in the test set see Supplementary tables 1 

and 2). This dataset was made of large-scale movies of the pupal notum obtained from 

two different imaging set-ups (see Material and Methods), with different frame rates, 

signal-to-noise ratios, and different fluorescent proteins coupled to the adherens 

junction protein E-cadherin. It contains both Wild Type (WT), mutants and drug-

perturbed conditions to obtain a model robust in a large range of conditions (see 

Supplementary tables 1 and 2). Cell extrusions were manually annotated by clicking 

on the point of termination of apical constriction while control positions were drawn 

randomly, excluding locations containing an extrusion (see Material and Methods for 

details regarding events detection). To handle data with different frame rates and 

spatial resolutions, we fixed a reference spatiotemporal scale (0.275 microns/pixel and 

5 min/frame) on which the neural network was trained. Every processed movie is 

rescaled to this referential before being processed.   

https://gitlab.pasteur.fr/gletort/dextrusion
https://doi.org/10.5281/zenodo.7586394


To detect with spatiotemporal accuracy all cell extrusions, we generated a pipeline 

called DeXtrusion, which screens through the entire movie using overlapping sliding 

windows and assigns a probability of extrusion for each cropped sequence. DeXtrusion 

refers to the full pipeline detecting cellular events from the full movies (see below and 

Figure 2), while DeXNet refers to the neural network used to classify each cropped 

image sequence. Each cropped image sequence (a series of 10 images, one every 5 

minutes, of 45x45 pixels in the reference scale, representing 2-3 cells per frame) was 

processed through a neural network called DeXNet to estimate the presence or 

absence of an extrusion event (Fig.1B). For this, we built and trained a neural network 

to classify each image sequence (Fig.1C-C’). We first chose an architecture based on 

Convolutional Neural Network (CNN), efficient for image-based classification (LeCun 

et al., 2015). Since cell extrusion is mostly defined by the dynamics of cell shape 

changes (progressive apical constriction), we decided to include temporal information 

by using a recurrent neural network architecture. We chose a Gated Recurrent Unit 

(GRU) architecture which computes and propagates temporal information while 

preserving a parsimonious network architecture (Cho et al., 2014). Each image of the 

temporal sequence is first encoded using the CNN (Fig.1C’) and reduced in a vector 

of discriminant features (64), which is then combined with the other temporal image 

feature vectors into the GRU (Fig.1C). The output of the time distributed GRU layer 

then goes through a sequence of densely connected layers that perform the final 

classification (Fig.1C purple). Eventually, the network provides a probability of 

containing an extrusion for each cropped image sequence. This probability was finally 

thresholded to a binary output (extrusion or control event). We trained DeXNet on 

image sequences extracted from our dataset, split in a training and test set (25 versus 

7 movies, see Material and Methods). We took cropped image sequences in the 

reference scale centred spatially and temporally around the manually detected 

extrusions (time 0 being defined by the termination of apical constriction, Fig. 1B), 

while control sequences were made of similar cropped image sequences that do not 

contain any event (see Material and Methods). To avoid imbalanced detection in our 

training dataset (due to the over-representation of “no event” sequences relative to 

extrusion), we have equalised the number of extrusion and control sequences used for 

the training (see Material and Methods). The size of the temporal window, the x-y size 

of the cropped input images, as well as other hyperparameters of the model (e.g: 

number of epochs -the number of times the dataset is processed by the network for 



training-, of features, data augmentation), were tuned and optimised by testing several 

sets of values (Fig. S1, S2 and S3). The parameters were compared after processing 

through the full DeXtrusion pipeline (see below and Figure 2) by comparing the 

precision (number of true positives out of all detected events), the recall (proportion of 

manually annotated cellular events detected by the pipeline), the computation time, 

and the F1 score (a measurement of quality and exhaustivity of detections, see 

Material and Methods). For instance, the temporal size of the sequences (10 frames, 

50 minutes) was chosen so that it contains enough information to recognise extrusion 

(which lasts on average 20 to 30 minutes (Villars et al., 2022) ) while reducing the 

chance to capture two events and reducing calculation time (see Material and 

Methods, Fig. S1A-D). Importantly, we observed a drastic reduction of precision and 

recall when restricting the time windows to two frames, illustrating the key role of 

temporal information for accurate detection (Fig. S1 A-D). Taken together, the selected 

hyperparameters allowed the model to converge properly under 50 epochs and took 

around 55 min of training with 1 GPU (Fig. 1D).  Compared to our manual annotation, 

the classification of the neural network on cropped image sequences extracted from 

our test dataset resulted in an accuracy of 97% (proportion of correct predictions out 

of all predictions, see Material and Methods), with 2% False Positive (detected 

extrusions which are not real extrusions) and 1% False Negative (real extrusions that 

are not detected) (Fig.1E-F). Of note, these 2% of false positives could constitute a 

challenge for detection in the full movies since the proportion of “no event” sequences 

is much higher than the proportion of real extrusions. This may generate a significant 

proportion of false positives (thus reducing our “precision”). We will discuss the 

optimisation of the precision in later sections.  

DeXtrusion: from cropped images classification to whole-movie extrusion 

detection 

So far, our trained neural network DeXNet provides a fast and efficient classification of 

each image sequence. To detect extrusion events across the tissue and at all temporal 

time points, the complete movie was split into 45x45 pixels cropped images with 50% 

overlap. The time axis was divided into sequences of 10 frames every two time-points 

after rescaling the time to the reference scale (Fig. 2A). These parameters are a good 

compromise between the spatiotemporal precision of the results and the speed of 

computation and can be tuned by users. For each sliding window, DeXNet provides a 



single probability of extrusion. This value is then allocated in the original movie in a 

22x22 pixels and 5-time points regions around the centre of the cropped sequence. 

The final local probability output is then obtained by averaging for each pixel the 

probability of the different overlapping windows (in time) generating an extrusion 

probability map on the whole movie with a spatial resolution of 22 pixels in the 

reference scale (Fig. 2A,B,  Movie 1). This output, once rescaled back to the original 

movie spatio-temporal scale, can be directly used to screen visually the detection of 

extrusion events and assess putative tissue patterns (Fig. 2B).  

To count the number and precisely localise cell extrusion events, this probability map 

must be converted to single point event detection. Single events in our probability map 

are associated with high probability within several consecutive time windows and on a 

given x-y surface, thus generating a volume (x-y-t) of pixels with high probability (Fig. 

2A,C, Movie 1). We first thresholded the probability map to obtain a 3D mask of 

positive detections. To filter out false positives which are usually detected on smaller 

areas and fewer time windows (Fig. 2C,C’), we also thresholded the size of the positive 

volume to fit the minimal volume associated with extrusion events (which last between 

20 and 30 minutes and should cover at least one cell diameter (Villars et al., 2022)). 

The probability threshold and volume threshold were optimised to maximise the 

precision and recall (Fig. S2, Material and Methods). We also used a watershed 

separation to separate close events. Eventually, the exact location of the extrusion is 

defined by the centroid of the high-probability volume. Detected extrusions are then 

exported as a list of point ROIs (Region Of Interest) compatible with Fiji ROI manager 

(Schindelin et al., 2012) (Fig. 2A). 

To assess the performance of DeXtrusion, we compared the resulting ROIs with the 

manually annotated ROIs of our test dataset. We first measured systematically the x-

y Euclidean distance and time distance between manually annotated and automatically 

detected extrusions (Fig. 2D,D’). This showed that 70.6% of the detections are below 

a 15-pixels distance (4,12 m ~ 1 cell radius) and +/- 4 time-frames shift (+/- 20 

minutes). We then classified detections as correct for spatial distance below 15 pixels 

and below 4 time-frames distance between the DeXtrusion and manually located ROIs. 

Doing so, we obtained a recall of 0.87 (proportion of manually annotated cellular events 

detected by the pipeline) and a precision of 0.46 (proportion of detected events that 

are indeed extrusion, averaged on 5 independent trained networks). We will discuss 



the optimisation of the precision in the next section. Finally, we measured 

systematically the total number of detected extrusions compared to manually 

annotated events at every developmental time to check whether the accuracy of our 

detection is sensitive to the developmental stage. We observed a fairly constant error 

(~3 errors every 10 frames/50 minutes) suggesting that our methodology is robust at 

all developmental stages imaged in the notum (Fig. 2E-F). Thus, our methodology can 

retrieve the vast majority of the extrusion events at any stage of development.  

Optimisation of the model for the detection of extrusion 

So far, we have designed and optimised DeXtrusion to detect exhaustively all the 

extrusion events, which led to the high recall of 0.87 (87% of events detected). 

However, we have not yet fully optimised the methodology to filter out false positive 

detections (to optimise the so-called precision). Indeed, many cellular events which 

share some phenotypic similarities with extrusion are very frequently miss labelled as 

extrusion (Fig. 3 A-D, Movie 1). This includes, for instance, the formation of Sensory 

Organ Precursors (SOPs) which through asymmetric cell division form cells with very 

small apical areas (Gho et al., 1999) which are often detected as extrusions (Fig. 3B). 

Similarly, the shrinkage of cell apical area concomitant with cytokinesis and furrow 

formation are frequently misclassified as extrusions (Fig. 3C). Thus, to enhance the 

precision of DeXtrusion (the proportion of correct extrusion detection), we decided to 

add these other cellular events in DeXNet to discriminate them from extrusion. We 

trained the network to detect cell extrusions, cell divisions and SOPs or the absence 

of events using manually annotated events in our dataset (6700 extrusions, 3021 

divisions and 3054 SOPs, Fig. 3F). DeXNet was able to categorise the cropped image 

sequences into these four classes with high accuracy on our training set (0.986, 0.989 

and 0.976 for respectively extrusions, SOPs and divisions, Fig. 3G, Movie 1). By 

including this new DeXNet in our pipeline, we significantly increased the precision of 

DeXtrusion (from 0.26 to 0.41, single run with the selected networks having the highest 

recall, Fig. 3E,E’’), while this did not impact significantly the recall (Fig. 3E’). This is 

also reflected by the F1 score (Fig. 3E), a measurement of quality and exhaustivity of 

detections (see Material and Methods, from 0.40 to 0.54). To further enhance our 

precision, we then manually screened all remaining false positive detections and 

included image sequences representative of the patterns of these false positives in the 

training inputs as control sequences and retrained the DeXNet network (using the 



network including the four classes of events). This reinforcement increased the model’s 

precision to 0.52 for similar recall (0.92 compared to 0.90). Finally, we exploit the 

inherent stochasticity of the training process (which always leads to different network 

weights and biases) to confront the predictions from two independently trained 

networks (Segebarth et al., 2020). Averaging these two independent classifications 

had the most significant effect and increased the precision to 0.72 (recall of 0.86 and 

f1-score of 0.78). This barely affected the recall (Fig.3E-E’’, 2nets), but it increased 

the calculation time by a factor of two. Of note, the accuracy was much lower for the 

test movie of the colcemid injected pupae (Fig. 3E-E’’, deep blue, movie ID18), whose 

phenotype was poorly represented in the training dataset and corresponded to an 

extreme condition where the mode of extrusion and the architecture of the tissue are 

quite different (Villars et al., 2022). After all these optimisation steps, the final model 

(2nets) can still detect all cellular events on a movie covering the full pupal notum (1200 

by 1200 pixels 200 time points) in less than 40 min on a regular PC with 1 GPU. Taken 

together, these optimisations steps led to a drastic increase in precision while 

maintaining similar recall on test movies. The last remaining false positive (~20%) can 

be easily filtered out manually from the final ROIs list. We estimated that the full 

procedure (DeXtrusion computation time+manual correction) takes between 1 or 2 

hours for a movie covering the full pupal notum over 200 times (representing roughly 

1000 extrusions). This corresponds to a drastic time saving compared to the 

exhaustive manual detection of extrusions (~10 hours for a trained user (Valon et al., 

2021) versus approximately one hour of manual correction with DeXtrusion).  

Generalisation of DeXtrusion to mutant contexts and other epithelia 

The performance of a neural network is usually highly limited to the training data range 

and cannot easily generalise to other conditions/tissues not represented in the training 

dataset (Mockl et al., 2020). To test the capacity of generalisation of DeXtrusion, we 

challenged our pipeline by testing its performance on different data from relatively 

similar biological conditions to very different biological contexts. We first trained two 

“full” networks, using all our annotated data (training+test dataset). To adapt 

DeXtrusion to other tissues (Fig. 4A) where the cell size and duration of cellular events 

are not of the same scale, the reference scale at which movies are resized is calculated 

so that cell diameter is around 25 pixels and extrusion taking place over 4-5 frames. 

We first tested DeXtrusion on Drosophila pupal notum depleted for EGFR (UAS-



EGFR-dsRNA driven by pnr-Gal4), a condition that modifies tissue shape and the 

spatiotemporal distribution of extrusion while not affecting so much the extrusion 

process per se (Moreno et al., 2019; Valon et al., 2021). We obtained an overall good 

detection level in this context (Fig. 4A,B,B’,E Movie 2). Since annotated data do not 

exist for these movies, we randomly sampled the prediction results to manually check 

the events (see Material and Methods). Using this method, we estimated that 87% of 

extrusion detections were correct (precision=0.87, Fig. 4E). We further challenged 

DeXtrusion using the Drosophila pupal wing, an epithelial with similar cell shape and 

size to the pupal notum (Aigouy et al., 2010; Etournay et al., 2015; Farhadifar et al., 

2007) (Fig. 4A,C,C’, Movie 3). Using a previously published movie of E-cad::GFP 

pupal wing (Etournay et al., 2015), we obtained a precision of 0.786 (excluding ROIs 

outside the wing, see Material and Methods, Fig. 4E) and an estimated recall of 0.85 

(estimated on 59 extrusions manually annotated). These scores could be significantly 

improved by retraining DeXNets on a small proportion of manually annotated 

extrusions and divisions from the pupal wing (75 events), reaching a precision of 0.91 

and an estimated recall of 0.83, Fig. 4E, Movie 3 and Material and Methods). 

We further challenged DeXtrusion by testing its performance on a squamous epithelial, 

the larval epithelial cells of the pupal abdomen, where cells have very different shapes 

from the pupal notum and where extrusions occur through slightly different 

mechanisms (Hoshika et al., 2020; Michel and Dahmann, 2020; Teng et al., 2017; 

Villars et al., 2022) (Fig. 4 A,D,D’). This test was conducted on 4 movies from (Davis 

et al., 2022; Tapon and Salbreux, 2022) focusing exclusively on the larval epidermal 

cells. After proper rescaling, we obtained a precision of 0.737 but obtained a low recall 

of 0.38 (using available segmentation and annotation (Davis et al., 2022; Tapon and 

Salbreux, 2022), despite adjusting the threshold distances (spatial and temporal) to 

the scale of the movie (see Material and Methods). This may reflect the difference in 

cell morphology (long and curved junctions) and dynamics of extrusion (progressive 

loss of E-cad and rounding, (Teng et al., 2017) , Fig.4 D’). To adapt DeXtrusion to 

these cells, we retrained our DeXNet models using the annotated extrusions of one of 

the four movies. The precision increased to 0.857 and the recall nearly doubled to 0.69 

(Fig. 4E, Movie 4). Increasing the retraining data to 2 movies continued to improve the 

performance but less drastically (precision of 0.86 and a recall of 0.74). 



Altogether, this demonstrates that DeXtrusion can robustly detect extrusion events on 

various tissues and conditions. For situations where cell shape and the profile of 

extrusions are very different, few additional trainings are sufficient to reach back good 

precision and recall, illustrating the adaptability of DeXtrusion. 

Discussion 

DeXtrusion allows fast and precise detection of cell extrusions in a wide range of 

imaging conditions without any need for segmented dataset and can also detect 

accurately other cellular events (SOPs, cell divisions). While our precision (~0.8) still 

requires a manual correction phase to filter out false positives, this leads to a 

considerable gain of time compared to the manual annotation of large movies (from 10 

hours to 1 hour). This opens new opportunities for systematic quantification of the 

spatiotemporal distribution of cell death in a large number of movies. DeXtrusion offers 

the possibility to screen for drugs/mutations affecting the spatiotemporal distribution of 

cell death and could lead to the identification of new biological factors modulating cell 

apoptosis and new spatiotemporal feedbacks. While we extended DeXtrusion to detect 

cell divisions and SOPs with the aim of improving our precision, these additional 

features can also be handy to analyse the spatiotemporal interplay between these 

three cellular events, for instance regarding the coupling between cell death and cell 

division and compensatory proliferation (Fan and Bergmann, 2008; Kawaue et al., 

2021; Mesa et al., 2018). Combining such large datasets with graph neural network 

(Yamamoto et al., 2022) and spatiotemporal point pattern analysis and modelling 

(Valon et al., 2021) may eventually help to rapidly detect new spatiotemporal couplings 

at various x-y-t distances. Note however that we did not estimate the precision/recall 

of our pipeline to detect these other cellular events as it was not the initial scope of our 

study.  

We challenged DeXtrusion to detect extrusions in other tissues and/or new genetic 

backgrounds and demonstrated how easily it could be adjusted using, when 

necessary, minimal retraining datasets (by manually detecting few events and without 

need for segmentation). This also included epithelia with very different architectures 

(cuboidal in the notum, squamous in larval epidermal cells). We have not tested the 

performance of DeXtrusion on tissue with different labelling (e.g.: membrane, actin), 

yet a reasonable retraining may be enough to readjust the pipeline for a wide range of 



tagged proteins. Alternatively, integrating purely geometrical features in the training 

dataset (through segmentation of a large number of extrusions/divisions/SOPs and 

integrating skeletonised sequences in the training) may help to build a more generalist 

model less sensitive to the tagged protein and the variation of fluorescence intensity. 

While collecting enough segmented data may be time-consuming, it could be a very 

promising alternative method to build a very generalist model. Introducing manually 

defined features into the neural network could also be an interesting approach to 

increase the network performance (Huang et al., 2022) but would require more 

computation to extract the hand-crafted features. While we have limited our detections 

to extrusions, divisions and SOPs, the same pipeline could easily be trained to 

recognise new cellular events. Of note, the detection of cell extrusion is particularly 

challenging since the deformations associated with cell extrusion are not so 

stereotypical: some cells constrict isotropically and form clear rosettes, others constrict 

while elongating and losing progressively cell-cell junctions (Levayer et al., 2016; 

Marinari et al., 2012; Villars et al., 2022), as opposed for instance to cell divisions which 

are always preceded by cell rounding. We are therefore quite confident that our 

methodology could be very performant on a wide range of epithelial events.  For 

instance, a significant proportion of false positives were related to local cell 

rearrangements and T1 transitions (Guirao and Bellaiche, 2017). Adding this new 

feature could not only increase the precision of our pipeline but also offer an interesting 

tool for large-scale analysis of tissue dynamics and the evolution of fluidity in time and 

space (Tetley et al., 2019). Very interestingly, Gallusser et al. (Gallusser et al., 2023) 

proposed recently a self-supervised pipeline to capture automatically the presence of 

an event based on their asymmetric signature in time. Filtering the movie to keep only 

potential events with their framework before to perform the event classification through 

DeXNet could be an additional boost to our pipeline. 

The workflow that we developed here for extrusion detections can be applied to any 

other biological event detection, provided that enough training data are available, 

without the need for segmentation. Moreover, the high rate of false positives of our 

initial pipeline revealed the difficulty of detecting one particular type of un-frequent 

event in a movie containing potentially other events. The strategies we applied to 

improve the precision (classifying other cellular events as well, reinforcement of the 

training by including other typical false positives, e.g. transient cell deformations, and 



averaging the prediction of several networks) led to a drastic increase in the prediction 

precision (~3-folds increase). To our knowledge, these methods were not so commonly 

used before in deep learning context and could in principle be applied to any other 

machine learning pipeline. By distributing DeXtrusion open-source, we offer an 

optimised pipeline that can be easily tuned to detect biological events in temporal 

series without segmentation and tracking.  

Material and Methods 

Generation of the training dataset 

To create an annotated dataset, we used movies that had been previously manually 

annotated for extrusions in the laboratory for other studies (Moreno et al., 2019; Valon 

et al., 2021; Villars et al., 2022). Pupae were dissected and imaged on a confocal 

spinning disc microscope (Gataca systems) with a 40X oil objective (Nikon plan fluor, 

N.A. 1.30) or 100X oil objective (Nikon plan fluor A N.A. 1.30) or a LSM880 equipped 

with a fast Airyscan using an oil 40X objective (N.A. 1.3), Z-stacks (1 μm/slice). All the 

movies were built using a local z-projection plugin which follows tissue curvature 

(Herbert et al., 2021). We pooled together 32 movies, all from the Drosophila pupal 

notum, but with different acquisition setups, genetic backgrounds and junctions 

staining. The full list of movies and their characteristics is given in Supplementary 

tables 1 and 2. We split the annotated data into two datasets, one for training 

(Supplementary table 1) and a smaller one for testing (Supplementary table 2). For 

this, we selected randomly one movie of each of our different conditions for the test 

set, and all remaining movies of the same condition were used for training. We 

obtained two datasets: the training set of 25 movies, with 6692 annotated extrusion 

events from 8 different conditions, and a test set of 7 movies, with 2320 annotated 

extrusions from 7 different conditions. These data with the manual annotation are freely 

available on a repository (https://doi.org/10.5281/zenodo.7586394) (Villars et al., 

2023). Detection of cellular events (extrusion, SOPs, cell division and control regions) 

were performed manually on Fiji using dot ROIs and extracting x,y,t coordinates. For 

extrusion, the point of termination of apical constriction was manually clicked. For cell 

division, the center of the dividing cell just prior to cytokinesis (beginning of furrow 

constriction) were clicked. For SOPs, no specific time points were picked and all the 

https://doi.org/10.5281/zenodo.7586394


SOPs stage were randomly selected (from the first asymmetric division events to the 

late SOPs) by clicking in the center of the cell with the smallest apical area.  

For each network training, the training dataset was split in 75-25% between training 

and validation data. Note however that these two subsets were not fully independent 

as they are composed of windows extracted from the same movies (training movies). 

Training image sequence generation  

To generate training image sequences from the ROI files and not keep all the movies 

in the running memory, we implemented a movie generator 

(MovieGeneratorFromRoi.py). It randomly selects the ROI from the input file (after 

manual detection of events on Fiji, see above) and saved a cropped image sequence 

centred around that point, with a small spatial and temporal random shift (so that the 

event is not perfectly centred in the window to limit a bias toward the centre of the 

image). For control (no event) windows, positions are randomly drawn in the movie 

and kept if there is no ROI in it.  

Data augmentation 

Movie augmentation  

The movies acquired at higher spatial and temporal resolution are much smaller 

compared to the majority of movies once rescaled in the reference scale. As such, this 

kind of data was under-represented in the training data, with only a few events per 

movie. To reduce this bias, we doubled these movies by downsampling temporally 

each original movie two times and introducing a shift in the frames extracted between 

the two repetitions. These movies are indicated with “_aug” at the end of the names in 

the available dataset. 

Image sequences augmentation 

We also performed data augmentation on the training cropped image sequences. To 

augment the generalisation of the training, the augmentation was done on each 

training window with the addition of small temporal and spatial shifts, gaussian noise, 

white/black squared, and illumination on all windows or one time-frame. 

Data imbalance 



The events that we classified (nothing, extrusion, division, SOP) do not have the same 

frequency in all movies. To reduce the possible imbalance between the representation 

of these events in the training data, we reduced the number of windows of each over-

represented event used in the training to have a number of training data similar than 

the less represented events. This option can be turned off in the pipeline with the 

boolean parameter “balance”. 

Data rescaling 

To homogenise the training dataset and have events of similar duration/size, we 

rescaled all our dataset to the same temporal and spatial resolution of 5 min/frame and 

0.275 µm/pixel. Rescaling of the movies and ROIs was done with a Fiji macro. DeXNet 

networks were trained with input windows of this reference scale. A division event was 

visible on 2 to 3 time-frames, cell extrusion on 4 to 5 frames, and a cell had a typical 

diameter of 25 pixels. Therefore, the DeXtrusion pipeline must rescale all the movies 

to this reference scale before applying the classification. Since characteristic event 

durations and cell sizes can vary between tissues/organisms, we used these “cellular” 

features for rescaling rather than absolute times or distances. 

Data to test generalisation 

We tested the robustness of DeXtrusion to different unseen datasets. The first dataset 

was composed of 5 movies of Drosophila pupal notum depleted for EGFR (UAS-

EGFR-dsRNA) (Valon et al., 2021). We do not have manual annotations on these 

movies, so they were not used in the training data. However, 3 movies in the original 

dataset were acquired with the same imaging and genetic conditions. This dataset was 

thus considered very similar to the training data.  

The second dataset was a large movie of the Drosophila pupal wing from (Etournay et 

al., 2015) (3879x1947 pixels, 200 time-frames). This tissue was not represented in the 

training data, but the organisation of the epithelium and cell shape is very similar to the 

pupal notum. This dataset was considered similar to training data. We manually 

annotated a few extrusions (59) spanning the movie to evaluate the recall of 

DeXtrusion in this sample. We extracted a small part of the movie (495x444 pixels and 

200 frames) and annotated this cropped movie to use as retraining data with 28 

extrusions, 29 divisions and 19 additional controls for reinforcement. It is important to 

point out that the retraining window being inside the tested movie does not allow to 



assess the performance of the retraining on fully independent data. Moreover, two cell 

extrusions of the 28 used for retraining were also present in the 59 used for testing, 

thus slightly biasing the performance assessment. Note that the field of view of the 

movie contains the whole wing but also external tissue on the top and bottom parts. 

We focused the quantification only on the ROIs that were fully inside the wing.  

The third dataset was composed of four movies of larval epithelial cells (LECs) of the 

Drosophila pupal abdominal (Davis et al., 2022). The annotation of cell extrusions in 

the larval epidermal cells was obtained using the segmentation mask provided in the 

original dataset (Tapon and Salbreux, 2022) through tissue miner (Etournay et al., 

2016). We focused our test only on larval cells and excluded histoblasts (the nest of 

small cells) since there is hardly any extrusion in this population and decided to focus 

on cells different from the pupal notum. We estimated the typical cell diameter of the 

larval cells to 80 pixels and the extrusion duration to 10 time-frames and used these 

values to rescale the movies for the pipeline. To estimate the Recall, we compared 

DeXtrusion outputs with the generated extrusion annotations on the original movie. 

However, since cell size and extrusion durations were much higher in these movies, 

we adjusted the thresholds of spatial and temporal distances to count matching 

detection (50 pixels xy distance, ~half a cell, and 8 time-frames). Note that the scores 

were always calculated on the 4 movies, even when some were used in the retraining 

data which could induce a slight positive bias. However, the 2 movies used for 

retraining were the ones on which DeXtrusion results were best even before retraining, 

and the most drastic improvements came from the 2 other movies.  

DeXtrusion source code  

DeXtrusion is available open-source on gitlab at 

https://gitlab.pasteur.fr/gletort/dextrusion under the BSD-3 license. The trained neural 

networks, Jupyter notebooks and Fiji macros to use DeXtrusion are available and 

described in this repository. DeXtrusion main code is deployed as a python module 

that can be installed through the pip installer package: 

https://pypi.org/project/dextrusion/. Instructions to install and use DeXtrusion are given 

in our gitlab repository.  

To ease its usage, we proposed Jupyter notebooks that are dedicated to tasks such 

as network training, retraining or DeXtrusion detection on new movies. To visualize the 

https://gitlab.pasteur.fr/gletort/dextrusion


results as probability maps or ROIs, Fiji macros are also available. To handle 

input/output between our python code and Fiji, we used two specific python modules 

in our pipeline: “roifile” (Gohlke, 2022a) and “tifffile” (Gohlke, 2022b).   

DeXNet architecture and training 

Initial training 

To categorize sliding windows by taking into account temporal information, we based 

the architecture of our neural networks on the Gated Recurrent Unit (GRU) architecture 

(Cho et al., 2014). We tested different variations of the architecture and 

hyperparameters (e.g.: number of layers, number of features by layer, number of 

epochs, size of the sliding windows). The final architecture is represented in Fig. 1C 

and the full detailed architecture can be found in the source code in the Network.py 

file. The parameters used for training one network are summarised in the configuration 

file associated with each DeXNet. For training the neural network to categorise the 

window as containing an event or not, we used the categorical cross-entropy loss. The 

number of event classified by DeXNet (control/extrusion, or control/extrusion/SOP or 

control/extrusion/SOP/division) was managed in the network architecture simply by 

fixing the size of the final output vector (Fig. 1C, last layer). This final layer is the result 

of a “softmax” function, so its values (2, 3 or 4 values) will add up to 1, like probabilities 

of event. 

In our Gitlab repository, we proposed 2 DeXNets trained for controls and extrusions 

classifications (notum_Ext, used for Fig. 1 and Fig. 2), controls, extrusions and SOPs 

classifications (notum_ExtSOP, Fig. 3), controls, extrusions, SOPs and cell divisions 

classifications (notum_EXTSOPDiv, Fig. 3), and trained on all events and all data (train 

and test) pooled together (notum_all, used for Fig. 4). 

Optimisation and retraining 

The number of categories within the model can be easily tuned by the user and only 

affects the last layer (densely connected layer) leading to the final prediction. As a 

result, it is easy to add new classes of cellular events to train or retrain the model and 

do predictions of these events without affecting the overall architecture of the model. 

We used that strategy in order to add the prediction of SOPs and division which were 

often wrongly labelled as extrusion (false positives) by the pipeline. We then extended 

that idea by manually selecting events classified as extrusions that were in fact “no 



events” in the training data. We selected typical false positive events (e.g. transient cell 

constriction, loss of focus at the border of the tissue) and forced their classification as 

“no events” by adding them to the training dataset. Finally, the inherent stochasticity of 

the training (time sequences generated, weight initialisation, stochastic gradient 

descent) generates a diversity of final models even when trained on the same dataset. 

We used that opportunity in order to further optimise the pipeline by training different 

models on the same dataset. The two best ones were then combined in the pipeline 

making independent predictions on the input movies. The output probability maps are 

then simply averaged which increases the robustness of the model.  

Evaluation of DeXtrusion results 

DeXNet evaluation 

The performance of DeXNet networks was measured by the accuracy of the results 

during training, and with the confusion matrix of the classifications on the test dataset 

after training (Fig.1E). 

Pipeline evaluation 

Comparison with manual annotations 

To estimate the quality of DeXtrusion detections, we computed the accuracy 

((TP+TN)/(TP+TN+FP+FN)), the precision (TP/(TP+FP)) and recall (TP/(TP+FN)) of 

the resulting ROIs compared to manual annotated ROIs (TP: True Positive, TN: True 

Negative,  FP: False positive, FN: False Negative). ROIs were considered to be the 

same (between results and manual annotations) if they were within a spatial distance 

of 15 pixels and a temporal distance of 4 frames (in the reference scale). The Jupyter 

notebook dextrusion_CompareRois.ipynb allows us to calculate these scores and to 

choose the threshold distances to consider ROIs as the same. To consider both 

precision and recall at once, we also measured the F1-score (TP/(TP+(FP+FN)/2)) to 

evaluate the performance of our pipeline. 

Measure of False Positive without manual annotations 

For movies on which we do not have manual annotations, we cannot measure the 

recall as this would necessitate full annotations of all the events. We estimated the 

percentage of False Positive detections by selecting randomly a high number of 

resulting ROIs and examining each ROI manually to decide if the hit was correct or 



not. The Fiji macro deXtrusion_scoreROIs_Random.ijm allows to do it and gives the 

resulting percentage. 

DeXNet Optimisation 

Once the model architecture was fixed, we optimised most of the model parameters to 

achieve the best possible results on the prediction of extrusion. For this, we started 

with the optimisation of the exploration time window (Fig. S1 A-D) as it is the first input 

of the model. We tested different size of the time window and kept a size of 10 (a good 

compromise between best score and calculation time). The training gave the best 

results when the exploration window was temporally centered on extrusion (5 frames 

before, 5 frames after) (Fig. S1 E-G). We then used this parameter to assess the effect 

of the window's xy size. The best results were obtained for a half size of 21px. While 

this parameter does not yield the best precision (Fig. S1H), it gives the best recall out 

of all parameter values explored (Fig. S1I). Recall was the metric we tried to optimise 

the most to avoid missing any extrusion. Moreover, the prediction time increased 

linearly with the window size (Fig. S1J). As a result, once pondered by time 

(precision*recall/prediction time), a size of 21px appears as the best value (Fig. S1K).  

We then explored the impact of the different model thresholds on the model results 

(Fig. S2). We first fixed a volume threshold of 800px to assess the impact of the 

probability threshold (Fig. S2A-C). While the best f1-score is obtained for a probability 

threshold of 200, it comes at the expanse of a lower Recall (Fig. S2A & C). Thus, we 

set up to use a value of 180 for that parameter (second best but higher Recall, Fig. 

S2A) and then explore the impact of the volume threshold following similar reasoning, 

which led us to pick a value of 800 for that parameter.  

Finally, we tried to optimise the hyperparameters (parameters of the model for training) 

(Fig. S3). First, we explore hyperparameters during the training of a model predicting 

only 2 classes (extrusions vs nothing). After parameters exploration we selected an 

augmentation of 3 (Fig. S3A), a number of epochs of 40 (Fig. S3B), a number of initial 

CNN filters of 8 (Fig. S3C) and a number of reinforcements of 5 (Fig. S3D). We then 

optimised the model by adding new predicting classes (SOPs and division, Fig. 2) and 

thus applied the same approach to the model prediction with 4 classes (extrusions, 

SOPs, divisions, nothing). Changing the number of epochs had a very limited impact 



and we therefore kept a number of 40 epochs for the final model and an augmentation 

of 2.  

All selected parameters are summarized in Supplementary table 3.  
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Figure legends 

Figure 1: DeXNet, a neural network to recognise cell extrusions in image 

sequences in epithelia.  

A: Snapshot of a developing Drosophila pupal notum marked with E-cad::GFP (Knock-

in) with overlaying extrusions manually detected over 16h of development. Histograms 

represent the distribution of cell extrusion along the anteroposterior axis (bottom 

histogram) and along the left-right axis (right histogram) for a total of 720 extrusions. 

Scale bar=50 µm. 

https://doi.org/10.25418/crick.c.5787494.v1
https://doi.org/10.5281/zenodo.7586394


B: Representative image sequence centred on an extrusion event (top row, blue arrow 

points at the end of extrusion), or representing a control sequence with no event 

(bottom row). The time is given in frame (here, one frame=5 minutes). Scale bar=5 µm. 

C-C’: Schematic of the model architecture called DeXNet. C. Main model. The image 

sequence composed of 10 time-frames (T) of 45 by 45 pixels (px) is passed first to a 

CNN detailed in C’ which encodes each image of the sequence in a vector of 64 

features. The resulting matrix for the sequence (10Tx64, representing 10 time-points) 

is itself fed into a Gated Recurrent Unit (GRU) to consider temporal information. This 

is then passed to a dropout normalisation layer before going through a sequence of 

densely connected layers (dense). Finally, it predicts with a probability whether the 

input sequence is an extrusion or not. C’: Detailed architecture of the encoding CNN. 

Each image in the sequence goes into a sequence of convolution (Con2D), Batch 

normalisation and max pooling (MaxPool, all this is repeated 4 times). The convolution 

was made using n=8 filters which are multiplied by 2 at each layer thereby increasing 

the first dimension (8,16,32,64) while the max pooling reduces the other dimension 

(45,22,11,5). Finally, this output (64x5x5) goes through a final step of max pooling 

encoding the image in a final vector of dimension (1x64).  

D: loss (left y-axis) and accuracy (right y-axis) curves for training data (bold lines) and 

validation data (dotted lines). The loss function is an estimation of the distance between 

the prediction and the real data (equivalent to an error estimation). Accuracy is defined 

by the proportion of correct predictions out of all the predictions (see Material and 

Methods). 

E: Confusion matrix showing the accuracy of the DeXtrusion model. Orange-coloured 

boxes show the number of correctly predicted events (light orange are True Negatives, 

darker orange shows True Positives). Grey events are the number of Wrongly 

predicted events (light grey are False Negatives and darker grey show False 

Positives).  

F: Representative image sequences showing example events for each cateogry in E 

(TN: True Negatives − Events correctly classified as controls, TP: True Positives − 

Extrusions events correctly classified as extrusions, FN: False Negatives − Extrusions 

wrongly classified as control events, FP: False Positives − Control events wrongly 

classified as extrusions).  Scale bar=5 µm. 



Figure 2:  DeXtrusion pipeline to detect extrusions on full movies.  

A: Schematic representation of the DeXtrusion pipeline. The input movie is first 

rescaled to the reference scale. Then, cropped image sequences are extracted, 

spanning the entire movie with an overlap both spatially and temporally. Each image 

sequence is then processed through our neural network DeXNet. The resulting 

probability of the presence of an extrusion is added around the central position of the 

image sequence to build a probability map on the entire movie, before rescaling it to 

the original movie size. Single point events can also be generated by taking the 

centroids of high probability volumes in the probability map and exported as a Fiji ROI 

file. 

B: Projection of a resulting probability map. Snapshot of the input movie, an epithelium 

labelled with E-cadherin-GFP (left) with the corresponding probability map (right). 

Probabilities are drawn as a color map, with values converted to 0 (black) - 255 (white) 

scale for visualisation. Scale bar=50 µm. 

C,C’: Example of a correctly detected extrusion (C) and a False Positive detection (C’, 

here a Sensory Organ Precursos, SOP). Image sequences of E-cadherin::GFP (top) 

from the original movie cropped around a correctly (C) or wrongly (C’) detected 

extrusion event and corresponding extrusion probability (bottom). Probabilities are 

colour coded from 0 (black) to 255 (white). White arrows indicate detected events. 

Scale bar=5 µm. 

D,D’: 2D histogram of the spatio-temporal distances between manually annotated 

extrusions and DeXtrusion results on the 7 test movies. The colour code represents 

the number of extrusions detected within a given temporal distance (x-axis, in time 

frames, 1 frame=5 minutes) and a given spatial distance (y-axis, in pixels, 1 

pixel=0.275m). The red dotted rectangle represents the events that are considered 

as matching with a manually annotated event (below the spatial and temporal 

threshold, see Material and Methods). The histogram of distribution for spatial 

distance is shown on the right, and the one for temporal distance is on the top. The 

thresholds are represented with red dotted lines. D’: close-up view of the histograms 

of spatial and temporal distances to the area that contains the most observations (see 

grey square in D).  



E: Cumulative number of extrusions during developmental time for DeXtrusion results 

(red) and manually annotated one (blue). Extrusions were detected on one test movie 

of 942*942 pixels and 200 frames.  

F: Average absolute difference of the number of extrusions over time between 

DeXtrusion detections and manually annotated extrusions. From all test set movies 

(binned every 10 min from the start of the movie).  

Figure 3: Optimisation of the model for the detection of extrusions 

A-D: Image sequence events predicted as extrusion correctly (A) or not (B-D) by the 

initial DeXnet trained on 2 classes only (extrusion or no event). Top rows of each panel 

represent the image sequence, bottom rows represent the probability maps obtained 

by DeXtrusion. Scale bar= 5 µm. A: Image sequence representing an extrusion and its 

associated probability map. Yellow arrows point at the apical closure of the extruding 

cell. B: Image sequence representing a forming Sensory Organ Precursor (SOP) 

wrongly predicted as an extrusion and its associated probability map. Yellow arrows 

point at the small cell of the SOP which constricts and leads to misclassification. C: 

Image sequence representing a dividing cell wrongly predicted as an extrusion and its 

associated probability map. Yellow arrows point at the furrow formation during 

cytokinesis. D: Image sequence representing a control event wrongly predicted as an 

extrusion and its associated probability map.  

E-E’’: Changes in the model to optimise its prediction scores on extrusion. E: f1-score. 

E’: Recall, E’’: Precision, with the initial two-class model (ext: extrusions and no event), 

the inclusion of SOPs (ext, SOP: extrusions, SOPs, and no event), the inclusion of 

SOPs and cell divisions (ext, SOP, div: extrusions, SOPs, cell division and no event), 

including the 3 cellular events and reinforcement (reinforcement, see below), and using 

two independent networks (2net, see below). The results are shown for the best-trained 

network for each class model (see Fig. S2 G-I for the averaged). 

F-F’: Schematics of the steps added to the 4 classes model to increase its f1-score on 

predicting extrusions. F: Reinforcement consists in taking regions covering no event 

misclassified as extrusion, cropping them and adding them to the training set with a 

control label. This forces the model to learn that the previously misclassified events 

are in fact controls (no event). F’: 2nets uses the two best independently trained 



models (stochasticity results in models with slightly different weights and biases), and 

averages the probability map from these two models.  

G: Image sequence showing the results of DeXtrusion predictions after optimisation, 

of extrusions (orange), cell divisions (pink) and differentiation (SOPs, blue) on the full-

scale movie (pupal notum, local projection of E-cad::GFP) and overtime. Time is shown 

in hours After Pupal Formation (hAPF).  Scale bar= 50 µm.  

Figure 4: Generalisation of DeXtrusion to mutant context and other epithelia 

A: Schematic of a Drosophila pupa highlighting the different epithelia on which the 

model was tested. The model was trained on the notum (grey) and tested on the pupal 

wing (blue) and finally on the abdominal Larval Epithelial Cells (LECs, green).  

B-D’: Example image sequences of the different tissues used to test the generalisation 

of DeXtrusion and the corresponding extrusion phenotypes.  B: Pupal notum 

epithelium expressing a RNAi against EGFR. Scale bar=50 µm. B’: Example image 

sequence showing an extrusion cropped from B. Scale bar=5 µm C: Pupal wing 

epithelium from (Etournay et al., 2015). Scale bar=50 µm. C’: Example image 

sequence showing an extrusion from C. Scale bar=5 µm. D: Pupal abdomen epithelium 

extracted from (Davis et al., 2022), results were computed only for LECs (bigger cells) 

excluding the histoblasts (smaller cells). Scale bar=50 µm. D’: Example image 

sequence showing an extruding LEC from D. Scale bar=10 µm. 

E: Manually computed precision for the prediction on the different tissues with 

increasing differences compared to the tissues for which DeXtrusion was trained on. 

Green shows the precision of DeXtrusion for notum expressing a RNAi against EGFR 

(example shown in B-B’). Light blue is the precision of DeXtrusion for the pupal wing 

epithelium (example shown in C-C’). Dark blue is the precision of DeXtrusion on the 

same tissue after retraining the model on a subset of extrusions. Light purple is the 

precision of DeXtrusion on LECs (example shown in D-D’). Purple is the prediction on 

the same tissue after retraining. Darker purple is the prediction on the same tissue after 

retraining and reinforcement.  
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Figure S1: Optimisation of the search window size for extrusion detection 

A: Confusion matrix showing the accuracy obtained for different temporal size of the 

search window (from 2 to 18 time frames). Orange-coloured boxes show the number 

of correctly predicted events (light orange are True Negatives, darker orange shows 

True Positives). Grey events are the number of Wrongly predicted events (light grey 

are False Negative and darker grey show False Positives). The total number of 

prediction as well as the proportion is given in each case. These values were obtained 

for a single round of network training for each condition. 

B-D:  Optimisation of the temporal size of the search window (from 2 to 18 time 

frames). For each duration, the Precision (B), Recall (C), and time of calculation (ms 

per block) (D), were estimated on the test dataset. Note that the trainings were not 

performed on the same set up as in Figure S1 G,J so the absolute time cannot be 

compared between these panels.  Box plots show the median, the first and third 

quartile. Top and bottom bars are the maximal and minimal value. Diamonds are 

outliers. 

E-G:  Optimisation of the temporal positioning of the search window according to the 

termination of extrusion (manually detected, end of apical area closure), number of 

frames before or after the extrusion detection point. For each position, the Precision 

(E), Recall (F), and time of calculation (ms per block) (G), were estimated on the test 

dataset. The optimum was obtained for a search window centered on extrusion 

termination (5,5). Box plots show the median, the first and third quartile. Top and 

bottom bars are the maximal and minimal value. Diamonds are outliers. 

H-K: Optimisation of the size (x y) of the square search window (half size in pixel after 

rescaling, 1 pixel=0.275 m). For each position, the Precision (H), Recall (I), and time 

of calculation (ms per block) (J), were estimated on the training dataset. We computed 

then a ponderated parameter (K, see Material and Methods) which takes into account 

precision, recall and calculation time which peaks for 21px. Box plots show the median, 

the first and third quartile. Top and bottom bars are the maximal and minimal value. 

Diamonds are outliers. 
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Figure S2: Optimisation of probability thresholding for extrusion detection and 

detection of new categories of cellular events 

A-C:  Optimisation of the probability threshold used to assign an extrusion event. For 

each threshold, the f1 score (A), precision (B), and recall (C), were estimated on the 

test dataset. The optimum f1 score was obtained for 200 (a.u.), however we used 180 

in all the rest of our pipeline as we wanted to maximise the recall. Box plots show the 

median, the first and third quartile. Top and bottom bars are the maximal and minimal 

value. Diamonds are outliers. 

D-F: Optimisation of the threshold probability volume (x-y-t) used to detect extrusion 

event (in voxel, xy pixel=0.275m, t=5 minutes). For each volume, the f1 score (D), 

precision (E), and recall (F), were estimated on the test dataset. The optimium for the 

f1score was obtained for 1200, however we used a threshold of 800 for all the rest of 

the pipeline to maximise the recall. Box plots show the median, the first and third 

quartile. Top and bottom bars are the maximal and minimal value. Diamonds are 

outliers. 

G-I: Changes in the model to optimise its prediction scores on extrusion. G: f1-score. 

H: Recall, I: Precision, with the initial two class model (ext), the inclusion of SOPs (ext, 

SOP), the inclusion of SOPs and cell divisions (ext, SOP, div), including the 3 cellular 

events and reinforcement (see main text), and using two independent networks (2net). 

The results shown are the compiling of the prediction of all the testing dataset 

processed through 4 independent trained networks (except for 2net, which used only 

one pair of networks). Box plots show the median, the first and third quartile. Top and 

bottom bars are the maximal and minimal value. Diamonds are outliers. 
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Figure S3: Optimisation of the hyperparameters of DeXNet 

A-F: Optimisation of the hyperparameters of DeXtrusion to maximise the precision and 

the recall. For each set of parameters, the f1 score, Recall and Precision were 

estimated on the test dataset either for the DeXNet trained only for extrusion detection 

(A-D) or the DeXNet detecting the four categories of events (extrusion, SOPs, division, 

control) (E-G). The parameters used in this study are summarized in the 

Supplementary  table 3. These parameters include the number of augmentations of 

the data (A, F), the number of epochs for model fitting (B, E), the number of CNN filters 

(C), and the number of reinforcements (D, G). Box plots show the median, the first and 

third quartile. Top and bottom bars are the maximal and minimal value. Diamonds are 

outliers. 

 



Movie legends 

Movie 1: Probability map of extrusions, SOPs and divisions in a WT pupal notum 

Local projection of a pupal notum expressing E-cad::GFP (grey) overlayed with the 

probability map of detection of extrusions (yellow), cell divisions (magenta) and SOPs 

(cyan). E-cad channel is shown separated on the right. Anterior, left and posterior right. 

Scale bar=30m. 

Movie 2: Probability map of extrusions, SOPs and divisions in an EGFR depleted 

pupal notum 

Local projection of a pupal notum depleted for EGFR (pnr-Gal4, UAS-EGFRdsRNA) 

expressing E-cad::GFP (grey) overlayed with the probability map of detection of 

extrusions (yellow), cell divisions (magenta) and SOPs (cyan). E-cad channel is shown 

separated on the right. Anterior, left and posterior right. Scale bar=30m. 

Movie 3: Probability map of extrusions, SOPs and divisions in a pupal wing 

z-projection of a WT pupal wing expressing E-cad::GFP (grey) from (Etournay et al., 

2015), overlayed with the probability map of detection of extrusions (yellow) and cell 

divisions (magenta). E-cad channel is shown separated on the bottom. Distal on the 

right, proximal on the left. Scale bar=50m. Note that we only took in consideration the 

probability overlapping the wing. 

Movie 4: Probability map of extrusions in the larval epidermal cells of the pupal 

abdomen 

z-projection of a WT pupal abdomen expressing E-cad::GFP (grey) from (Davis et al., 

2022) overlayed with the probability map of detection of extrusions (yellow). E-cad 

channel is shown separated on the bottom. Scale bar=50m. Note that we only used 

the prediction in the LECs and ignored the histoblasts (small cells in the clusters on 

the left). The cell scale used for this prediction is suboptimal for histoblasts. 



Supplementary table 1
Movie Microscope Marker Pixel size (µm) Frame rate (seconds) Genotype extrusion Cell division SOP Nothing Total # events/movie

1 LSM 880 ubi-Ecad::GFP 0.1037427 60 UAS-hid-RNAi 36 74 60 170
3 spinning disk ubi-Ecad::GFP 0.275 300 WT 720 237 279 1236
4 spinning disk ubi-Ecad::GFP 0.275 300 Gal80ts 223 170 196 47 636
5 spinning disk ubi-Ecad::GFP 0.275 300 Gal80ts 385 62 266 54 767
6 spinning disk ubi-Ecad::GFP 0.275 300 Gal80ts SPASTIN 563 96 327 26 1012
8 LSM 880 ubi-Ecad::GFP 0.1037427 60 UAS-hid-RNAi 40 3 37 11 91
9 LSM 880 Ecad::GFP(KI) 0.1037427 60 sqh-mCherry 35 40 33 108

10 LSM 880 Ecad::GFP(KI) 0.1037427 60 sqh-mCherry 40 79 68 187
11 LSM 880 Ecad::GFP(KI) 0.1037427 60 sqh-mCherry 18 100 8 26 152
12 LSM 880 Ecad::tdTomato(KI) 0.1037427 20 jupiter-GFP 20 46 40 6 112
13 LSM 880 Ecad::tdTomato(KI) 0.1037427 20 jupiter-GFP 34 117 99 6 256
14 LSM 880 Ecad::tdTomato(KI) 0.1037427 20 SAS4-GFP 59 36 103 9 207
16 LSM 880 Ecad::tdTomato(KI) 0.1037427 300 colcemid 215 45 260
17 LSM 880 Ecad::tdTomato(KI) 0.1037427 300 colcemid 203 203
19 spinning disk Ecad::tdTomato(KI) 0.275 300 UAS-hid-RNAi ctrl inj 104 123 60 22 309
20 spinning disk Ecad::tdTomato(KI) 0.275 300 UAS-hid-RNAi ctrl inj 82 116 80 5 283
21 spinning disk Ecad::tdTomato(KI) 0.275 300 UAS-hid-RNAi ctrl inj 77 487 109 10 683
23 spinning disk Ecad::GFP(KI) 0.275 300 Gal80ts SPASTIN 566 40 297 903
24 spinning disk Ecad::GFP(KI) 0.275 300 Gal80ts SPASTIN 464 305 166 25 960
25 LSM 880 Ecad::GFP(KI) 0.18 300 WT 486 331 103 920
27 LSM 880 Ecad::GFP(KI) 0.18 300 WT 878 260 165 1303
28 LSM 880 Ecad::GFP(KI) 0.18 300 EGFR-RNAi 435 60 107 26 628
29 LSM 880 Ecad::GFP(KI) 0.18 300 EGFR-RNAi 489 77 174 740
31 spinning disk Ecad::GFP(KI) 0.275 300 EGFR-RNAi 528 162 232 31 953

Total # events/category 6700 3021 3054 304

Supplementary table 1: Detailed description of the training dataset
Table summarizing the different properties of the microscopy movies used to train our 
model. These include the number of the movie in our dataset (Movie column), the type of 
microscope used (Zeiss LSM880 or Gataca Systems Spinning-Disk), the type of E-
cadherin marker used to label the cell boundaries (Marker column), the pixel size and the 
frame rate. Other genetic modifications or transgenes (other markers, RNAis or drug 
injections) are described in the ‘Genotype’ column. Finally, this table also displays the 
number of events labelled for each movie: extrusions, cell divisions, Sensory Organ 
Precursors cells (SOPs), Number of false positive detected elements further re-labelled as 
controls in the pipeline optimisation (Nothing) and total number of elements per movie. 



Supplementary table 2
Movie Microscope Marker Pixel size (µm) Frame rate (seconds) Genotype Extrusions Divisions SOPs Total # events/movie

2 spinning disk Ecad::GFP(KI) 0.275 300 WT 883 1351 351 2585
7 spinning disk ubi-Ecad::GFP 0.275 300 UAS-hid-RNAi 11 26 132 169

15 LSM 880 Ecad::tdTomato(KI) 0.1037427 20 WT 63 89 146 298
18 LSM 880 Ecad::tdTomato(KI) 0.1037427 300 UAS-hid-RNAi colcemid 123 123
22 spinning disk Ecad::tdTomato(KI) 0.275 300 UAS-hid-RNAi ctrl inj 59 46 193 298
26 LSM 880 Ecad::GFP(KI) 0.18 300 WT 682 120 130 932
30 LSM 880 Ecad::GFP(KI) 0.18 300 EGFR-RNAi 499 108 100 707

Total events #/category 2320 1740 1052 5112

Supplementary table 2: Detailed description of the test dataset

Table summarizing the different properties of the microscopy movies used to test our 
model. These include the number of the movie in our dataset (Movie column), the type of 
microscope used (Zeiss LSM880 or Gataca Systems Spinning-Disk), the type of E-
cadherin marker used to label the cell boundaries (Marker column) , the pixel size and the 
frame rate. Other genetic modifications or transgenes (other markers, RNAis or drug 
injections) are described in the ‘Genotype’ column. Finally, this table also displays the 
number of events labelled for each movie: extrusions, cell divisions, Sensory Organ 
Precursors cells (SOPs) and total number of elements per movie. 



Supplementary table 3

Hyperparameter Parameter value Optimal F1-score
Number of augmentation 4 0.504653
Number of epochs 40 0.630638
Number of CNN filters 24 0.618855
Number of augmentation 2 0.546644
Number of epochs 40 0.657036
Number of reinforcement 5 0.779413

ext. only

4 classes

Supplementary table 3: Optimisation of model hyperparameters

Table describing the final hyperparameter values used in the final pipeline after careful 
optimisation and their associated F1-score values. We first optimised the number of 
augmentation, epochs and CNN filters in the training including extrusions only (ext. only 
rows). Then we fixed the numbers of CNN filters for the rest of the training. We then 
included cell divisions and SOPs in order to optimise the pipeline and explored the impact 
of the number of augmentation and epochs on the F1-score (4 classes rows). Finally, we 
further optimised the model by adding false positive detected elements further re-labelled 
as controls in the pipeline optimisation and check the impact on the F1-score (this was 
done only in the case of 4classes training). 



Supplementary table 4

Precision Recall
Out-of-the-box 0.874 NA
Retrained NA NA
Out-of-the-box 0.786 0.849
Retrained 0.909 0.83
Out-of-the-box 0.738 0.38
Retrained 0.858 0.69
Retrained with 2 movies 0.860 0.74

Generalisation scores

UAS-EGFR-RNAi

Pupal wing

LECs

Supplementary table 4: Generalisation scores on unseen movies

Table summarising the generalisation scores (precision and recall) depending on the movie 
the generalisation was tested on. For each movie checked the scores with the model without 
further training (out-of-the-box rows) or after retraining (retrained rows). For Larval Epithelial 
Cells movies (LECs rows) we proceeded to an additional retraining step by including movies 
from this dataset (retraining with 2 movies). 
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