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Abstract 
 
Purpose of review 
 
The discovery of broadly neutralizing HIV-1 antibodies (bNAbs) has provided a framework for 
vaccine design and created new hope toward an HIV-1 cure. These antibodies recognize the HIV-
1 Envelope and inhibit viral fusion with unprecedented breadth and potency. Beyond their unique 
neutralization capacity, bNAbs also activate immune cells and interfere with viral spread through 
non-neutralizing activities. Here, we review the landscape of bNAbs functions and their contribution 
to clinical efficacy. 
 
Recent findings 
 
Parallel evaluation of bNAbs non-neutralizing activities using in vivo and in vitro models have 
revealed how their importance varies across antibodies and strains. Non-neutralizing bNAbs 
functions target both infected cells and viral particles, leading to their destruction through various 
mechanisms. Reservoir targeting and prevention in context of suboptimal neutralization highly 
depends on bNAbs polyfunctionality. We recently showed that bNAbs tether virions at the surface 
of infected cells, impairing release and forming immune complexes, with consequences that are 
still to be understood. 
 
Summary 
 
Non-neutralizing activities of bNAbs target infected cells, virions, and immune complexes, 
promoting viral clearance and possibly improving immune responses. We review how these 
functions participate to the efficacy of bNAbs and how they can be manipulated to improve bNAbs 
therapies. 
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Introduction 
 

Anti-retroviral therapies (ART) have transformed HIV-1 into a chronic disease. Daily use of 
ART dampens viral replication to undetectable levels, preventing acquired immunodeficiency 
syndrome (AIDS) and transmission. These successes depend on ART accessibility, which is limited 
by politic and economic factors. Thus, in the absence of a vaccine, HIV-1 continues to spread in 
the human population at a pandemic level. Furthermore, a cure remains needed for the nearly 40 
million of individuals that are currently living with the virus. 
 
 The identification of broadly neutralizing antibodies (bNAbs) offered new hope in both 
vaccine and cure research [1]. Infusion of bNAbs can prevent HIV-1 infection of naïve individuals 
and suppress viral replication in those already infected, provided that the virus is sensitive [2–4]. 
Importantly, an increasing body of evidence is suggesting that bNAbs add to existing ART, by 
providing long-lasting protection, by targeting the viral reservoir and potentially by stimulating 
endogenous immune responses [5–8]. 
 

Clinical successes of bNAbs have motivated a global research effort to characterize their 
mechanisms of action, with the aim of optimizing their utilization. These studies have confirmed 
that neutralization potency is key in bNAbs efficacy, but have also revealed that bNAbs are 
polyfunctional. Indeed, non-neutralizing effector functions mediated by the fragment crystallizable 
(Fc) domain are required for optimal efficacy. Each of the different classes of antibodies (IgG, IgA...) 
correspond to a unique Fc. In a seminal study, Ravetch and colleagues demonstrated that the Fc 
of bNAbs assist neutralization to limit HIV-1 replication in various mouse models [9]. Engineering 
the Fc to increase its interaction with Fc Receptors (FcRs, and FcgR for IgGs) improves bNAbs 
therapeutic efficacy [9]. Consistently, the Fc-mediated functions of a non-neutralizing antibody 
triggered viral evolution by killing infected cells [10]. In non-human primate models, the contribution 
of the Fc varies depending on antibody and context. In pre-exposure prophylaxis, PGT121 prevents 
infection independently of its Fc [11], while B12 requires it [12]. In therapeutic settings, it was 
estimated that 21% of viral clearance elicited by a VRC01 is mediated by its Fc domain [13]. 

 
While demonstrating the requirement of the Fc domain for optimal efficacy of bNAbs, these 

observations did not inform about the pathways involved. FcRs are diverse (either activating or 
inhibiting), widely expressed by immune and non-immune cells, and possess various affinities for 
Fc regions [14]. Antibody subtypes (IgG in the case of bNAbs) and glycosylation further modulate 
interactions between antibodies and FcRs [15]. This diversity leads to a large landscape of possible 
non-neutralizing antiviral functions and creates opportunities to leverage Fc engineering to improve 
bNAbs efficacy [16]. In vitro studies have revealed that bNAbs exert a wide range of activities, 
including elimination of infected cells and virions, creation of immune complexes, and protection of 
mucosal surfaces (see figure). In the following sections, we review these activities and discuss their 
importance in therapeutic settings.   
 
Elimination of infected cells 
 
     The most studied non-neutralizing activities of bNAbs, is the antibody-dependent cellular 
cytotoxicity (ADCC). It consists in the activation of the cytotoxic potential of NK cells by antibodies. 
It requires FcgRIIIa (CD16) expression on NK cells and cell surface antibody binding on target cells. 
ADCC induction is not limited to bNAbs [17]. HIV-1 viral accessory proteins Vpu and Nef evade 
ADCC of non-neutralizing antibodies by modulating Env quantity and conformation at the surface 
of infected cells (review in [18]). These viral countermeasures also limit ADCC mediated by bNAbs, 
but infected cells remain largely sensitive [19,20]. bNAbs can elicit ADCC against cells infected 
with relevant viral strains, such as transmitted-founder virus or strains isolated from the viral 
reservoir [21,22]. ADCC by bNAbs strongly correlates to their neutralization potency, suggesting 
recruitment of NK cells is more influenced by the intrinsic capacity to bind Env, rather than the 
epitope targeted [19–21]. 
  



 

 

 Antibody-decorated cells may also be eliminated by other pathways, such as complement 
activation or phagocytosis [16]. We have observed that a subset of bNAbs activates the 
complement [23]. In contrast to ADCC, complement activation by bNAbs is restricted to some 
epitopes, namely the CD4 binding site (CD4bs) and the V3 loop. This may be explained by the 
structural basis of complement activation, which involves recognition of hexametric IgG structures 
by the complement component C1q [24]. Therefore, epitopes with high binding stoichiometry, 
and/or localized on the side of the trimer (allowing for the Fc to lie in parallel to the plasma 
membrane) may be favored. Complement activation by bNAbs further differ from ADCC by its 
outcome. Elimination of infected cells by complement is slow and observed in vitro only after a few 
days of culture, while ADCC occurs in a few hours [23,25]. The underlying mechanism remains 
cryptic. Whether complement modulates infected cell metabolism, as observed when complement 
receptors are engaged at the surface of activated T cell remains to be elucidated [26]. Alternatively, 
sub-optimal membrane-attack complex (MAC) deposition may trigger CA2+ flux, inflammasome 
activation and potentially cell death [27]. 
  
 Phagocytic cells may also be activated by antibodies. This phenomenon is commonly called 
antibody-dependent cellular phagocytosis (ADCP) or antibody-dependent phagocytosis (ADP). 
Various mechanisms are involved, depending on the nature of the phagocytic cell. Monocytes, 
macrophages, dendritic cells and neutrophils are all capable of phagocytosis, but harbor different 
combinations of FcgRs, which vary within each of these cell types according to their activation 
status and localization [28]. Forthal and colleagues observed that cells covered with viral particles 
are susceptible to phagocytosis by a monocytic cell line in the presence of various monoclonal 
antibodies [29]. Env conformation in virions-opsonized cells largely differs from that of infected cells 
[30]. Whether phagocytic cells can engulf infected cells opsonized by bNAbs remains an open 
question that deserves further investigation. 
 

  Various immune pathways for infected cell elimination exist and HIV-1 infected cells are 
diverse. Beyond CD4 T cells, HIV-1 infects macrophages and dendritic cells. They exist under 
various polarization and activation status. When compared to T cells, HIV-1 infected macrophages 
are poorly susceptible to bNAbs-mediated ADCC, despite similar levels of Env accessibility [31]. 
This observation suggests that active mechanisms protect macrophages from ADCC and provides 
a proof-of-concept that some cellular compartments may act as sanctuaries for HIV-1 under ADCC 
pressure. CD4 T cells in the reservoir do not express viral proteins, but the observation of clonal 
persistence raises the question of Env expression during proliferation [32]. Overall, how cellular 
diversity in HIV-1 infected cells influence bNAbs-mediated ADCC-, complement- and phagocytosis-
mediated clearance deserves more investigation.  

 
Destruction of virions  
 
     Binding of antibodies to viral particles is often a pre-requisite of neutralization and may also 
trigger non-neutralizing antibody functions. This includes the complement system, which upon 
activation eventually leads to MAC deposition, membrane rupture and disintegration of viral 
particles [33]. This process is called virolysis. It has been suggested to contribute to the control of 
viremia during primary infection [34]. Consistently, HIV-1 encapsulates the regulatory complement 
proteins CD59 and CD55 within virions to evade complement attack [35]. Complement may be a 
double-edge sword, as its chemoattractant and stimulatory properties may also promote viral 
spread. This phenomenon most likely occurs when neutralization is lacking or sub-optimal.  bNAbs 
are capable of eliciting virolysis in vitro, but in vivo evidence for a contribution of complement to 
bNAbs efficacy are missing [36]. These studies have demonstrated that a careful in vitro evaluation 
of bNAbs properties is needed prior to conclude of pathways elicited in vivo [37]. Thus, further work 
is needed to determine whether bNAbs capable of virolysis activate these functions in vivo and 
whether they participate to clinical efficacy.  
 
 Complement activation may also promote phagocytosis by activating Complement 
Receptors (CRs). Thus, antibodies and complement may synergize at the surface of viral particles 



 

 

to trigger phagocytosis, a phenomenon that has been reported for hexameric antibodies [38]. 
Whether bNAbs themselves can activate phagocytic cells to clear viral particles is a matter of 
debate. In vitro assays using Env-coated beads clearly demonstrated their phagocytic activity [39]. 
In the context of viral particles, contradictory results have been reported. On the one side, Env 
levels may be too low to allow sufficient signaling through FcgR and subsequent phagocytosis [29]. 
On the other side, the phagocytic activity of antibodies correlates to vaccine efficacy  [40].  
Phagocytic capacity strongly differs across cell types and activation status, and the relevance of in 
vitro assays remains to be determined.  
 
 Overall, bNAbs can target viral particles for neutralization and other effects, but the 
underlying mechanisms and their contribution to in vivo efficacy in unclear. This is in part due to 
the lack of tools to reliably analyze viral particles in vitro. Future technological advances in single 
viral particle analysis will be key to uncover how bNAbs target virions by other means than 
neutralization.  
 
Tethering of viral particles 
 

In addition to physical destruction of infected cells and viral particles, antibodies may impair viral 
spread by interfering with viral assembly or limiting viral release from cells.  
 

For instance, antibody binding to the membrane-express Chikungunya virus (CHIKV) Env can 
hinder recruitment of viral structural proteins, thereby blocking viral budding and accumulating viral 
material into cells [41]. Virions may also accumulate at the plasma membrane as immune 
complexes (ICs), as reported for Influenza, Marburg virus, and, more recently, for HIV-1 [42–44]. 
Viral assembly is not impaired and virions are produced, however, upon release in the extra-cellular 
space, viral particles are sequestered by antibodies in large immune complexes that form between 
virions and cell membrane-anchored viral proteins. This trap accumulates virions as they are 
produced, reducing the amount of viral material released in the extracellular space. This 
phenomenon is reminiscent of tetherin, a restriction factor that inserts into membranes to create 
bridges between viral particles and infected cells, dramatically reducing HIV-1 spread [45]. In the 
case of HIV-1, this tetherin-like activity of antibodies has been reported only with a subset of the 
most potent bNAbs [44]. Consistently, viruses trapped in membrane-associated ICs are fully 
neutralized [44]. Therefore, the impact on viral replication in dense areas such as lymph nodes is 
probably limited as compared to neutralization alone, but this phenomenon may be of outmost 
importance to generate immunomodulatory ICs. bNAbs are studied for their capacity to promote 
endogenous immune responses (the so-called “vaccinal effect”) via Env-containing immune 
complexes (for a review see [46]). However, the origin of these immunogens is unknown. HIV-1 
containing-ICs are difficult to produce in vitro, likely due to the limited number of Env incorporated 
into virions [47]. Thus, bNAb-mediated tethering of virions at the membrane of infected cells may 
constitute an important source of ICs. It has been reported that HIV-1 membrane aggregates 
created by tetherin activate NF-kB and trigger immune response [48]. Whether bNAbs-meditated 
formation of ICs at the plasma membrane participate in the initiation of the vaccinal effect deserves 
to be investigated. 
 
FcRn-dependent bNab functions 
 

In addition to FcgR, IgGs interact with the neonatal FcR (FcRN). Recognition of Fc by FcRn 
differs from that of FcgR by its stoichiometry (one Fc binds 2 FcRns) and its requirement for an 
acidic pH [49]. This latter is responsible for the most studied functions of FcRn, which is to recycle 
IgGs from endosomes to limit their degradation and expand their half-life. This activity is often 
manipulated by Fc-engineering to improve the biodisponibility of therapeutic mAbs (YTE and LS 
mutations), allowing to reduce doses and space injections [50]. In the context of HIV-1, the LS 
mutation has been introduced into 10-1074, 3BNC117 and VRC01 mAbs [51,52], allowing to 
control viral replication with a single injection for a median of 20 weeks in non-human primates [51]. 



 

 

Interestingly, the ability of the Fc to interact with FcRn is not solely responsible for the 
pharmacokinetic of IgG as determinants in the Fab region also modulate FcRn affinity [53]. 
 

Beyond recycling, FcRn mediates transcytosis of IgG across epithelia. This is of outmost 
importance, as mucosal immunity is key in the prevention of HIV-1. The LS mutation increases 
antibody transfer across cellular monolayers in vitro and promotes accumulation of infused IgGs 
bearing the LS mutation in the lumen of the gastrointestinal tract [54]. More importantly, improved 
FcRn affinity ameliorates immune protection upon a rectal challenge performed after infusion of a 
sub-optimal antibody dose [54]. While the opposite was not tested (i.e an antibody lacking FcRn 
interaction), data from the literature indicates that FcRn participates in the accumulation of WT IgG 
in the mucosa and contributes to protection upon mucosal challenge [55]. FcRn also mediates 
passive fetal humoral immunity by transferring IgG across the placenta [49]. Altogether, these data 
suggest that FcRn is a key contributor of the efficacy of bNAbs to prevent sexual HIV-1 infection 
and possibly maternofetal transmission. How Fc mutations influence the biodistribution of bNAbs 
beyond serum half-life deserves further investigations. 
 

More recently, the vaccinal effect has emerged as a possible mechanism underlying the efficacy 
of bNAbs therapies, and as a mean to improve and extend their utilization (for a review see [46]).  
FcRn engagement in the lysosome of dendritic cells is required to target engulfed antibodies to 
cross-presentation pathways [56]. FcRn also allows for the discrimination of small and large ICs, 
which are either recycled or loaded on MHC-A, respectively [57]. Understanding how FcRn 
participates to presentation of viral antigens during HIV-1 bNAbs therapy and how this is modulated 
by Fc mutations increasing their half-life will provide new keys to understand and improve antibody 
functions. 
 
 
Conclusions 
 

Polyfunctionality is integral to bNAbs activities. Non-neutralizing activities include clearance of 
infected cells and viral particles, as well as formation and uptake of immune complexes (see figure). 
During therapy, these functions may assist neutralization to expand its breadth and allow for 
reservoir targeting. It may be achieved through direct (i.e clearance of infected cells and viruses) 
or indirect mechanisms (i.e immunomodulation). As pan-HIV-1 neutralization is not yet elicited by 
vaccination and is not sufficient to cure HIV-1, it is mandatory to better understand the 
polyfunctionality of bNAbs to combat HIV-1. 
 
 
 
Key points 
 

- How cell types and activation status influence Env expression and subsequent clearance 
of infected and reservoir cells by bNAbs? 

 
- Which non-neutralizing antibody functions impose immune pressure on the virus? 

 
- Is bNAbs-mediated trapping of viral particles at the cell surface involved in their 

immunomodulatory properties? 
 

- To which extent Fc-engineering impacts biodistribution and polyfunctionality of bNAbs? 
 

- Is it possible to design drugs that synergize with bNAbs by boosting their 
polyfunctionality? 
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Figure Legend 
 
Schematic representation of bNAbs polyfunctionality. Beyond neutralization, bNAbs target infected 
cells and viral particles for clearance via activation of immune effector mechanisms (upper left and 
right). Opsonization of infected cells may also lead to tethering of viral particles, limiting viral release 
and forming large immune complexes (lower left). Most non-neutralizing activities are elicited by 
gamma-chain Fc Receptor (FcgR), but IgGs also interact with neonatal FcR (FcRn), with 
consequences that are yet not fully elucidated in the context of HIV-1 bNAbs (lower right). 
 
  
  


