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Mosquito diversity (Diptera: Culicidae) 
and medical importance in four Cambodian 
forests
Antsa Rakotonirina1*, Pierre‑Olivier Maquart1, Claude Flamand2,3, Chea Sokha4 and Sébastien Boyer1,5 

Abstract 

Background A total of 290 mosquito species are recorded in Cambodia among which 43 are known vectors of 
pathogens. As Cambodia is heavily affected by deforestation, a potential change in the dynamic of vector‑borne 
diseases (VDBs) could occur through alteration of the diversity and density of sylvatic vector mosquitoes and induce 
an increase in their interactions with humans. Understanding mosquito diversity is therefore critical, providing valu‑
able data for risk assessments concerning the (re)emergence of local VBDs. Consequently, this study mainly aimed 
to understand the spatial and temporal distribution of sylvatic mosquito populations of Cambodia by determining 
which factors impact on their relative abundance and presence.

Methods A study was conducted in 12 sites from four forests in Cambodia. All mosquitoes, collected during the dry 
and rainy seasons, were morphologically identified. The diversity and relative density of mosquito species in each site 
were calculated along with the influence of meteorological and geographical factors using a quasi‑Poisson general‑
ized linear model.

Results A total of 9392 mosquitoes were collected belonging to 13 genera and 85 species. The most represented 
genera were Culex, accounting for 46% of collected mosquitoes, and Aedes (42%). Besides  being the most abundant 
species, Culex pseudovishnui and Aedes albopictus, which are known vectors of numerous arboviruses, were present in 
all sites during both dry and rainy seasons. The presence of mosquito species reported to be zoo‑anthropophilic feed‑
ers was also observed in both forested and urban areas. Finally, this study demonstrated that altitude, temperature 
and precipitation impacted the abundance of mosquitoes but also influenced species community composition.

Conclusion The results indicate an important diversity of mosquitoes in the four forests and an influence of mete‑
orological and geographical factors on their community. Additionally, this work highlights in parallel the abundance 
of species considered to be of medical importance and therefore underlines the high risk of pathogen emergence/
re‑emergence in the region.
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Background
Vector-borne diseases (VBDs) are a major public health 
problem worldwide. In 2020, the World Health Organi-
zation estimated that they account for > 17% of all 
infectious diseases worldwide and are responsible for > 
700,000 deaths per year, overburdening health systems 
mainly in the tropical and subtropical areas [1, 2].

Cambodia is affected by VBDs where dengue fever and 
Japanese encephalitis (JE) are endemic [3, 4]. Specifically, 
Cambodia has one of the highest dengue infection rates 
in Southeast Asia, with an average of 103 cases per 10,000 
population and a case fatality rate of 1 to 2% since 2000 
[5]. Beyond the public health issue it represents, dengue 
fever is also responsible for a heavy societal burden in 
Cambodia with a significant cost of illness [6]. JE is the 
main cause of central nervous system infections leading 
to encephalitis and other serious clinical complications in 
Cambodian children [4]. In 2007, the estimated incidence 
of clinically reported JE in the country was 11.1 cases per 
100,000 children < 15  years of age [4]. A recent resur-
gence of chikungunya was also recorded in the country 
in 2011, breaking out in the village of Trapeang Roka 
(Kampong Speu Province) in 2012 [7]; later, in 2020, a 
nationwide outbreak occurred [8]. Additionally, silent 
circulation of Zika fever was confirmed in Cambodia [9], 
and malaria still occurs, accounting for 13.4% of cases in 
the Southeast Asia region in 2020 [10]. These VBDs are 
caused by pathogens, namely dengue, Japanese encepha-
litis, chikungunya and Zika viruses (DENV, JEV, CHIKV 
and ZIKV, respectively) and Plasmodium, which are 
transmitted to humans through the bite of vector mos-
quitoes. To date, 43 confirmed vector species of patho-
gens have been recorded in Cambodia [11].

Land use change, such as deforestation and urbaniza-
tion, heavily affects Cambodia: the country lost 65% of its 
forest coverage from 2006 to 2016 [12–14]. This altera-
tion could modify the dynamic of VBDs by potentially 
changing mosquito communities and abundance. Indeed, 
several meta-analyses, combining data from different 
countries, have highlighted that mosquito species can 
be affected by deforestation, in some cases leading to an 
increase in their abundance, especially for species asso-
ciated with VBDs [15, 16]. This potential increase in the 
abundance of vector mosquitoes directly impacts their 
vectorial capacity (i.e. the efficiency of the transmission 
in a specific vector-host relationship in a given environ-
ment [17]) and could be multifactorial. This may result 
from the creation of breeding habitats more favorable 
for the immature stages [18] or the enhancement of mos-
quito survival and reproduction due to deforestation-
induced microclimate modification [19, 20]. Moreover, 
deforestation can also result in increased human interac-
tion with wildlife [21] and consequently the likelihood of 

human-vector contact and (re)emergence of pathogens 
[22].

In this context, describing the mosquito diversity and 
relative abundance in Cambodian forests is essential for 
VBD risk assessments and public health recommenda-
tions. Different works have already explored the mos-
quito fauna in forested areas of Cambodia. Recent studies 
conducted in the bird sanctuary in Prek Toal flooded for-
est in Battambang Province and the mangrove forest in 
Koh Kong have overviewed the overall Culicidae fauna 
[22, 23]; other works focused only on Anopheles mos-
quitoes. The first study of Anopheles in Cambodia dates 
back to 1964 in two villages and the surrounded forests of 
Pailin Province [24]. Other studies have provided insights 
into the Anophelinae fauna in different forests or vil-
lages inside the forests (or surrounded by forests), some-
times through vector control studies or the evaluation of 
Anopheles capture methods [25–30]. The sites surveyed 
during these studies were located in Mondulkiri, Pailin, 
Preah Vihear, Pursat and Ratanak Kiri Provinces.

The extension of these studies to other forests in Cam-
bodia and to the entire Culicidae fauna is strongly recom-
mended to better characterize sylvatic mosquito species. 
Therefore, the main objective of this work was to examine 
the spatio-temporal distribution of mosquitoes in Cam-
bodian forests including species vectors of pathogens. 
The secondary objective was to determine the meteoro-
logical and geographical variables that could explain their 
relative abundance and presence.

Methods
Study sites
The study was conducted in four different forests located 
in Kampong Speu, Preah Vihear, Ratanak Kiri and Siem-
reap (Fig. 1).

Sampling forests were selected to represent differ-
ent protected areas in the north, northeast and south of 
Cambodia. These were the forests for which approval 
from the Cambodian authorities was obtained. Three 
sites per forest were surveyed corresponding respectively 
to the depth, middle and edge of the forest. The descrip-
tion of each site is presented in Table 1.

Mosquito sampling and morphological identification
Mosquito sampling in these selected sites was carried out 
between March 2020 and January 2021. Two field mis-
sions were conducted in each forest, one during the dry 
season and one during the rainy season (with the excep-
tion of Kampong Speu where the two missions were con-
ducted during the rainy season for logistical reasons).

Two types of traps were used to collect adult mosqui-
toes: BG-1 Sentinel™ Mosquito Traps, 7.5–12 volts baited 
with BG-Lure® (BioQuip, Rancho Dominguez, CA, USA) 
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and CDC Mini Light Traps (BioQuip) with incandes-
cent light. Dry ice was placed in a dry ice dispenser next 
to each trap. For each mission, these traps were set for 3 
consecutive days per site and harvested every 24 h.

Collected mosquitoes were subsequently killed 
humanely using carbon dioxide. These were morpho-
logically identified by using available identification keys 
[31–34].

Meteorological and geographical data
Meteorological data were obtained from app.clima-
teengine.com (accessed on 15 June 2022). The tem-
perature was extracted from CFSR satellite data 
(19.2  km/28.28  km, daily) and precipitation from 
CHIRPS satellite data (4.8 km, daily). The meteorological 
conditions (that could impact  the mosquito community) 
during the year of collection did not differ from those of 
the previous years (Fig.  2). Moreover, the altitude val-
ues at each global positioning system (GPS) data point 

were obtained directly with Google Earth Pro (version 
7.3.6.9345).

Data analysis
All the data analyses were performed using R software 
[35]. First, to assess the composition of the mosquito 
community in each site, three indices were computed: 
Shannon’s diversity index (H′) quantifying the spe-
cies diversity, Simpson index (D) measuring the species 
dominance and Pielou’s evenness index (Jʹ) calculating 
whether species are distributed evenly. The equations of 
these indices are shown here:

Shannon diversity index

H ′
= −

∑

(

ni

N

)

∗ log

(

ni

N

)

Fig. 1 Map of Cambodia indicating the study areas in Kampong Speu, Preah Vihear, Ratanak Kiri and Siemreap. The red points indicate the sites. The 
map was created with R studio software
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Table 1 Description of the different sites

Forests Sites Localization Average of 
temperature in 
2020 (°C)

Annual 
precipitation in 
2020 (mm)

Altitude range 
(m)

Characteristics

Kampong Speu 1 104.1432°E, 11.5811°N 26.7 1944.52 300–401 Evergreen forest:
Presence of many bamboo trees

2 104.1416E, 11.5743N 25.4 1944.52 300–316 Evergreen forest:
Presence of many bamboo trees
Presence of stream

3 104.1758E, 11.5201N 24.9 1903.48 122 Rural village

Preah Vihear 1 104.4246E, 13.2936N 27.4 1760.13 125–194 Semi‑evergreen forests

2 104.4338E, 13.2940N 27.4 1760.13 82–94

3 104.7374E, 13.4933N 26.4 1934.32 70–72

Ratanak Kiri 1 106.4451E, 14.1367N 26.1 2572.77 112–130 Semi‑evergreen forest:
Dry‑savannah ecosystem on forest 
edges

2 106.4454E, 14.1283N 26.1 2572.77 122–128

3 106.4454E, 14.1812N 26.1 2649.71 113–115 Ranger station

Siemreap 1 103.5452E, 13.4445N 26.8 1436.06 102–122 Semi‑evergreen forest:
Presence of zoo
Presence of bat cave

2 103.5259E, 13.4630N 26.9 1402.63 150–162 Semi‑evergreen forest

3 104.1327E, 13.4404N 27.9 1681.07 75–107 Ranger station

Fig. 2 Meteorological conditions in the four forests during the year of collection and 2 years before (2018, 2019 and 2020). a Meteorological 
conditions in Kampong Speu Forest. b Meteorological conditions in Ratanak Kiri Forest. c Meteorological conditions in Siemreap Forest. d 
Meteorological conditions in Siemreap Forest. Temperatures (red line) were gathered from CFSR satellite data (19.2 km/28.28 km, daily) and 
precipitation (blue bars) from CHIRPS satellite data (4.8 km, daily)
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where “ni” is the number of specimens belonging to one 
species and “N” is the total number of specimens from all 
species in the site.

Simpson index

where Pi is the proportion of specimens belonging to a 
species and calculated by dividing “ni” by “N.”

Pielou’s evenness index

where “H” is the Shannon diversity index and “H’max” 
the maximum possible value of H’ if every species is 
equally likely.

A non-parametric Wilcoxon test was carried out to 
compare the relative abundance of mosquitoes dur-
ing the dry and rainy seasons. Then, the correlation 
between the relative abundance of mosquito species 
in the different sites was also computed with Pearson 
tests. Only the species whose number was ≥ 5 was 
included in the analysis.

Finally, the relationship between mosquito relative 
abundance and geographical and meteorological factors 
was evaluated. The meteorological factors (i.e. tempera-
ture and precipitations) were classified with a time lag of 
1 to 4 weeks prior to collection. One of the distributions 
commonly used to model count data is the Poisson dis-
tribution. However, due to a significant overdispersion 
of the residuals of the Poisson model, a quasi-Poisson 
generalized linear model was applied. The collinearity 
between the different variables was also tested to avoid 
combining highly correlated variables. An abundance 
model was performed for all mosquito species whose 
number was ≥ 40 while a presence model was carried out 
for mosquito species whose number was < 40. The rela-
tive risks (RRs) and 95% confidence intervals  (IC95) were 
calculated to quantify the influence of these factors on 
relative abundance. The statistical significance threshold 
for all tests was set at 0.05.

Results
Mosquito diversity and relative abundance
Overall results
A total of 9392 mosquitoes were collected representing 
85 species belonging to 13 genera (Table 2). The genera 

D = 1−
∑

Pi2

J ′ =
H ′

H ′max

collected were Aedes (17 species), Culex (16 species), 
Uranotaenia (13 species), Anopheles (11 species), Armig-
eres (10 species), Heizmannia (5 species), Mansonia, 
Mimomyia and Tripteroides (3 species each), and Aedeo-
myia, Coquillettidia, Lutzia and Toxorhynchites (1 spe-
cies each).

The Culex genus was the most abundant one, account-
ing for 45.58% (n = 4281) of the total collected mosqui-
toes, followed by Aedes with 42.01% (n = 3946) of our 
collection. The third most abundant genus was Urano-
taenia accounting for 4.45% (n = 418), while Armigeres 
and Heizmannia represented 3.49% (n = 328) and 2.40% 
(n = 225), respectively. In our study, the genus Anoph-
eles represented only 0.7% (n = 66) of the collected 
specimens.

Overall, two dominant species were observed: Culex 
pseudovishnui, accounting for 25.11% (n = 2358) of mos-
quitoes, followed by Ae. albopictus (n = 1394; 14.84%). A 
total of 21 species are reported to be of medical impor-
tance (n = 4132; 43.99%).

Results per forest and per site
With a total of 3130 mosquitoes belonging to 46 species, 
the Kampong Speu Forest displayed the largest diversity 
of mosquitoes. In contrast, the forest in Preah Vihear had 
only a total of 709 mosquitoes belonging to 17 species 
(Table 2).

Nine mosquito species were common in the four for-
ests, namely (ranked by abundance) Cx. pseudovishnui, 
Ae. albopictus, Culex  brevipalpis, Aedes  gardneri imita-
tor, Armigeres subalbatus, Cx. nigropunctatus, Cx. bitaen-
iorhynchus, Coquillettidia crassipes and Ae. ibis (Table 2). 
Two of them, Ae. albopictus and Cx. pseudovishnuii, were 
present in all sites (Additional file 1: Table S1) regardless 
of the season (Table 2). Two species, Ar. subalbatus and 
Ae. gardneri imitator, were collected in 11 of the 12 sites 
in the four forests independently of the season (Addi-
tional file 1: Table S1).

In addition, 12 other species common to the forested 
and anthropized areas (rural village or ranger station) 
were found. These were Aedes albolineatus, Ae. desmotes, 
Ae. gardneri imitator, Armigeres  annulitaris, Ar. kesseli, 
Ar. subalbatus, Cq. crassipes, Culex bitaeniorhynchus, Cx. 
brevipalpis, Cx. nigropunctatus, Cx. quinquefasciatus and 
Uranotaenia  macfarlanei (Additional file  1: Table  S1). 
Thirty-nine other species were only found at a single site 
of a single forest (Additional file 1: Table S1).

Also, a strong positive correlation between the rela-
tive abundance of different species due to their co-
occurrence in the same site was observed (Additional 
files 2 and 3: Tables S2 and S3, Fig. 3). This was the case 
for Mansonia uniformis and Cx. brevipalpis mostly 
collected in site 3 of Siemreap Forest but also for 
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Ae. gardneri imitator, Culex gelidus, Mansonia indiana, 
Uranotaenia  longirostris, Ur. metatarsata, Ur. bimacu-
liala and Mimomyia hybrida mostly found in site 1 of 
Siemreap Forest. Aedes aegypti and Cx. quinquefascia-
tus were mainly collected in  site 3 of Kampong Speu 
Forest while Ae.  albolineatus and Cq. crassipes were 
mainly present across the three sites of Kampong Speu. 
Six other species, Ae. desmotes, Ar. annulitarsis, Culex 
bitaeniorhynchus, Cx. cinctellus, Cx. fraudatrix and 
Uranotaenia koli, were mostly found in sites 1 and/or 
2 of the Kampong Speu Forest. Aedes ibis, Ae.  osten-
tatio, Ar. subalbatus, Cx. pseudovishnui, Heizmanni 

demeilloni, Uranotaenia  bicolor and Ur. macfarlanei 
were mainly present in sites 1 and/or 2 of Ratanak Kiri 
Forest. Finally, Aedes eldridgei and Culex mimulus were 
mostly collected in site 1 of Kampong Speu Forest.

Seasonal relative abundance and diversity of mosquitoes
The relative abundance of Culicidae increased signifi-
cantly during the rainy season compared to the dry 
season in Preah Vihear (Wilcoxon test, P = 0.001) and 
Siemreap (Wilcoxon test, P = 2.5 ×  10–05). Moreover, 
the number of mosquito species also increased signifi-
cantly in these two forests during the rainy season. It 
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Fig. 3 Correlation matrix representing Pearson correlation between the relative abundance of species in each site. The size of the circle and color 
intensity are relative to the correlation coefficients (the values of correlations coefficient are presented in the Additional file 2: Table S2). Negative 
correlations are shown in red and positive correlations in blue. On the right, the legend shows the corresponding colors and the correlation 
coefficients. The different boxes represent the different study sites
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went from 12 to 17 species in Preah Vihear (Wilcoxon 
test, P = 0.007) and from 18 to 33 in Siemreap Forest 
(Wilcoxon test, P = 0.005).

A change in Shannon, Simpson and Pielou’s evenness 
indices between the dry and rainy seasons was high-
lighted. A decrease of Shannon index was observed 
during the dry season in Preah Vihear and Siemreap 
(Table  2). In contrast, in Ratanak Kiri, a decrease of 
Shannon and Pielou’s indices was observed during the 
rainy season with a dominance of Cx. pseudovishnui.

Impact of meteorological and geographical factors 
on the relative abundance of mosquito species
Altitude, ranging from 75 to 401  m above sea level, 
showed mainly a slight positive impact on the relative 
abundance and presence of mosquito species (Table  3 
and Additional file  4: Table  S4). Specifically, a positive 
correlation between altitude and the abundance of five 
Aedes species (Ae. albolineatus, Ae.  albopictus, Ae. des-
motes, Ae. eldridgei, Ae. gardneri) was found as well as 
the abundance of Cq. crassipes and three Culex species 
(Cx. bitaeniorhynchus, Cx. cinctellus, Cx. fraudatrix). In 
contrast, a negative correlation between the altitude and 
the relative abundance of Ar. subalbatus andCx. brev-
ipalpis was observed. Moreover, the presence of Ma. 
uniformis was negatively impacted by altitude while this 
factor impacted positively on the presence of Ur. koli 
(Additional file 4: Table S4).

The study also demonstrated that the precipitation 
impacted the relative abundance and presence of mos-
quitoes mainly positively (Table  3 and Additional file  4: 
Table S4). The average precipitation in the first week prior 
to the collection impacted the abundance of Hz. demeil-
loni positively and the presence of Ur. longirostris nega-
tively. The average precipitation in the second week prior 
to the sampling also impacted the relative abundance of 
Ae. albolineatus, Ae. gardneri, Ar. annulitarsis and Cx. 
bitaeniorhynchus and the presence of Ur. koli positively. 
The average precipitation in the third week before the 
mosquito collection impacted the relative abundance of 
Ae. eldridgei, Ar. subalbatus and Cx. pseudovishnui and 
the presence of Ae. ibis positively as well. The average 
precipitation in the third week prior to the collection had 
a significant negative impact on the relative abundance of 
Cx. fraudatrix. Similarly, the average precipitation in the 
fourth week before the collection impacted the presence 
of Ae. aegypti negatively.

In contrast, our results demonstrated that for all the 
time lags, the temperature mainly impacted the rela-
tive abundance and presence of mosquitoes negatively 
(Table 3 and Additional file 4: Table S4). The average tem-
perature in the first week before the sampling impacted 
the abundance of Ae. eldridgei, Ar. annulitarsis and Cx. 

bitaeniorhynchus negatively. The average temperature 
during the second week before the collection impacted 
the abundance of Ar. subalbatus and Cx. fraudatrix nega-
tively and the presence of Ae. aegypti positively. The tem-
perature in the third week before the collection impacted 
the relative abundance of Ae. albolineatus and Cx. cinc-
tellus negatively and the abundance of Cx. brevipalpis 
positively. Finally, the temperature in the fourth week 
before the collection had a significant positive impact on 
the relative abundance of Ae. albopictus and Ae. gardneri 
and on the presence of Ma. uniformis and Ur. longirostris.

Discussion
The overall mosquito fauna in the four forests was quite 
diverse but the relative abundance showed a dominance 
of Culex mosquitoes. The same result has been observed 
in other Cambodian forests [22, 23] and also in different 
urban, peri-urban and rural areas of Cambodia [36–38]. 
However, the dominant Culex species changed accord-
ing to the biotope. In our study, Cx.  pseudovishnui was 
mainly the dominant species regardless of the type of 
forest. Little is known about the biology of Cx. pseudov-
ishnui [33, 39, 40]. During a previous study, it was found 
to be more abundant during the rainy season [40], which 
was confirmed by our study, except in Siemreap Forest 
where this species was surprisingly more abundant dur-
ing the dry season. Culex cinctellus was the most abun-
dant Culex species in the bamboo forests of Kampong 
Speu where the traps were set next to a stream. Inter-
estingly, at this site, this species was only collected in 
November. These observations confirm the previously 
described breeding habitat and seasonality of Cx. cinc-
tellus reported in Thailand, where mosquitoes have been 
collected in a bamboo forest on October and November 
[39]. Culex quinquefasciatus was the most dominant 
Culex species in the rural village of Kampong Speu; it is a 
common species in rural and urban areas [41, 42]. More-
over, Cx. brevipalpis was the dominant Culex species in 
the zoo of Siemreap Forest. According to the literature, 
this species is able to colonize different breeding habitats, 
and humans are not the usual hosts [33, 39].

Aedes was the second most abundant mosquitoe in 
our study. This genus is the second most diversified 
in Cambodia [11] but its relative abundance has been 
found to be less important in other forests [22, 23] and in 
anthropized areas of Cambodia [36–38]. Aedes albopic-
tus was the most abundant Aedes species in this work and 
was present in all the sites. Its presence and abundance 
could be explained by its sylvatic origin in the tropical 
forest areas of Southeast Asia [43] and its preference for 
shaded areas [44]. In the rural village of Kampong Speu, 
however, Ae. albolineatus took the lead over Ae. albopic-
tus in terms of relative abundance. This species was only 
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Table 3 Result of regression model showing the correlation between the relative abundance of species and meteorological/
geographical variables

Factors Species IRR IC95 inf IC95 sup P‑value

Altitude Ae. albolineatus (+) 1.01 1.00 1.01 4 ×  10–5

Ae. albopictus (+) 1.00 1.00 1.01 3 ×  10–4

Ae. desmotes (+) 1.01 1.01 1.02 10–4

Ae. eldridgei (+) 1.01 1.01 1.02 2 ×  10–16

Ae. gardneri (+) 1.00 0.99 1.00 0.04

Ar. annulitarsis (+) 1.01 1.01 1.01 10–15

Ar. subalbatus (−) 0.99 0.98 1.00 0.02

Cq. crassipes (+) 1.01 1.00 1.01 4 ×  10–3

Cx. bitaeniorhynchus (+) 1.01 1.00 1.01 2 ×  10–7

Cx. brevipalpis (−) 0.99 0.89 1.02 10–3

Cx. cinctellus (+) 1.01 1.01 1.02 2 ×  10–16

Cx. fraudatrix (+) 1.05 1.03 1.08 3 ×  10–6

Cx. nigropunctatus 1.00 1.00 1.01 0.22

Cx. pseudovishnui 1.00 0.99 1.00 0.12

Hz. demeilloni 0.98 0.95 1.00 0.08

Ur. macfarlnei 1.01 1.00 1.01 0.62

Precipitation 1st week before the collection Ae. desmotes 1.05 0.87 1.20 0.55

Hz. demeilloni (+) 1.25 1.14 1.44 3 ×  10–7

Precipitation 2nd week before the collection Ae. albolineatus (+) 1.35 1.17 1.61 3 ×  10–6

Ae. gardneri (+) 1.14 1.05 1.26 2 ×  10–3

Ar. annulitarsis (+) 1.22 1.15 1.32 3 ×  10–11

Cx. bitaeniorhynchus (+) 1.14 1.07 1.23 6 ×  10–5

Cx. brevipalpis 1.08 0.71 1.47 0.67

Precipitation 3rd week before the collection Ae. eldridgei (+) 1.53 1.29 1.86 10–10

Ar. subalbatus (+) 1.06 1.02 1.10 2 ×  10–03

Cq. crassipes 0.99 0.93 1.04 0.62

Cx. cinctellus 0.98 0.92 1.04 0.56

Cx. fraudatrix (−) 0.47 0.24 0.64 10–13

Cx. nigropunctatus 0.97 0.92 1.02 0.22

Cx. pseudovishnui (+) 1.06 1.04 1.09 3 ×  10–07

Ur. macfarlnei 0.85 0.65 1.02 0.08

Precipitation 4rd week before the collection Ae. albopictus 1.02 0.99 1.06 0.11

Temperature 1st week before collection Ae. eldridgei (−) 0.08 0.02 0.26 4 ×  10–09

Ar. annulitarsis (−) 0.60 0.43 0.81 4 ×  10–07

Cx. bitaeniorhynchus (−) 0.69 0.52 0.88 3 ×  10–04

Temperature 2nd week before collection Ar. subalbatus (−) 0.64 0.48 0.81 4 ×  10–04

Cq. crassipes 1.07 0.87 1.34 0.40

Cx. fraudatrix (−) 0.11 0.01 0.27 4 ×  10–07

Cx. pseudovishnui 0.90 0.75 1.08 0.15

Temperature 3rd week before collection Ae. albolineatus (−) 0.16 0.05 0.44 2 ×  10–04

Cx. brevipalpis (+) 8.26 1.37 2182.44 4 ×  10–03

Cx. cinctellus (−) 0.58 0.44 0.74 2 ×  10–07

Cx. nigropunctatus 1.11 0.95 1.32 0.08

Hz. demeilloni 0.50 0.24 0.83 0.10

Temperature 4th week before collection Ae. albopictus (+) 1.40 1.22 1.63 10–08

Ae. desmotes 1.23 0.83 1.88 0.35

Ae. gardneri (+) 2.07 1.47 3.04 8 ×  10–05

Ur. macfarlnei 0.33 0.19 0.49 0.62
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collected in Kampong Speu and only in November. Lit-
tle is known regarding its biology and  behavior. It seems 
that the coconut husks and small tree holes are the main 
breeding habitat of this species [45].

Uranotaenia was the third most abundant mosquitoe 
in our study and was also quite diverse, reaching half of 
Uranotaenia species currently recorded in Cambodia 
[11], which is not surprising since this genus is common 
in forests. Among them, Uranotaenia macfarlanei was 
the most abundant Uranotaenia species. This species was 
mostly collected in the semi-evergreen forest of Ratanak 
Kiri during the dry season. According to the literature, 
this mosquito lay eggs in small pools of dirty water and 
can be found at about 900 m above sea level [11, 46], but 
in our study, the adults were collected between 110 and 
300 m above sea level. They are known to mainly feed on 
frogs, and their vectorial status is still unknown [47].

Our Armigeres collection was also quite diverse, with 
10 of the 26 Armigeres species currently present in Cam-
bodia [11]. Interestingly, Ar. subalbatus species was pre-
sent in almost all the sites and was the dominant species 
in the ranger station in Ratanak Kiri Forest. This species 
is known to be ecologically flexible and can be commonly 
found in rural and peri-urban/urban habitats as well [44]. 
Larvae of this species are found in different container 
habitats containing nutrient-rich and polluted water, 
mostly in banana stumps in Cambodia [11].

Heizmannia was the fifth most abundant genus in our 
study, reaching half of the current Heizmannia species of 
Cambodia [11]. Little is known about the biology of Heiz-
mannia. Apparently, females of these mosquitoes mainly 
lay their eggs in tree holes and bamboo, are active during 
daytime in forests and readily bite humans. Heizmannia 
demeilloni was the most abundant Heizmannia species, 
which was mostly found in in the semi-evergreen forest 
of Ratanak Kiri and mainly collected during the rainy 
season. This species is known to breed in bamboo stumps 
[48].

The mosquitoes belonging to other genera like Aedeo-
myia, Anopheles, Coquillettidia, Lutzia, Mansonia, 
Mimomyia, Tripteroides and Toxorhynchites were scarce 
in our forests, accounting for only 1.96% (n = 184) of our 
collections. The scarcity of Anopheles was particularly 
surprising given that previous studies have highlighted 
high diversity and abundance of these mosquitoes in 
Cambodian forests, including Preah Vihear and Ratanak 
Kiri [29, 30]. However, during these previous studies, 
human- and cow-baited traps were chosen, which might 

be more efficient for Anopheles sampling than the type of 
traps used during our work.

This study also provided predictive relationships 
between abiotic factors and mosquito abundance for 
a wide range of species including some uncommon or 
poorly studied ones. The results clearly demonstrated 
that when the relative abundance of mosquitoes was 
positively impacted by altitude it was mainly negatively 
related to temperature at a species-specific time lag. This 
could be explained by the fact that temperature gener-
ally decreases with altitude [49]. The result of our model 
combined with the observations from previous studies 
[49, 50] indicate that lowlands are more suitable for Ar. 
subalbatus occurrence and abundance. Regarding Ae. 
albopictus abundance, the highlands were more suit-
able, while it was positively impacted by the temperature 
during the fourth week before collection. This might be 
explained by the ability of this species to adapt to various 
ranges of temperature [51].

Additionally, these abiotic factors have been highlighted as 
important parameters determining the community compo-
sition of mosquito species. For instance, the co-occurrence 
of Ae. albolineatus, Ar. annulitarsis and Cx. bitaeniorhynchus 
in the two semi-evergreen forests of Kampong Speu could be 
explained by the fact that their relative abundance was posi-
tively correlated with the altitude and average temperature 
in the second week prior to the collection. Previous stud-
ies demonstrated that mosquito community composition 
is strongly influenced by landscape [52, 53]. In our case, for 
logistical reasons, a better characterization of our study site 
has not been made. This should be undertaken in the future 
to assess this impact of environmental factors on the mos-
quito community in these forests.

The forests investigated in this study are located in 
protected areas of Cambodia. Despite this, many forest-
goers rely on timber and non-timber forest products, 
increasing the deforestation rate, yet to be efficiently 
regulated in Cambodia. The presence of mosquito spe-
cies well adapted to living in close vicinity to humans 
and human settlements indicates the presence of human 
activities in these areas. The collected mosquitoes that 
could be indicators of anthropization were Ae. aegypti 
and Cx. quinquefasciatus, two domestic mosquito spe-
cies well adapted to the human environment [42, 54, 55]. 
The presence of Anopheles campestris and An.  baimaii, 
whose females are highly antropophilic [56, 57], could 
also be evidence of human activities in Kampong Speu 
where these species were only found. Finally, Cx. gelidus, 

Table 3 (continued)
ANOVA test. ( +): positive correlation, (−): negative correlation

IRR Incidence Ratio Rate
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which feed on large domestic animals [11, 39], and Man-
sonia annulifera, a highly anthropophilic mosquito biting 
mainly inside habitations [41], could also be an indica-
tor of anthropization in Siemreap Forest. Surprisingly, 
despite the human activities observed in Preah Vihear 
Forest, the mosquito species collected in the three sites 
were likely either mainly zoophilic or opportunistic. The 
same finding was observed in Ratanak Kiri Forest.

Our study highlighted a high risk of pathogen emer-
gence/re-emergence in our sites due to the presence of 
mosquito species of medical importance in these areas. 
One of the most important features is the abundance 
of Cx. pseudovishnui, a potential vector of JEV [58, 59], 
which was present in all the sites regardless of the sea-
son. Other species collected in this study, Ae. albopic-
tus, Aedes vexans, Ar. subalbatus, Cx. bitaeniorhynchus, 
Culex fuscocephala, Cx. gelidus, Cx. quinquefasciatus, 
Cx. sitiens, Ma. annulifera, Ma. indiana and Ma. uni-
formis, are also reported to be confirmed or poten-
tial vectors of JEV [59–66] and can also transmit other 
pathogens. For instance, Ae. albopictus, the second most 
abundant mosquito in this work, could transmit several 
other arboviruses including CHIKV, DENV and ZIKV 
[67, 68]. This species was also present across the different 
sites independently of the season. Armigeres subalbatus, 
which was present in almost all sites, is a potential vec-
tor of ZIKV [69] and is implicated in the transmission of 
filaria [70]. Aedes vexans, Cx. quinquefasciatus and Ma. 
uniformis could transmit different arboviruses including 
the Rift Valley fever virus [71]. Also, Ae. aegypti is a vec-
tor of several pathogens [72] and is considered a major 
vector of DENV [73]. Finally, seven Anopheles species, 
namely An. barbirostris, An. campestris, An. karwari, 
An. maculatus, An. minimus, An. nivipes and An. philip-
pinensis, are reported to be vectors of Plasmodium [11, 
30]. Furthermore, due to their presence in both forested 
and rural areas in our study and their zoo-anthropogenic 
behavior [74–77], Ae. albopictus, Ar. subalbatus, Cx. 
pseudovishnui and Cx. quinquefasciatus could potentially 
act as bridge vectors for new emerging pathogens.

The main limitations of the present study are that, for 
logistical reasons, each site was visited only two times 
and only two kinds of traps (BG-sentinel and Light trap) 
were used. Increasing the number of samplings and the 
diversity of traps in these areas would improve the diver-
sity and density of mosquito fauna.

Conclusion
This study shows the important diversity of mosquitoes 
as well as the density of the species of medical impor-
tance in four forests in Cambodia which responded dif-
ferently to meteorological and geographical factors. It 
also highlights the presence of mosquitoes related to 

human activities in these supposedly protected areas. 
Additionally, it emphasizes a high risk of re-emergence 
of pathogens in these areas due to the abundance of 
mosquito species that are potentially vectors of patho-
gens. Finally, the potential emergence of new pathogens 
in these areas is a public heath consideration due to the 
presence and abundance of mosquitoes displaying zoo-
anthropogenic behavior in forested and rural areas. In 
fact, these could serve as bridge vectors between sylvatic 
and anthropogenic pathogens. Further studies using 
next-generation sequencing methods should therefore be 
conducted to investigate the pathogen diversity among 
these mosquitoes, providing information on the risk of 
disease emergence.
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