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Insights into host–virus interactions during SARS-CoV-2 infection are needed to understand COVID-19 pathogenesis and

may help to guide the design of novel antiviral therapeutics. N6-Methyladenosine modification (m6A), one of the most

abundant cellular RNAmodifications, regulates key processes in RNAmetabolism during stress response. Gene expression

profiles observed postinfection with different SARS-CoV-2 variants show changes in the expression of genes related to RNA

catabolism, including m6A readers and erasers. We found that infection with SARS-CoV-2 variants causes a loss of m6A in

cellular RNAs, whereas m6A is detected abundantly in viral RNA. METTL3, the m6A methyltransferase, shows an unusual

cytoplasmic localization postinfection. The B.1.351 variant has a less-pronounced effect on METTL3 localization and loss of

m6A than did the B.1 and B.1.1.7 variants. We also observed a loss of m6A upon SARS-CoV-2 infection in air/liquid interface

cultures of human airway epithelia, confirming that m6A loss is characteristic of SARS-CoV-2-infected cells. Further, tran-

scripts with m6A modification are preferentially down-regulated postinfection. Inhibition of the export protein XPO1 re-

sults in the restoration of METTL3 localization, recovery of m6A on cellular RNA, and increased mRNA expression.

Stress granule formation, which is compromised by SARS-CoV-2 infection, is restored by XPO1 inhibition and accompanied

by a reduced viral infection in vitro. Together, our study elucidates how SARS-CoV-2 inhibits the stress response and per-

turbs cellular gene expression in an m6A-dependent manner.

[Supplemental material is available for this article.]

The ongoing pandemic of COVID-19 disease is caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Since 2019, the virus has spread over theworld, and novel variants
have emerged in succession, associated with changes in transmis-
sibility and disease severity capacity (Tao et al. 2021). The SARS-
CoV-2 genome consists of a single-stranded positive genomic
RNA of approximately 30,000 nucleotides (Wu et al. 2020).
Although different vaccines have been developed to mitigate
SARS-CoV-2 spreading, it is still necessary to gain knowledge on
the basic mechanisms underlying SARS-CoV-2 infection and
host response to assist in the development of improved therapeu-
tic options.

N6-Methyladenosine modification (m6A) is a prevalent inter-
nal RNAmodification (Baquero-Perez et al. 2021). It is involved in

the regulation of a broad range of biological processes including
cell differentiation (Geula et al. 2015),mRNA stability, translation,
liquid-phase separation, and stress granule formation, among oth-
ers (Zaccara et al. 2019). The writing of m6A on mRNA is mediated
by a methyltransferase complex comprising the core catalytic sub-
units METTL3 and METTL14 and the adapter subunits WTAP,
VIRMA, HAKAI, and RBM15/B (Ping et al. 2014; Patil et al. 2016;
Xiao et al. 2016; Yue et al. 2018; Bawankar et al. 2021). The m6A-
modified RNAs are recognized by cytoplasmic YTH domain-con-
taining proteins, namely, YTHDF1–YTHDF3, which regulate
mRNA stability and stress granule formation. In addition, the nu-
clear m6A reader proteins YTHDC1 and HNRNPA2B1 play critical
roles in splicing and nuclear export (Alarcón et al. 2015; Xiao
et al. 2016). Finally, m6A modifications can also be erased by the
dioxygenases FTO and ALKBH5, which specifically demethylate
m6A RNA (Zhang et al. 2017; Wei et al. 2022).
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Them6A RNAmodification has been identified in several viral
genomicRNA, being first described forDNAviruses, such as the sim-
ian virus 40 (SV40), herpes simplex virus, and adenovirus 2, and also
in retroviruses, such as Rous sarcoma virus and human immunode-
ficiency virus 1 (HIV-1) (Lu et al. 2018). Moreover, a role for m6A
modification has been described for RNA viruses, such as dengue,
West Nile fever, yellow fever, Zika, and hepatitis C viruses, inwhich
it was involved in the suppression of viral gene expression and rep-
lication (Lichinchi et al. 2016; Kim and Siddiqui 2021). The SARS-
CoV-2 genome is m6A-modified by host proteins, and the m6A
modification is important for promoting viral replication and for
limiting the host immune response (Li et al. 2021; Liu et al. 2021;
Zhang et al. 2021b). Depletion of the cytoplasmic m6A readers,
the YTHDF proteins, and the writer METTL3 suppress SARS-CoV-2
(and HCoV-OC43) replication. METTL3 inhibition mediated by a
small-molecule inhibitor induces viral RNA synthesis suppression,
suggesting that m6A modification is needed for optimal viral RNA
expression (Burgess et al. 2021).

Though recent studies reported the presence of m6A in the
SARS-CoV-2 RNA genome (Kim et al. 2020; Burgess et al. 2021;
Li et al. 2021; Liu et al. 2021; Zhang et al. 2021b), it has not
been explored in detail how the host’s m6AmRNA profile is affect-
ed during infection. To address this question, we studied the effect
of SARS-CoV-2 infection in Vero cells and air/liquid interface (ALI)
cultures of human airway epithelia, which are highly permissive to
SARS-CoV-2 infection (Robinot et al. 2021; Wei et al. 2021b).

Results

Infection by different SARS-CoV-2 variants leads to deregulation

of RNA catabolism–related genes

To identify variant-specific differences in gene expression pertur-
bations, we infected Vero cells with three SARS-CoV-2 variants:
B.1, B.1.1.7, and B.1.351. At 48 h postinfection, spike positivity
was detected in 94%–95% of infected cells for all the variants
(Supplemental Fig. S1A). We isolated total RNA 48 h postinfection
and evaluated gene expression changes using RNA sequencing
(RNA-seq). We first checked viral RNA levels postinfection and ob-
served that RNA-seq reads mapping to the viral genomewere com-
parable for the three SARS-CoV-2 variants (Supplemental Fig. S1B).
The expression levels analyzed per viral gene were also similar for
the three variants (Supplemental Fig. S1C). Viral reads contributed
1.2%–2.8% of the total reads recovered from infected cells (adding
reads from the viral and host genomes) (Supplemental Fig. S1D),
which is consistent with an earlier report (Blanco-Melo et al.
2020). Next, we performed a differential gene expression analysis
to identify genes with altered expression postinfection in Vero
cells (Fig. 1A; Supplemental Data S1). We identified a considerable
number of up-regulated (998) and down-regulated (950) genes that
were modulated across the three variants during infection (Fig.
1B). We then performed a principal component analysis (PCA)
and a regression analysis to evaluate similarities in gene expression
patterns across the three variants. We observed variant-specific
patterns in gene expression, with gene expression patterns being
more similar between the B.1.1.7 and B.1.351 variants
(Supplemental Fig. S1E,F). Gene expression changes postinfection
with three SARS-CoV-2 variants overlapped with several publicly
available data sets deposited since the outbreak of COVID-19
(Supplemental Fig. S1G). We also compared the gene expression
data set post-SARS-CoV-2 infection in three different variants
with one of the publicly available data sets (Riva et al. 2020), in

which differential gene expression was analyzed 24 h post-SARS-
COV-2 infection in the Vero cells, and we observed a moderate
but significant positive correlation between our data and publicly
available data (Supplemental Fig. S1H). Pathway analysis revealed
that altered genes were enriched in pathways associated with pro-
tein localization to the membrane, RNA catabolic processes, and
cilium assembly (Fig. 1C; Supplemental Data S2). This was evident
in the pathway analysis performed on up- and down-regulated
genes separately after viral infection. Up-regulated genes were en-
riched for pathways related to several RNA catabolic processes,
especially in B.1 and B.1.1.7 variants, whereas down-regulated
genes were enriched with cilium assembly and organization
(Supplemental Fig. S1I; Supplemental Data S2). We then chose
to systematically look at the genes involved in RNA catabolic pro-
cesses that were frequently deregulated across variants during
SARS-CoV-2 infection. To do so, we selected RNA catabolism–relat-
ed pathways, which were enriched in deregulated genes in at least
two variants and visualized the interactions of those genes using
network analysis (Fig. 1D). We observed that the mean connectiv-
ity of nodes in the RNA catabolism pathway–related network was
much higher compared with random networks (Supplemental
Fig. S1J). In particular, the network analysis suggested widespread
interactions (as detected by connectivity degree) of m6A-related
genes with different RNA catabolic processes (Supplemental Fig.
S1K). We observed that m6A-related genes were frequently deregu-
lated during SARS-CoV-2 infection in Vero cells (Fig. 1E), although
we did not observe any significant change in the expression of the
mainm6AwritersMETTL3 andMETTL14. We validated the differ-
ential expression of m6A eraser FTO, which was down-regulated,
and the up-regulation of the m6A-related genes SPEN and
YTHDF1 (Dossin et al. 2020), which was observed after infection
with the three variants. Similar changes were observed after infec-
tionwith the B.1.617.2 (Delta) variant, whichwas available during
the final compilation of the data (Fig. 1F). Although we observed
variant-specific gene expression changes, our data suggest wide-
spread deregulation of genes associated with RNA catabolic
processes and m6A modification–related pathways for all the
SARS-CoV-2 variants tested.

Variant-specific changes in cellular RNA m6A levels

after viral infection

A change in m6A-related genes during viral infection prompted us
to check the effect of infection on cellular m6A levels. To this end,
isolated RNA from noninfected Vero cells and cells infected with
three SARS-CoV-2 variants (B.1, B.1.1.7, and B.1.351) was supple-
mented with spike-in bacterial RNA as a control (spike-in) for
m6A RNA immunoprecipitation (RIP) followed by sequencing
(m6A RIP-seq) (Fig. 2A).We observed a loss ofm6A peaks in the cel-
lular RNA postinfection with different SARS-CoV-2 variants, with
the loss of m6A peaks beingmoremarked in the B.1 and B.1.1.7 in-
fections compared with a B.1.351 infection (Supplemental Fig.
S2A; Supplemental Data S3). The global distribution of m6A peak
density across transcripts in noninfected cells was similar to that
reported previously, with strong enrichments near the start and
stop codons (Meyer et al. 2012). Spike-in normalized relative
m6A peak density showed m6A loss across the whole transcript
length following SARS-CoV-2 infection in Vero cells, with more
pronounced effects in B.1 and B.1.1.7 infection compared with
B.1.351 infection (Fig. 2B). The input RNA signal across the tran-
script length was largely unaltered between noninfected and dif-
ferent SARS-CoV-2-infected conditions, suggesting input RNA
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Figure 1. Gene expression changes postinfection with different variants of SARS-CoV-2. (A) Volcano plots showing gene expression changes and signifi-
cance (−log10 scale) in SARS-CoV-2-infected versus noninfected cells. Dashed lines indicate the significance threshold (adjusted P-value < 0.01) and log2
fold-change threshold (abs log2 fold-change > 1). Differentially expressed genes are highlighted in red, and labels indicate some of the common differen-
tially expressed genes across all conditions. (B) Venn diagram comparison of up- and down-regulated genes across variants. (C) Top enriched Gene
Ontology (GO) term biological processes after infection. The size of the dots represents the enrichment of genes with a GO term, colored according to
their significance level. (D) ClueGO clustering and visualization of common terms associated with m6A-related genes across any pair of SARS-CoV-2 var-
iants. m6A genes that are deregulated across variants are highlighted in red. (E) Heatmap ofm6A-related genes, with gray boxes indicating nondifferentially
expressed genes and colors indicating the log2 fold-change values of significantly deregulated genes in at least two variants. (F ) Relative mRNA expression
of m6A-related genes in noninfected Vero cells and Vero cells infected with B.1, B.1.1.7, B.1.351, and B.1.617.2 (Delta) variants of SARS-CoV-2. TBP and
POL2RGwere used to normalize the qPCR data. Data are shown asmean± SD of three replicates (n=3). Statistics: two-tailed paired t-test; (∗) P<0.05, (∗∗) P
<0.01, (∗∗∗) P<0.001.
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Figure 2. Variant-specific changes in cellular RNAm6A level after viral infection. (A) Flow chart describing them6A RIP-seq protocol. (B)Metagene analysis
showing spike-in normalized relativem6A peak density at host genes in noninfected and SARS-CoV-2-infected Vero cells (variants as specified by colors). (C)
Genome browser screenshots showing the ratio of m6A RIP/input for three different genes in noninfected and SARS-CoV-2-infected (variants as specified)
Vero cells. Ratio tracks were calculated using spike-in normalized counts permillion (CPM).m6A peak regions identified using theMACS peak caller software
in noninfected cells are highlighted using gray boxes. (D) Identified motifs from de novo motif analysis of peaks in noninfected and infected cells. (E) The
total number of peaks classified as retained, gained, or lost postinfection with the SARS-CoV-2 variants are indicated and compared with the noninfected
condition. (F–H) METTL3 localization. (F ) METTL3 and α-tubulin coimmunostaining in Vero cells that were either noninfected or infected with SARS-CoV-2
variants (as denoted). Scale bar is 20 μm. (G) METTL3 intensities (in relative fluorescence units [RFU]) derived from the immunostainings performed in F.
METTL3 RFU in the nucleus (red) and cytoplasm (blue) were estimated using ImageJ, using DAPI marking the nucleus and α-tubulin staining the cytoplasm
as references. Data are shown as mean± SD. Data presented frommultiple experiments with the total number of cells counted, n =<70. One-way ANOVA
test was performed; (∗∗) P<0.01, (∗∗∗) P<0.001, (∗∗∗∗) P<0.0001. (H) Distribution of METTL3 in the nucleus and cytoplasm calculated from the percent-
age of RFU intensities measured as described in G. Data are shown as mean± SD. (I,J) METTL3–METTL14 interaction. (I) Proximity ligation assay (PLA) in
noninfected and SARS-CoV-2-infected Vero cells (variants as indicated) depicting METTL3 and METTL14 PLA foci in the nucleus (marked by DAPI). The
background control shows PLA with only the METTL3 antibody. Scale bar is 20 μm. (J) Quantification of METTL3–METTL14 PLA foci as detected in I.
The number of PLA foci/nuclei are shown as mean± SD. Data presented from multiple experiments with the total number of cells counted, n=<100.
One-way ANOVA test was performed; (∗∗∗∗) P<0.0001.

4 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on March 29, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


does not contribute to the observed m6A loss (Fig. 2B;
Supplemental Fig. S2B). This global loss of m6A was also evident
by the reduced number of genes with m6A peaks following SARS-
CoV-2 infection (Supplemental Fig. S2C). A decrease in the
spike-in normalized m6A signal was visible over the commonly
lost m6A peaks (Supplemental Fig. S2D) and also at the level of in-
dividual transcripts (Fig. 2C) after infectionwith three SARS-CoV-2
variants. Identified m6A peaks in noninfected cells were enriched
with the known “GGAC” motif, whereas the dominant motif
wasmore degenerate in infected cells (Fig. 2D). Although the num-
ber of m6A peaks was drastically reduced, we also detected new
m6A peaks that were gained over many transcripts after infection
with all three variants. The number of gainedm6A peaks was high-
est for the B.1.351 variant (Fig. 2E; Supplemental Fig. S2C). When
we investigated the genomic location of the lost and gained peaks
during infection, we observed that gained peaks were found in dif-
ferent genomic locations, withmajor gained peaks located at inter-
genic and TSS regions (Supplemental Fig. S2F). The most enriched
motifs (despite less-significant P-values) in the gained m6A peaks
were different from the canonical “GGAC” motif (Supplemental
Fig. S2E). We also checked by scatter plots the relation between ex-
pression (log2 fold-changes: infected vs. noninfected) andm6A en-
richment (infected vs. noninfected) across the transcripts and
found that change in expression cannot simply explain alteration
in m6A enrichment (Supplemental Fig. S2G). This was further ev-
ident in the input RNA signal, which was mostly unaffected over
the common lost peaks in infected cells even though the m6A sig-
nal was reduced over those peaks (Supplemental Fig. S2D), suggest-
ing the involvement of additionalmechanisms that drivem6A loss
during SARS-CoV-2 infection.

The global loss of m6A peaks during infection suggests an al-
tered function of the key cellular enzyme complex (METTL3/
METTL14), which deposits m6A modifications. The METTL3/
METTL14 complex is normally localized in the nucleus and de-
posits m6A modification cotranscriptionally (Huang et al.
2019). We determined whether METTL3/METTL14 function
could be compromised during infection owing to altered cellular
localization. We observed that during SARS-CoV-2 infection,
METTL3 was partially relocalized from the nucleus to the cyto-
plasm (Fig. 2F). Importantly, cytoplasmic localization of
METTL3 was more evident with the B.1 and B.1.1.7 variants com-
pared with B.1.351 (Fig. 2F–H), which is consistent with a greater
reduction in m6A level in B.1 and B.1.1.7 infections. To verify
that the METTL3 antibody used was specific and did not detect
a viral antigen in infected cells, we infected both control
(Control-sh) and METTL3 knockdown (KD) Vero cells with the
B.1 variant (Supplemental Fig. S2H,I). We observed a drastic re-
duction in METTL3 signal upon METTL3 KD in noninfected
cells. After infection with B.1, the Control-sh cells showed
METTL3 localization in both nuclear and cytoplasmic compart-
ments; however, in the METTL3 KD condition, this staining
was absent, suggesting that the METTL3 antibody was indeed
specific (Supplemental Fig. S2J). The nuclear localization of
METTL14 was mostly unaffected during SARS-CoV-2 infection
(Supplemental Fig. S2K). As m6A loss was marked in infected
cells, we wondered if partial METTL3 cytoplasmic localization
was sufficient to compromise METTL3/METTL14 functional
complex formation. To test this, we performed a proximity liga-
tion assay (PLA) to detect the METTL3/METTL14 complex in
the noninfected and SARS-CoV-2-infected cells. We observed
that the METTL3/METTL14 PLA signal was decreased in infected
cells, with an effect that wasmoremarked in B.1 and B.1.1.7 com-

pared with B.1.351, in which METTL3 localization was also less
affected (Fig. 2I,J).

SARS-CoV-2 genomic RNA contains m6A modification

Recently several studies reported the presence ofm6Amodification
on SARS-CoV-2 genomic RNA (Burgess et al. 2021; Li et al. 2021;
Liu et al. 2021; Zhang et al. 2021b). As we observed that the key
m6A depositing enzyme METTL3 showed partial relocalization to
the cytoplasm where SARS-CoV-2 genome replication occurs, we
investigated the m6A profile in viral RNAs. Our strand-specific
m6A RIP sequencing (m6A RIP-seq) data allowed us to profile
m6A in both the positive (genomic) and the negative (replicative
intermediates) strands of viral RNA for the three SARS-CoV-2 vari-
ants. Consistent with previous reports, we detected m6A-enriched
regions at several positions of the positive-strand SARS-CoV-2 ge-
nome for all three variants, with broader m6A peaks detected in
the N gene region (Fig. 3A; Supplemental Data S3; Burgess et al.
2021; Li et al. 2021; Liu et al. 2021; Zhang et al. 2021b). Using liq-
uid chromatography–tandem mass spectrometry (LC-MS/MS), we
then determined the presence of a relative number ofm6A residues
in the SARS-CoV-2 RNA genome. In these experiments, viral geno-
mic RNAwas isolated from infected Vero cell supernatant, and the
ratio of A/m6A was measured using a synthetic m6A-containing
RNA oligo as a standard. Using the parallel reaction-monitoring
(PRM) mode, we monitored LC-MS/MS profiles for m/z 268.0–
136.0 and m/z 282.0–150.1, which correspond to A and m6A, re-
spectively (Sun et al. 2021).We observed that each SARS-CoV-2 ge-
nome contains, on average, 10 m6A modifications (Supplemental
Fig. S3A), consistent with a recent report (Li et al. 2021). We ob-
served m6A-containing peaks were also present in the negative
strand of the viral RNA, mainly in the N/ORF10 region (Fig. 3B).
We then validated the presence of m6A in both the positive and
negative strands by strand-specific m6A RIP-qPCR for the B.1.1.7
variant (Fig. 3C). Further, using SARS-CoV-2-infected patient
RNA samples from throat/nose swabs, we could detectm6A enrich-
ment in the N gene region in both the positive and negative
strands of SARS-CoV-2 RNAs (Fig. 3D). We verified up-regulation
of selected interferon-stimulated genes in SARS-CoV-2-infected pa-
tient throat/nose swab RNA as previously reported (Supplemental
Fig. S3B; Gao et al. 2021; Lorè et al. 2021b). The presence of m6A
peaks in both strands of SARS-CoV-2 RNA suggests an important
functional role for such modifications (Burgess et al. 2021; Li
et al. 2021; Liu et al. 2021; Zhang et al. 2021b). Inspection of pub-
licly available viral-RNA protein interaction data shows that m6A
reader protein partners are enriched in viral RNA interacting pro-
teins (Schmidt et al. 2021). The m6A readers previously shown to
interact with SARS-CoV-2 RNA were searched for known interact-
ing protein partners in the STRING database. We found that these
interacting proteins are enriched in RNAmetabolism and viral pro-
cess pathways (Supplemental Fig. S3C, top) and that these proteins
show overlap with the SARS-CoV-2 RNA–protein interactome
(Supplemental Fig. S3C, bottom). These observations suggest
that SARS-CoV-2 may use m6A residues in its genome to recruit
other RNA-binding proteins to the viral RNA using m6A readers
as intermediates. This is consistent with the recently reported
role of m6A reader YTHDF proteins in SARS-CoV-2 infection
(Burgess et al. 2021). Given m6A has been implicated in other
RNA viruses, the detailed characterization of interactions between
m6A readers and SARS-CoV-2 RNAwill further elucidate the role of
m6A reader proteins in host–virus interactions (Lichinchi et al.
2016; Kim and Siddiqui 2021).
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m6A loss modulates cellular gene expression in SARS-CoV-2-

infected cells

To better understand the effects of m6A modulation on cellular
gene expression during viral infection, we first identified the set
of transcripts showing a change in m6A level during infection
with the three SARS-CoV-2 variants compared with noninfected
cells. We then compared the genes with lost m6A (shows loss of
at least one m6A peak compared with noninfected cells) or with
gained m6A (no m6A peak present in noninfected cells, but one

or more m6A peaks gained after infection) with our set of differen-
tially expressed genes (up- and down-regulated during infection).
We found that the list of up- and down-regulated genes overlapped
with that of genes with lost and gainedm6A. In general, down-reg-
ulated genes showed higher overlapwith lost m6A genes across the
three variants, whereas the up-regulated genes were overrepresent-
ed in the gainedm6A gene category (Fig. 4A). To better understand
how loss and gain of m6A contributed to gene expression, we per-
formed a cumulative distribution function (CDF) analysis that
measured RNA abundance using RNA-seq data in geneswith either

A

B

C D

Figure 3. SARS-CoV-2 genomic RNA contains m6Amodification. (A) Identifiedm6A peaks on SARS-CoV-2 positive strands from B.1, B.1.1.7, and B.1.351
variants are shown. Them6A peaks in the positive strand of SARS-CoV-2 RNA frompublicly available data. (B) m6A peaks on the SARS-CoV-2 negative strand.
The presence of m6A peaks in the N gene region is highlighted, and normalized coverage is shown on the panel below. (C,D) m6A-RIP qPCR data showing
enrichment ofN gene region in both the positive strand and the negative strand of viral RNA. (C ) Twenty-four hours postinfection with B.1.1.7 in Vero cells;
data are represented as a percentage of input, and IgG was used as the negative control. Statistics: two-tailed paired t-test, n=3; (∗) P<0.05. (D) m6A-RIP
qPCR data showing enrichment of theN gene region in both the positive strand and the negative strand of viral RNA from the infected patient samples (n=
5). Data are represented as a percentage of input. IgG was used as a negative control. Statistics: two-tailed paired t-test; (∗∗) P<0.01.
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lost or gained m6A peaks. We found that lost m6A genes showed a
decrease in abundance, whereas gained m6A genes were increased
in abundance after SARS-CoV-2 infection for the three variants
studied (Supplemental Fig. S4A). Similar findings were obtained
when genes with m6A gain or loss were compared with genes
with no change in m6A level (retained genes) (Supplemental Fig.
S4B). We further categorized genes in noninfected cells based on
m6A content to either non-m6A, low (one peak), medium (two
peaks), or high (three or more peaks) m6A. We observed higher-

m6A-containing genes were more susceptible to viral infection,
with a decreased expression of these genes upon infection with
SARS-CoV-2 variants (Fig. 4B). This suggests that m6A modifica-
tion on these genes contributes to their expression and that their
expression is compromised owing to the global loss of m6A during
viral infection.We chose a few genes with varying levels of m6A in
noninfected cells and validated their down-regulation during viral
infection (Fig. 4C). Expression of these genes was also decreased in
METTL3 KD cells, indicating an m6A-dependent expression
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Figure 4. Gene expression after viral infection and global m6A loss. (A, top) Overlap diagrams of differentially expressed and m6A-modified genes after
infection. Each set shows the number of up-regulated and down-regulated genes associated with lost or gained m6A modifications. The remaining genes
are shown in gray. Hypergeometric test P-values depict the calculated probability of overlap between differentially expressed and m6A lost/gained genes.
(A, bottom) Bar-graph summarizing the percentage of up-/down-regulated genes overlapping with either lost or gained m6A genes. (B) Log2 fold-change
distributions of differentially expressed genes postinfection with three different variants, categorized according to their m6A level: non, low, medium/high.
Statistical significance was calculated using the Wilcoxon test. (ns) Nonsignificant, (∗) P<0.05, (∗∗) P<0.01, (∗∗∗) P<0.001, (∗∗∗∗) P<0.0001. (C) Relative
mRNA expression of genes with varying levels of m6A (FAM111A and PKHD1, high m6A; HDAC6, mediumm6A; RNASEL, lowm6A; EID1, no m6A) after viral
infection with the variant indicated compared with noninfected cells. qPCR data were normalized to TBP and POL2RG. Statistics: two-tailed t-test; (∗) P<
0.05, (∗∗) P<0.01, (∗∗∗) P<0.001, n=2.
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(Supplemental Fig. S4C). The exception was EID1, which did not
change expression in absence of METTL3, consistent with this
gene having no m6A modification (Supplemental Fig. S4C).
Infection with the B.1.617.2 (Delta) variant also down-regulated
the expression of the five tested genes (Fig. 4C). We checked the
localization of METTL3 after B1.617.2 infection and observed
that METTL3 was partially relocalized from the nucleus to the cy-
toplasm in B.1.617.2 infection aswell (Supplemental Fig. S4D).We
then performed a pathway analysis for the up- and down-regulated
genes with lost m6A.We observed that down-regulated genes with
lost m6Aweremostly involved in ciliumorganization, whereas up-
regulated genes with lost m6A were primarily part of pathways re-
lated to covalent chromatin/histone modifications (Supplemental
Fig. S4E). We validated the down-regulation of some of the known
cilia-related genes such asHDAC6 and PKHD1 (Fig. 4C; Zhang et al.
2004; Ran et al. 2015) consistent with a recent report suggesting
widespread loss of motile cilia after SARS-CoV-2 infection
(Robinot et al. 2021). The geneswith lostm6A involved in covalent
chromatin modification and up-regulated during infection, such
as KDM6A (Supplemental Data S2), were recently identified as pro-
viral genes in a CRISPR screen (Wei et al. 2021b). Thus, our data
suggest that loss of m6A during SARS-CoV-2 infection establishes
a pattern of host cell gene expression that favors viral replication.

m6A modification is known to be implicated in alternative
splicing (Wei et al. 2021a). Considering the global loss of m6A dur-
ing SARS-CoV-2 infection, we looked for differential exon use
(DEU) in the RNA-seq data. We identified about 790 DEU events
common to cells infected with the three SARS-CoV-2 variants
(Supplemental Data S4). For instance, we observed that exon 1 of
the COL6A2 collagen gene is differentially included during infec-
tion, which is associated with the loss of m6A peaks surrounding
the newly included exon 1 (Supplemental Fig. S4F). We also found
that DEU-containing genes had on average more m6A peaks com-
pared with random m6A-positive genes in noninfected cells
(Supplemental Fig. S4G). Further, we observed that m6A-contain-
ing DEU genes showed a loss of m6A peaks during infection
(Supplemental Fig. S4H).

Treatment with selinexor restores METTL3 cellular localization

during SARS-CoV-2 infection

During the SARS-CoV-2 infection, we observed partial relocaliza-
tion of METTL3 to the cytoplasm from its original nuclear loca-
tion. Considering that m6A modification of cellular mRNA is
deposited cotranscriptionally in the nucleus (Huang et al. 2019),
we aimed to restoreMETTL3 nuclear localization to see if we could
antagonize the effects of SARS-CoV-2 infection. We observed that
the expression of XPO1 (or exportin 1), one of the major nuclear
export proteins, was up-regulated during infection (Fig. 5A;
Supplemental Fig. S5A). Therefore, we set to determine whether
XPO1 was involved in the relocalization of METTL3 during viral
infection. Using PLA, we observed that XPO1 and METTL3 inter-
acted with each other in Vero cells (Fig. 5B). We then treated these
cells during infectionwith selinexor, awell-characterizedXPO1 in-
hibitor (Kashyap et al. 2021). We observed that selinexor treat-
ment resulted in the restoration of METTL3 localization to the
nucleus of B.1-infected cells (Fig. 5C,D). We then checked if the
restoration of METTL3 localization could rescue METTL3/
METTL14 complex formation, which was compromised in infect-
ed cells. We observed that the METTL3/METTL14 PLA signal was
robustly detected in B.1- and B.1.1.7-infected cells treated with
selinexor but not in infected cells treated with DMSO (Fig. 5E;

Supplemental Fig. S5B). These results suggested that change in
METTL3 localization perturbed the formation of the METTL3/
METTL14 complex and that promoting METTL3 nuclear localiza-
tion by selinexor was sufficient to drive the formation of the
METTL3/METTL14 complex in infected cells. Importantly, seli-
nexor treatmentwas also effective in decreasing SARS-CoV-2 infec-
tion, as measured by spike protein positivity for all the four
variants tested (B.1, B.1.1.7, B.1.351, B.1.617.2), without decreas-
ing cell viability (Supplemental Fig. S5C,D). Of note, the efficacy
of selinexor in preventing SARS-CoV-2 infection has also been re-
ported recently (Kashyap et al. 2021).

m6A-modified RNA and m6A reader YTHDF proteins have
been implicated in stress granule formation by promoting the re-
cruitment of stress granule proteins such as G3BP1 (Fu and
Zhuang 2020). Stress granule formation is known to be compro-
mised in SARS-CoV-2-infected cells, and KD of the stress granule
protein G3BP1 enhances SARS-CoV-2 infection (Zheng et al.
2021). We reasoned that the inactivation of stress granule forma-
tion by SARS-CoV-2 could be mediated by the global loss of m6A
in cellular mRNAs that we uncovered in infected cells. Therefore,
we tested if selinexor-mediated reversal of METTL3 nuclear locali-
zation could promote stress granule formation in infected cells by
reinstallingm6Amodification in cellularmRNAs.We observed the
appearance of stress granules in selinexor-treated, but not in
DMSO-treated (control), SARS-CoV-2-infected cells (Fig. 5F;
Supplemental Fig. S5E). Immunostaining showed that stress gran-
ules in selinexor-treated infected cells often overlapped with m6A-
modified RNAs and with them6A reader protein YTHDF2 (Fig. 5G;
Supplemental Fig. S5F). We then used an RIP assay to check the in-
teraction of four validated mRNAs that show loss of m6A and
down-regulation postinfection with the m6A reader YTHDF2 and
the stress granule protein G3BP1. Indeed, we found that these
mRNAs coprecipitated with both G3BP1 and YTHDF2 (Fig. 5H).
Inhibiting the METTL3 enzyme by the small-molecule inhibitor
STM2457 (Yankova et al. 2021) decreased the interaction of the
four mRNAs with G3BP1 and YTHDF2, suggesting that m6A is re-
quired for such interaction (Fig. 5I). METTL3 inhibition did not al-
ter the expression of G3BP1 and YTHDF2 (Supplemental Fig. S5G).
Treatment with selinexor, which restored METTL3 nuclear locali-
zation during infection, also rescued the expression of the four
candidate down-regulated genes, which included the HDAC6
and PKHD1 genes related to cilia formation (Fig. 5J). We also ob-
served that selinexor treatment could reinstate the m6A modifica-
tions that were lost during infection in these fourmRNAs (Fig. 5K).
Therefore, rescuing nuclear localization of METTL3 by selinexor
promoted stress granule formation in infected cells, restored cellu-
lar gene expression, and inhibited SARS-CoV-2 infection in vitro,
highlighting the possibility of targeting them6A pathway as an an-
tiviral strategy.

Global loss of m6A modification in primary human airway

epithelial cells upon SARS-CoV-2 infection

Next, we aimed to validate the global loss of m6Amethylation dur-
ing SARS-CoV-2 infection in human cell infection models. To this
goal, we tested METTL3 localization post-SARS-CoV-2 infection in
the bronchial epithelial cell line, BEAS-2B. BEAS-2B cells were pos-
itive for spike protein, and METTL3 showed partial relocalization
from the nucleus to the cytoplasm in these infected cells (Fig.
6A; Supplemental Fig. S6A). Further, we also tested METTL3 local-
ization postinfection in primaryhumanbronchial epithelial (HBE)
cells grown in monolayer culture, and we observed, similar to
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Figure 6. Loss of m6A in human airway epithelia after SARS-CoV-2 infection. (A, left) METTL3 localization in BEAS-2B cells postinfection with SARS-CoV-2.
The scale bar is 20 μm. (A, right) The percentage distribution of METTL3 in the nucleus and cytoplasm was calculated using ImageJ with help of DAPI mark-
ing the nucleus and α-tubulin staining the cytoplasm. Data are shown as mean± SD. Data presented from multiple experiments with the number of cells
counted, n =<300. Unpaired t-test; (∗∗∗∗) P<0.0001. (B) Flow chart describing the experimental design for SARS-CoV-2 infection of reconstructed human
bronchial/nasal epithelium at ALI. (C) Total number of m6A peaks classified as retained, gained, or lost, after 4- or 7-d post infection (dpi) with SARS-CoV-2,
compared with noninfected HBE. (D) Bar plots representing the number of genes that lost, gained, or retainedm6A in HBE after 4 and 7 dpi. (E) Metagene
plots showing spike-in normalized relativem6A peak density distribution at host genes in noninfected and SARS-CoV-2-infected HBE cells at 4 and 7 dpi. (F)
Boxplot showing log2 ratio of m6A signal over input obtained from spike-in normalized CPMdata at lostm6A peak regions (±125 bp fromm6A peak submit)
taken from panel C at 4 and 7 dpi in HBE. Statistical significancewas calculated using theWilcoxon test; (∗∗∗∗) P<0.0001. (G) Genome browser screenshots
showing the ratio of m6A RIP/input for three different genes in noninfected and SARS-CoV-2-infected HBE at 4 dpi. Ratio tracks were calculated using spike-
in normalized CPM. m6A peak region identified using MACS peak caller in noninfected cells are highlighted using the gray box. (H) log2 fold-change dis-
tributions of differentially expressed genes in HBE at 4 dpi, categorized according to their m6A level: non, low, medium/high. Statistical significance was
calculated using the Wilcoxon test; (∗∗) P<0.01, (∗∗∗) P<0.001, (∗∗∗∗) P<0.0001. (I) Total number of m6A peaks classified as retained, gained, or lost, after
4 dpi with SARS-CoV-2 compared with noninfected HNE. (J) The number of genes that lost, gained, or retainedm6A in HNE post-SARS-CoV-2 infection. (K)
Metagene plots showing spike-in normalized relativem6A peak density distribution in noninfected and SARS-CoV-2-infected HNE. (L) Boxplot showing log2
ratio ofm6A signal over input obtained from spike-in normalized CPMdata at lostm6A peak regions (±125 bp fromm6A peak submit) taken frompanel I at 4
dpi in HNE. Statistical significance was calculated using the Wilcoxon test; (∗∗∗∗) P<0.0001.

 Cold Spring Harbor Laboratory Press on March 29, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


BEAS-2B, partial cytoplasmic relocalization of METTL3 (Supple-
mental Fig. S6B,C).

We then used a reconstructed HBE as the SARS-CoV-2 infec-
tion model, in which cells are differentiated by the culture at the
ALI, forming a pseudostratified ciliated epithelium before viral in-
fection as described previously (Robinot et al. 2021). RNA was ex-
tracted from HBE at 4 and 7 days postinfection (dpi), and we
observed high levels of SARS-CoV-2 replication as measured by N
gene expression (Supplemental Fig. S6D). Extracted RNA from
HBE at 4 and 7 dpi was supplemented with spike-in bacterial RNA
and used in m6A RIP-seq experiments (Fig. 6B). SARS-CoV-2 reads
contributed 0.48% and 0.47% of the total reads at 4 and 7 dpi, re-
spectively (Supplemental Fig. S6E). Consistent with our observa-
tions in infected Vero cells, we observed a marked loss in the
number of m6A peaks postinfection (Fig. 6C; Supplemental Fig.
S6F; Supplemental Data S3). The top enriched motif in the m6A
peaks from uninfected HBE contained the “GGAC” sequence,
whereas the top motif was more degenerate in infected HBE
(Supplemental Fig. S6G). A few transcripts showed a gain of m6A
during infection in the HBE model, but the fraction of transcripts
with gained m6A peaks was much lower compared with that in
Vero cells (Fig. 6C). We observed a drastic decrease in the number
of m6A-positive genes in HBE on both 4 and 7 dpi (Fig. 6D,E).
m6A enrichment (IP/input) and spike-in normalized m6A signal
over the lost peaks were significantly reduced in the SARS-CoV-2-in-
fected cells, whereas input RNA was unchanged over these lost
peaks (Fig. 6F; Supplemental Fig. S6H). Genome browser visualiza-
tion of three chosen genes showed the loss of m6A peaks at 4 dpi
(Fig. 6G). We could detect m6A peaks in both the positive and neg-
ative strandsof viral RNAat 4 dpi.We alsodetectedm6Apeaks in the
positive strand of viral RNA at 7 dpi, but m6A peaks were absent in
the negative strand at day 7, possibly because the infection reaches a
plateau or has already started to decrease at this stage, as described
previously (Supplemental Fig. S6I; Supplemental Data S3; Robinot
et al. 2021). Genes related to the defense response to viruses and
type I interferon signaling pathways were up-regulated upon
SARS-CoV-2 infection inHBE, whereas genes related to cilium orga-
nization were the most down-regulated (Supplemental Fig. S6J;
Supplemental Data S1,S2). In the HBE infection model, genes con-
taining one ormorem6Apeakswere prone todown-regulationpost-
infection, similar to the findings obtained in Vero cells (Fig. 6H).
Down-regulated genes with lost m6A were again enriched in
the pathways of cilium organization and cilium assembly
(Supplemental Fig. S6K), suggesting that m6A loss could be a major
contributor to the loss of cilia as previously reported in the HBE
model (Robinot et al. 2021). These data collectively confirm that
SARS-CoV-2 infection causes a general perturbation of m6A-depen-
dent gene expression in human primary epithelial cells.

We further evaluated changes in cellular m6A level following
SARS-CoV-2 infection in reconstructed human nasal epithelia
(HNE) cultures in ALI conditions, which also support robust
SARS-CoV-2 infection (Fig. 6B; Samelson et al. 2022). We verified
SARS-CoV-2 infection in HNE 4 dpi using the expression of the
N gene (Supplemental Fig. S7A). SARS-CoV-2 reads contributed
0.79% of total reads in the HNE (Supplemental Fig. S7B).
Infected HNE showed a drastic loss of m6A peaks 4 dpi and a
decrease in the number of m6A-positive genes as well (Fig. 6I–K).
As observed in HBE, m6A enrichment (IP/input) and spike-in nor-
malized m6A signal over the lost peaks were significantly reduced
in HNE, whereas input RNAwas unchanged (Fig 6F; Supplemental
Fig. S6H; Fig 6L; Supplemental Fig. S7C). Importantly, infected
HNE showed a reduced level of nuclear METTL3 with partial reloc-

alization to the cytoplasm (Supplemental Fig. S7D,E).We observed
that infected HNEs were positive for spike protein and showed dis-
turbed staining of cilia marker TUBB4A as reported earlier
(Supplemental Fig. S7D; Robinot et al. 2021). Taken together,
our observations in multiple transformed and primary cell culture
models suggest that SARS-CoV-2 infection causes a global loss of
m6A in cellular RNA.

Discussion

We report that SARS-CoV-2 infection causes a global loss ofm6A in
cellular RNAs while enabling m6A addition in viral RNAs, high-
lighting how this virus usurps mRNA modification pathways to
promote its replication. Mechanistically, we found that SARS-
CoV-2 infection induced partial relocalization of the m6Amethyl-
transferase METTL3 from the nucleus to the cytoplasm, which
compromised the formation of the METTL3/METTL14 complex
in the nucleus and could account for the overall decrease in m6A
modification in infected cells. The latter findings are consistent
with those of Zhang et al. (2021b), who reported a cytoplasmic lo-
calization of both METTL3 and METTL14 along with other m6A
reader proteins in SARS-CoV-2-infected Vero cells. The extent of
METTL3 cytoplasmic relocalization and its effect on METTL3/
METTL14 complex function andm6A levels depended on the viral
variants. The B.1 and B.1.1.7 variants induced a more pronounced
METTL3 relocalization and a more profound loss of m6A than the
B.1.351 variant, suggesting that differences in variant fitness may
depend not only on their capacity to escape from the innate and
adaptive immune responses (Alefishat et al. 2022) but also on their
capacity to perturb gene expression in infected cells. We also
observed global loss of m6A peaks in primary human airway epi-
thelial cells during SARS-CoV-2 infection, confirming the general-
ity of our findings. In previous reports, however, a global loss in
m6A was not detected in the Huh7 and A459 cell lines following
SARS-CoV-2 infection, even though a decrease in m6A peaks was
observed near the stop codon region in Huh7-infected cells
(Burgess et al. 2021; Liu et al. 2021). The differential effect of
SARS-CoV-2 infection on m6A regulation in Huh7 and A549 cells
compared with Vero, HBE, and HNE infection models may result
from different infection rates and/or different tissue origins of
the cell types used (Saccon et al. 2021). Although we observed a
global decrease in m6A peaks in infected cells, a fraction of tran-
scripts nevertheless showed a gain in m6A peaks upon infection.
These gained m6A modifications may be deposited by residual
METTL3/METTL14 in the nucleus or by METTL16, which was re-
cently described to also have m6A writing capacity in mRNAs (Su
et al. 2022). Future investigations will be needed to understand
how the variant-specific effect on m6A contributes to viral adapta-
tion and how a subset of m6A peaks can be gained during
infection.

Gene expression analysis also highlighted commonpathways
dysregulated by all the SARS-CoV-2 variants tested.We observed in
particular that genes associated with RNA catabolism tended to be
up-regulated in infected Vero cells. Several genes associated with
them6Apathway, includingm6A readers andm6A erasers, were de-
regulated aswell during infection. Change in the RNA splicing pat-
tern of m6A-related genes was recently reported after the acute
depletion of METTL3, which was interpreted as a feedback loop
to compensate for the acute depletion of m6A (Wei et al. 2021a).
In SARS-CoV-2-infected cells, depletion of m6A following
METTL3 relocalization and loss of functional METTL3/METTL14
complex in the nucleus probably activates a similar feedback
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loop, which could explain why genes involved in RNA catabolism
and m6A modification were preferentially deregulated. Our com-
bined analysis of differentially expressed genes and change in
m6A peak abundance suggests that, in general, the loss of m6A
peaks correlates with decreased RNA expression. However, it is im-
portant to consider that loss of m6A was more widespread than
mRNA decrease in the infected cells and, thus, that loss of m6A
did not always lead to decreased gene expression. Further investiga-
tion is needed to decipher themechanisms that dictate how the loss
of m6A influences gene expression during viral infection. Although
we have pointed out DEU events in the subset of genes with m6A
loss, further study is required to understand the effect of m6A loss
on the other cellular genes that show no change in expression.
We observed that m6A-containing genes were more prone to
down-regulation during infection in both Vero and HBE infection
models. The SARS-CoV-2 Nsp1 protein has been shown to inhibit
the nuclear export of cellular RNAs during infection and to promote
hostmRNA decay (Burke et al. 2021; Zhang et al. 2021a). The nucle-
ar export of cellular RNA is known to be regulated by m6A in a
YTHDC1-dependent and nuclear transcription factor, X-box bind-
ing 1 (NFX1)–dependent manner (Roundtree et al. 2017). Viral pro-
tein Nsp1 also inhibits NFX1 function, resulting in the retention of
cellularmRNAs in the nucleus during SARS-CoV-2 infection (Zhang
et al. 2021a). Itwill be interesting todetermine if the loss ofm6A and
Nsp1-mediated inhibition of NFX1 act synergistically to cause nu-
clear retention of cellular mRNAs during infection and if the re-
tained mRNAs might be prone to degradation.

Using a strand-specific m6A RIP-seq approach, we found that
both the viral genomic RNA (positive-strand) and replicative neg-
ative-strand RNAs carriedm6Amodification. In theHBEmodel, we
detected a robust m6A peak signal in genomic RNA at 4 and 7 dpi.
The m6A peaks were also present in the replicative negative strand
at 4 dpi, but not at day 7, presumably because viral replication had
already abated at this time point. In a previous report by Liu et al.
(2021), m6A peaks could be detected on negative-strand of SARS-
CoV-2 using m6A RIP-seq, but not with the m6A cross-linking
and immunoprecipitation (CLIP) technique. The investigators
suggested lack of m6A detection could be owing to the limited cov-
erage of the negative strand inCLIP data (Liu et al. 2021). Although
our data fromVero andHBE infectionmodels suggest the presence
of m6A peaks in the negative strand, future experiments using
m6A-CLIP in the human cell infection model will be required to
precisely identify the specific residues modified by m6A. Viral
RNAm6Amodification is known to have a proviral effect by allow-
ing escape from RIG-I binding and limiting the induction of in-
flammatory gene expression (Li et al. 2021). As RIG-I is known to
be activated by viral double-stranded replicative intermediates
(Yamada et al. 2021), it will be interesting to check if them6Amod-
ifications detected in the replicativenegative strandof SARS-CoV-2
contribute to an escape mechanism from RIG-I. Although the ma-
jority of m6A peaks were similar across the three SARS-CoV-2 vari-
ants studied, there were m6A peaks that were specific to particular
variants. Further detailed studies will be required to understand if
the differences in m6A modification across variants contribute to
changes in pathogenicity by differential recruitment ofm6A reader
proteins or by modulating the RIG-I-dependent escape mecha-
nisms described above.

To explore new therapeutic options against SARS-CoV-2 in-
fection, we have exploited the altered localization of them6Awrit-
erMETTL3.We succeeded in restoringMETTL3 localization during
infection by inhibiting XPO1 with selinexor. Selinexor treatment
also increased the expression of specific genes that showed down-

regulation with concomitant loss of m6A during infection. XPO1
inhibition by selinexor was previously proposed to be effective
in limiting SARS-CoV-2 infection by promoting the nuclear reloc-
alization of the ACE2 receptor (Kashyap et al. 2021). Our study pro-
vides a further mechanistic explanation for the effectiveness of
XPO1 inhibition during SARS-CoV-2 infection. Although we pro-
vide evidence that altered METTL3 localization could be mediated
by XPO1, we do not rule out other possible mechanisms that
might affect METTL3 localization during SARS-CoV-2 infection.
In particular, cytokines that are secreted by infected cells might in-
fluence METTL3 localization in both infected and bystander cells,
resulting in broad perturbations in cellular m6A, a notion that re-
quires further investigation. Cellular m6A-modified RNAs and
m6A reader YTHDF proteins promote stress granule formation,
which contributes to the antiviral defense (Fu and Zhuang
2020). The SARS-CoV-2 N-protein has been shown to phase-sepa-
rate with the stress granule protein G3BP1 and thereby prevent
stress granule formation in the infected cells (Wang et al. 2021).
We propose an additional mechanism for the inhibition of stress
granule formation through the depletion of m6A on cellular
RNA. The recovery of stress granules formation in selinexor-treated
infected cellsmay indeed result from restoredm6A levels in cellular
RNA, which could be visualized by the colocalization of G3BP1,
m6A, and YTHDF2. We observed that selinexor treatment also
had functional consequences, by restoring the gene expression
andm6A enrichment during infection. The recovery of stress gran-
ules may have also contributed to stabilizing these RNAs, as asso-
ciation with stress granule proteins such as G3BP1 has been
shown to regulate the stability of cellular RNAs (Laver et al.
2020; Somasekharan et al. 2020). Some of the validated m6A-de-
pendent RNAs showed an association with G3BP1 and YTHDF2,
suggesting that these RNAs could indeed be guided to stress gran-
ules in an m6A-dependent manner.

Collectively, our findings highlight how SARS-CoV-2 perturbs
them6ARNAmodification pathway to deregulate cellular RNAs and
limit stress granule formation. Change in the cellular localization of
METTL3 in infected cells resulted in a global loss of m6A in cellular
mRNAs, whereas viral RNAs remained m6A modified. We propose
that rescuing METTL3 localization during infection could be ex-
plored as a novel antiviral strategy against SARS-CoV-2.

Methods

Cell culture, SARS-CoV-2 infection, and XPO1 inhibitor

treatment

SARS-CoV-2 was isolated from samples with viral genomes se-
quenced at the diagnostic laboratory (Ringlander et al. 2021).
Isolates from the B.1, B.1.1.7, B.1.351, and B.1.617.2 pango lineag-
es were used to infect Vero CCL-81 cells (ATCC) grown in DMEM,
1% penicillin–streptomycin, and 2% fetal calf serum at 37°C and
in 5% CO2. Details of the infection method in Vero cells, primary
HBE cells (Lonza CC-2540S), and bronchial epithelial cell line
BEAS-2B (ATCC) and XPO1 treatment are described in the
Supplemental Material. SARS-CoV-2 infection of reconstructed
human bronchial and nasal epithelia is also described in the
Supplemental Material.

Immunofluorescence staining

Immunofluorescence staining was performed in Vero cells, prima-
ry HBE cells, and bronchial epithelial cell line BEAS-2B cells using
the method as described in the Supplemental Material.
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HNE MucilAir cultures were fixed and cut using a scalpel
blade, and immunofluorescence staining was performed as de-
scribed in the Supplemental Material.

RNA-seq and m6A RIP-seq

RNA was isolated from both SARS-CoV-2-infected (48 h postinfec-
tion) and noninfected (mock) Vero cells using TRIzol reagent
(Thermo Fisher Scientific 15596026) and direct-zol RNAminiprep
(ZYMO Research R2050). For RNA extraction of primary epithelial
cultures, cells were washed in cold PBS and then lyzed in 150 µL of
TRIzol reagent (Thermo Fisher Scientific) added to the apical side
of the insert. RNA was purified using the direct-zol miniprep kit
(Zymo Research ZR2080), according to the manufacturer’s specifi-
cations. HBE RNA was isolated at 4 and 7 dpi, whereas HNE RNA
was isolated at 4 dpi along with the corresponding noninfected
controls.

RNA isolated either from Vero cells (15 μg) or from epithelial
culture (5 μg) was supplemented with 10 ng or 3 ng of bacterial
RNA, respectively, as a spike-in control, before fragmentation
using RNA fragmentation reagents (Thermo Fisher Scientific
AM8740). The fragmented RNA was used in RNA-seq and m6A
RIP-seq experiments.

Sequencing libraries for total RNA-seq/input for m6A RIP-seq
were prepared from 10 ng of the fragmented RNA using SMARTer
stranded total RNA-seq kit V2, pico inputmammalian (Takara Bio).
m6A RIP was performed with fragmented RNA as previously de-
scribed (Zeng et al. 2018) with m6A antibody (Synaptic Systems
202003) incubated with 15 μg of Vero or 5 μg of epithelial (HBE
and HNE) RNA. m6A RIP RNAwas used to make sequencing librar-
ies using the SMARTer stranded total RNA-seq kit V2, pico input
mammalian (Takara Bio). All the libraries were single-end se-
quenced (1× 88 bp) on an Illumina NextSeq 2000 platform at
the BEA core facility, Stockholm, Sweden.

RT-qPCR and m6A RIP-qPCR

The method followed for RT-qPCR and m6A RIP-qPCR are de-
scribed in the Supplemental Material, and the primers used in
this study are listed in Supplemental Table S1.

Processing of RNA-seq data

Single-end sequencing reads from SMARTer stranded total RNA-
seq kit v2 were analyzed with FastQC for quality control (https
://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and
adapters were removed using Trim Galore! v0.6.6 (https://github
.com/FelixKrueger/TrimGalore) with a minimal length threshold
of 20 bp. Trimmed reads from Vero infected and noninfected
cells were aligned to the following reference genomes: concatenat-
ed chlSab2 (Chlorosebus sabeus), wuhCor1 (SARS-CoV-2),
plus Escherichia coli str. K-12 substr. MG1655 (spike-in), or
the SARS-CoV-2+E. coli genomes, obtained from the UCSC
Genome Browser (http://hgdownload.soe.ucsc.edu/goldenPath/).
Alignments were made using HISAT2 v2.2.1 (Kim et al. 2019)
with the parameters (-U ‐‐rna-strandness R). Sequencing data
from human bronchial and nasal epithelial noninfected and in-
fected cells were mapped to the concatenated human (hg38) +
SARS-CoV-2 (wuhCor1) +E. coli (spike-in) reference genomes.
Duplicate alignments were labeled using MarkDuplicates from
Picard v2.23.4 (http://broadinstitute.github.io/picard), and
marked alignment files were further processed using Sambamba
v0.7.1 (Tarasov et al. 2015; Kim et al. 2019), keeping onlymapping
reads separated by strand after duplicate removal.

Analysis of RNA-seq data for differential gene expression

Differential gene expression following SARS-CoV-2 infection and
Gene Ontology (GO) analysis is described in detail in the
Supplemental Material.

m6A RIP-seq data analysis

m6A peak calling on SARS-CoV-2 viral genome and infected cell
samples was performed with callpeak from MACS2 v2.2.6 (Zhang
et al. 2008) on IP and input processed alignments mapped to
SARS-CoV-2 wuhCor1 or the concatenated genomes (chlSab2+
wuhCor1) or (hg38+wuCor1), using the parameters “‐‐no-model
‐‐keep-dup auto ‐‐call-summits” and effective genome sizes accord-
ing to each genome with a P-value cutoff of 0.05 for SARS-CoV-2
genome and a P-value cutoff of 0.01 for the Vero and human
data sets. Samples processed using MACS2 were scaled by default
to the library size to account for differences during peak calling.

The called peaks were annotated according to the nearest ge-
nomic feature using annotatePeaks.pl from HOMER v4.11 (Heinz
et al. 2010). Retained, gained, and lost peaks between noninfected
and infected cells were identified using BEDTools intersect from
BEDTools v2.29.2 (Quinlan and Hall 2010). Briefly, peaks were
classified as “retained” depending onwhether a peakwas intersect-
ed between noninfected and infected samples; “lost” if a peak was
present in noninfected cells but not intersecting with peaks of in-
fected samples; and “gained” if a peak was present in infected cells
but not in noninfected cells. Motif analysis on m6A called peaks
was performedwith findMotifsGenome.pl fromHOMER and visu-
alized with the universalmotif R package (https://bioconductor
.org/packages/universalmotif/) using R computing language (R
core team 2022). Changes in overall m6A enrichment across tran-
scripts after infection were calculated by extracting the spike-in
normalized m6A/input signals from bigWig files within the anno-
tated gene coordinates in the chlsab2 genomes using the
rtracklayer package (Lawrence et al. 2009). Further correlation be-
tween m6A enrichment and gene expression changes (log2 fold-
changes infected vs. noninfected) were then generated. Potential
N6,2′-O-dimethyladenosine (m6Am) signals were removed from
m6A RIP-seq data using the method as described in the
Supplemental Material.

Normalization of m6A RIP-seq data using spike-ins

To control for systematic variations across m6A RIP experiments,
the amount of spike-in bacterial RNA was estimated by counting
the total number of reads uniquely mapped to the E. coli K-12 ref-
erence genome using Sambambav0.7.1 (Tarasov et al. 2015). E. coli
spike-in counts were further used to calculate scaling factors for
each batch of m6A RIP-seq samples (Supplemental Table S2).
Computed scaling factors were then used in metagene density dis-
tribution analyses (described below) to normalize the density of
m6A peaks to the spike-in content in each sample. Genome-wide
coverage tracks were calculated using normalized counts per mil-
lion (CPM) and further adjusted according to the computed
spike-in scaling factors for m6A and input RNA signals using the
bamCoverage –scaleFactor parameter from deepTools v3.3.2
(Ramírez et al. 2016). m6A RIP/input ratio tracks were then calcu-
lated using the bigwigCompare function from deepTools.

Metagene analysis

To analyze the genome-wide distribution ofm6A, ametagene anal-
ysis of m6A peak density distribution was performed by overlap-
ping the peak coordinates with the following genomic features:
5′ UTR, CDS, and 3′ UTR obtained from the GTF genome
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annotation files from UCSC (for chlsab2) or GENCODE v36 (for
hg38), considering the longest isoform for each gene. Each tran-
script was scaled to fixed-size metagene bins according to each ref-
erence genome. m6A peak density distribution profiles were
generated after mapping the m6A peaks to the metagene coordi-
nates using the plyranges R package (Lee et al. 2019). To compare
multiple conditions, the relative m6A density distributions were
calculated using the relative density function from the ggmulti
package (https://cran.r-project.org/web/packages/ggmulti/index
.html). The relative density function calculates the sumof the den-
sity estimate area of all conditions, where the total sum is scaled to
a maximum of one and the area of each condition is proportional
to its own count. The relativem6A-RIP peak distributions were fur-
ther normalized using the calculated spike-in factors.

Enrichment of m6A peaks

To calculate the enrichment of RIP signals across m6A peak re-
gions, we extracted the number of reads in m6A-RIP (m6A signal)
and input RNA alignments 125 bp around peak summit coordi-
nates using the ScoreMatrix function from the genomation pack-
age using the parameter rpm=TRUE to obtain normalized CPM
counts to account for differences of library sizes (Akalin et al.
2015). The m6A-RIP and input RNA signals around 125-bp peak
summits were further normalized using spike-in factors. The log2
ratio of m6A signal/input RNA was then calculated using the
enrichmentMatrix function from the same package.

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE188477. The source code used for the analysis of data in this
study is available at GitHub (https://github.com/AkramMendez/
m6a_sarscov2) and as Supplemental Code.
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Supplemental_Figure_S1 (A) SARS-CoV-2 Spike protein staining summarized as bar plots

with mean ± SD shown (left panel; n=2) and corresponding representative images of Spike

staining (right panel) in Vero cells 48 h post-infection with three different SARS-CoV-2 variants

as indicated. The scale bar is 200 μm. (B) Bar plots showing spike-in normalized reads mapped

to the SARS-CoV-2 genome in Vero cells infected with different variants of SARS- CoV-2. (C)

The log10 transcripts per million (TPM) values for SARS-CoV-2 genes in B.1, B.1.1.7, and

B.1.351 infected cells. Data shown as the mean of two replicates. (D) Pie chart showing the

percentage of reads mapping to host (Vero) and viral (SARS-CoV-2) genomes. (E) Principal-

component analysis (PCA) of global expression patterns of SARS-CoV-2 infected (variants as

specified) and noninfected Vero cells. Replicates are labelled with R1 and R2 suffixes. (F) Scatter

plots showing correlation between log2 fold changes in gene expression after infection with

different SARS-CoV-2 variants in Vero cells. Statistics: Pearson’s correlation test. The blue line

shows the linear regression with 95% confidence interval. (G) Top enriched terms associated

with up-regulated and down-regulated genes after SARS-CoV-2 infection, based on publicly

available COVID-19 related gene sets. Data were obtained from the Enrichr database. (H) Scatter

plots of differentially expressed genes depicting the correlation between the log2 fold changes in

gene expression after B.1, B.1.1.7, and B.1.351 infection and the log2 fold changes reported in

publicly available data of SARS- CoV-2 infected Vero cells 24-hour post infection (Riva et al.,

2020). The blue line depicts the linear regression line with 95% confidence interval. Statistics:

Pearson’s correlation test. (I) Top GO biological process terms associated with up-regulated and

down-regulated genes after infection of Vero cells with the B.1, B.1.1.7, and B.1.351 strains. The

size of the dots represents the enrichment of genes for a given GO term; the dots are colored

according to their significance in log10 p-value. (J) Node connectivity degree distribution of 1000

randomly generated networks of the same size. The mean connectivity of random networks (blue

dotted line) was compared to the observed mean connectivity degree of the network obtained

after ClueGO analysis for RNA catabolism-associated genes (red line). Statistical significance

was calculated using the Wilcoxon signed rank test. (K, top panel) Ranking of nodes according

to their connectivity degree, with m6A-related proteins highlighted in red. (K, bottom panel)

Connectivity of m6A-related proteins compared to other proteins in the network. Statistical

significance was calculated using the Wilcoxon test.
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Supplemental_Figure_S2 (A) Number of m6A peaks in Noninfected and infected Vero cells.

(B) Metagene plot showing log10 spike-in normalized CPM of Input signals in the saples

indiacted. (C) Bar plots representing the number of genes with lost, gained, or retained m6A

peaks in Vero cells after infection with three different SARS-CoV-2 variants, as indicated. (D)

log10 spike-in normalized CPM of m6A signal (top panel) and the corresponding input signal

(bottom panel) at the m6A peak regions (± 125bp from m6A peak summit) that were commonly

lost post- infection with the three different variants of SARS-CoV-2 compared to noninfected

Vero cells. (E) Identified motifs from de novo motif analysis of gained m6A peaks. Motifs from

Vero cells infected with B.1, B.1.1.7, and B.1.351 are shown. (F) Donut plot distribution of

annotated m6A peaks by genomic features for noninfected and infected Vero cells with three

different variants, as indicated. The proportion of retained, gained, and lost m6A peaks

annotated in exonic, intronic, transcription start site (TSS), transcription end site (TES), and

intergenic regions are shown. (G) Scatter plots depicting the correlation between log2 fold

changes in gene expression and log2 fold changes in m6A enrichment after infection with B.1,

B.1.1.7, and B.1.351 variants. The blue line depicts linear regression line with 95% confidence

interval. Statistics: Pearson’s correlation test. (H) Western-blot validation of METTL3 knock-

down in Vero cells, with GAPDH used as a loading control. (I) Immunostaining using Spike

antibody in control and METTL3-KD cells 48 h post SARS-CoV-2 infection. The scale bar is 20

µm (J) Immunostaining for METTL3 and α-Tubulin in Control and METTL3-KD Vero cells that

were either Noninfected or infected with the B.1 SARS-CoV-2 variant. The scale bar is 20 µm

(K) Immunostaining showing METTL14 localization in noninfected and Vero cells infected with

the B.1, B.1.1.7, B.1.351 variants at 24h. The scale bar is 50 μm.
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Supplemental_Figure_S3 (A) Summary of LC-MS/MS quantification of m6A in control

standard RNA oligos and B.1 viral genomic RNA. The average ratio of A/ m6A in the viral

genomic RNA was 832. Considering the total number of ‘A’ in the viral genome to be 8954, the

number of ‘A’ with m6A modification is on average 10.75 per viral genome. (B) RT-qPCR

expression data (normalized to ACTB) of three selected genes in RNA isolated from throat/nose

swab samples who were either positive (SARS-CoV-2 infected) or negative (noninfected) for

COVID-19. (C) Interaction network of m6A-related proteins. (Top panel) Interaction network of

m6A-related proteins. Known m6A-reader interacting proteins collected from the STRING- db

(grey nodes) were matched with the SARS-CoV-2 RNA-protein interactome obtained from

Schmidt et al., 2020 (red nodes). The m6A-related proteins pertaining to the core or the expanded

SARS-CoV-2 interactome (as reported by Schmidt et al., 2021) labeled in pink and green,

respectively. Outer node colors indicate enriched GO biological process terms for the m6A-

related proteins of the network. (Bottom panel) The Venn diagram shows the number of

overlapping proteins between two datasets as indicated.
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Supplemental_Figure_S4 (A) Cumulative distribution function (CDF) plots showing the

cumulative density distribution of log2 fold changes in gene expression, with a comparison of

lost (red) and gained (blue) m6A genes after infection with different SARS-CoV-2 variants.

Statistical significance was calculated using the Wilcoxon test. (B) Expression of m6A-

modified genes after SARS-CoV-2 infection. The distribution of differentially expressed genes

categorized according to changes in m6A levels after viral infection compared to Noninfected

cells is shown. Genes were categorized as gaining one or more peaks (non- m6A genes in non-

infected cells being m6A -modified after infection), losing one or more peaks (m6A -modified

genes in Noninfected cells showing a decrease in m6A peak number), or retaining m6A (showing

the same number of m6A peaks in noninfected and infected cells). (C) Relative expression of

selected genes with varying levels of m6A modification in METTL3-KD Vero cells compared to

control cells. Data was normalized to GAPDH expression. Statistics: two- tailed t-test; **: p <

0.01, ***: p < 0.001, ****: p < 0.0001, n=3. (D) METTL3 localization in Vero cells infected

with the B.1.617.2 (Delta) variant. The scale bar is 50 μm. (E) Top enriched terms associated

with up-regulated and down-regulated genes with lost m6A upon infection. The size of the dots

depicts the gene enrichment ratio, while their color indicates the log10 level of significance. (F)

Differential exon usage for the COL6A2 gene upon SARS-CoV-2 infection. The genome

browser visualization (top) shows the localization of m6A peaks in noninfected and infected cells

along the COL6A2 gene. The exon structure (bottom) with a predicted differentially used exon

(DEU) (in pink) included after infection is shown. (G) Distribution of the number of m6A peaks

over DEU genes compared to a random distribution in m6A positive genes (1000 replicates

without replacement). The average number of m6A peaks in DEU genes and in m6A positive

random genes are denoted by a red and blue line, respectively. Statistics: one sample t-test. (H)

Distribution of m6A peak numbers in DEU genes in noninfected and infected Vero cells

(infection with different variants as indicated).
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Supplemental_Figure_S5 (A) Bar graph depicting the expression of XPO1 after infection with

the B.1, B.1.1.7, and B.1.351 variants. Normalized read counts in RNA-seq data are reported.

(B, left panel) PLA experiment revealing METTL3 and METTL14 interaction foci in the

nucleus (marked by DAPI) of Vero cells infected with the B.1.1.7 variant and treated with either

DMSO or Selinexor (150nM). The scale bar is 20 μm. (B, right panel) Quantification of

METTL3-METTL14 PLA foci as detected in the left panel. The number of PLA foci/nuclei are

shown as Mean ± SD. Data presented from multiple experiments with the total number of cells

counted ≥100. Statistics: one-way ANOVA, **: p < 0.01. (C) MTT assay showing Vero cell

viability after Selinexor treatment compared to DMSO control. (D, left) Immunostaining

showing SARS-CoV-2 Spike protein in Vero cells at 48 h post-infection with the B.1, B.1.1.7,

and B.1.617.2 (Delta) variants, with or without Selinexor treatment. (D, right) Quantification of

Spike protein fluorescence in Selinexor-treated and untreated cells infected with different

variants, as indicated. Spike fluorescence was quantified in 5 different fields obtained from

several experiments. The scale bar is 200 μm. (E) Immunostaining showing G3BP1 localization

after Selinexor treatment in B.1.1.7-infected cells at 24 h post-infection. White arrows highlight

some of the G3BP1 foci. The scale bar is 50 μm. (F) Immunostaining showing the localization

of G3BP1 and m6A or YTHDF2 after DMSO or Selinexor treatment in B.1.1.7-infected cells at

24 h post-infection. White arrows highlight some of the G3BP1 foci overlapping with the m6A

signal. The scale bar is 10 μm. (G) Western blot detecting G3BP1 and YTHDF2 in Vero cells

treated with STM2457 (5 μM) or DMSO. GAPDH was used as a loading control.
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Supplemental_Figure_S6 (A) Spike immunostaining in BEAS-2B cells that were infected with

SARS-CoV-2. The scale bar is 200 μm. (B, left panel) METTL3 localization in monolayer

culture of Noninfected human primary bronchial epithelial cells and after infection with SARS-

CoV-2. The scale bar is 20 μm. (B, right panel) The percentage distribution of METTL3 labeling

in the nucleus and cytoplasm was calculated with ImageJ, using DAPI as a nucleus marker and

α-Tubulin as a cytoplasm marker. Data are shown as mean ± SD. Data were obtained from

multiple experiments with the total number of cells counted ≥110. Statistics: unpaired t-

test; ****: p < 0.0001. (C) Spike protein immunostaining in human primary bronchial

epithelial cells grown in monolayer that were infected with SARS-CoV-2. The scale bar is 200

μm. (D) Relative expression of SARS-CoV-2 N gene in noninfected and SARS- CoV-2 infected

HBE samples 4- and 7- dpi. (E) Pie chart showing the percentage of RNA-seq reads mapping to

host (Human) and viral (SARS-CoV-2) genomes in infected HBE samples. (F) Bar plot depicting

the number of m6A peaks in noninfected and SARS-CoV-2 infected HBE at 4- and 7- dpi. (G)

Motif analysis of the m6A peaks in noninfected and infected HBE. (H) log10 spike-in normalized

CPM of m6A signal (left panel) and the corresponding input signal (right panel) at the m6A peak

regions (± 125bp from m6A peak summit) that were lost in infected HBE at 4- dpi (top) and 7-

dpi (bottom) compared to noninfected HBE. (I) Presence of m6A in the positive and negative

strands of the SARS-CoV-2 viral genome at 4- and 7- dpi HBE cells. m6A peak regions are

indicated as colored rectangles. (J) Top GO biological process terms associated with up-

regulated and down-regulated genes in HBE at day 4- and 7- dpi with SARS-CoV-2. (K) Top

enriched terms associated with lost m6A genes that were down- regulated in HBE at day 4- and

7- dpi with SARS-CoV-2. (J, K) The size of the dots depicts the gene enrichment ratio, while the

color of the dots indicates the log10 level of significance.
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Supplemental_Figure_S7 (A) Relative expression of SARS-CoV-2 N gene in noninfected and
SARS-CoV-2 infected HNE samples at 4- dpi. (B) Pie chart showing the percentage of reads
mapping to the host (Human) and viral (SARS-CoV-2) genomes in infected HNE at 4- dpi. (C)
log10 spike-in normalized CPM of m6A signal (left panel) and the corresponding input signal
(right panel) at the m6A peak regions (± 125bp from m6A peak summit) that were lost at 4- dpi
in infected compared to noninfected HNE. (D) Immunostaining staining showing METTL3 (in
red), β-IV-Tubulin (in green) and SARS-CoV-2 spike protein (in cyan) in HNE 4- dpi along
with noninfected control. Merged image represents METTL3 and β-IV-Tubulin along with
Hoechst. The scale bar is 200 μm. (E) The percentage distribution, of METTL3 in the nucleus
and cytoplasm, was calculated using ImageJ. Hoechst was used as a nuclear marker and β-IV-
Tubulin marking the cytoplasm. Data are shown as mean ± SD. Data were acquired from n=2
experiments with the total number of cells counted ≥ 1000. Statistics: unpaired t-test; ****: p <
0.0001.



Supplemental Tables

Supplemental Table S1: Sequence of oligos used in the study.

Vero

Primer name Sequence

FAM111A-Forward primer CCTTTCCTTCTGGCTCTTCA

FAM111A-Reverse primer TGTGGGAGACGGAATAGAGC

HDAC6-Forward primer CCCAATCTAGCGGAGGTAAA

HDAC6-Reverse primer CGCGATTAGGTCTTCTTCCA

PKHD1-Forward primer GTGGGCATTTGGTCTGAAAG

PKHD1-Reverse primer AGTTGTCCCAGCAGGACAGT

RNASEL-Forward primer TGTCAATGTGAGGGGAGAAA

RNASEL-Reverse primer CTTCACCAAACCCAAGTGCT

EID1-Forward primer TCGCCTCCTTTTTCACAACT

EID1-Reverse primer TGCCATTGAAAAACTTGACCT

XPO1-Forward primer TGGTACAGAATGGTCATGGAA

XPO1-Reverse primer TCTTCATGCATTGCTCCACT

YTHDF1-Forward primer TGGGACAAATGTGAACATGC

YTHDF1-Reverse primer TTTAGGCTGTGGTTTTGCAG

FTO-Forward primer GGAACCTTATTTTGGCATGG

FTO-Reverse primer GCTGACCTGTCCACCAGATT

SPEN-Forward primer CCACTCTCTCGGGATCAAAA

SPEN-Reverse primer AATCTCGTTTGGAGCGCTAT

GAPDH-Forward primer ATGTTCGTCATGGGTGTGAA

GAPDH-Reverse primer GGTGCTAAGCAGTTGGTGGT

POL2RG- Forward primer ACTGTTGGTGGGTGAGCAC

POL2RG- Reverse primer CCAGACTGGCAGCAAGAAAA

TBP- Forward primer ACTGTTGGTGGGTGAGCAC

TBP- Reverse primer CCAGACTGGCAGCAAGAAAA

SARS-Cov-2

Primer name Sequence
N-protein-Forward primer CACATTGGCACCCGCAATC

N-protein-Reverse primer GAGGAACGAGAAGAGGCTTG

N-Forward strand CAGCACTGCTCATGGATTG Primer for cDNA synthesis

N-Reverse strand GACCCCAAAATCAGCGAAAT Primer for cDNA synthesis

Human

Primer name Sequence

CXCL10 Forward primer TGATCTCAACACGTGGACAA

CXCL10 Reverse primer ACTGTACGCTGTACCTGCAT



IFIT2 Forward primer AAAGGAACCAGAGGCCACTT

IFIT2 Reverse primer GCTCGGTTCAGGCAGCTG

OASL Forward primer GGACTCTCTGCTCCATCCTC

OASL Reverse primer GCAGCCAAGCATCACAAAGA

ACTB Forward primer CTCGTAGCTCTTCTCCAGGG

ACTB Reverse primer GGGAAATCGTGCGTGACATT

RNA standard for LC-MS/MS

RNA oligo with m6A GGm6ACUAAm6ACU

RNA oligo without m6A GGACUAAACU

shRNA sequence

METTL3 shRNA GCTGCACTTCAGACGAATTAT

Control shRNA ATCTCGCTTGGGCGAGAGTAAG



Supplemental Table S2: Scaling factor used for normalizing m6A RIP data

Vero
Sample Scaling factor
Noninfected_m6A RIP 1
B.1_m6A RIP 0,72
B.1.7.7_m6A RIP 0,81
B.1.351_m6A RIP 0,98

Noninfected_Input 0,76
B.1_Input 0,76
B.1.7.7_Input 0,83
B.1.351_Input 1

HBE
Sample Scaling factor
HBE Noninfected day 4_m6A RIP 0,75
HBE SARS-CoV-2 day 4_m6A RIP 1
HBE Noninfected day 7_m6A RIP 0,99
HBE SARS-CoV-2 day 7_m6A RIP 1

HBE Noninfected day 4_Input 1
HBE SARS-CoV-2 day 4_Input 0,92
HBE Noninfected day 7_Input 0,94
HBE SARS-CoV-2 day 7_Input 1

HNE
Sample Scaling factor
HNE Noninfected_m6A RIP 0,92
HNE SARS-CoV-2_m6A RIP 1

HNE Noninfected_Input 0,67
HNE SARS-CoV-2_Input 1



Supplemental methods

Cell culture, SARS-CoV-2 infection and XPO1 inhibitor treatment

B.1 is the lineage with the D614G spike amino acid change. B.1.1.7 is the Alpha variant (WHO label)

and the earliest documented variant in the UK (Sep-2020). B.1.1.351 is the Beta variant (WHO label)

and was first documented in South Africa (May 2020). T25 flasks with Vero CCL-81 (ATCC) were

infected with the three different SARS-CoV-2 variants (1000 TCID50) and medium or infected cells

were harvested in TRIzol 48 h post-infection for RNA-sequencing studies. In all cases, the amount of

infection was verified by immunostaining and RT-qPCR (see method below). Vero CCL-81 cells were

cultured in chamber slides and the different SARS-CoV-2 variants were diluted in medium to 1000

TCID50 (DMEM with 1% penicillin-streptomycin and 2% fetal calf serum), supplemented with DMSO

or Selinexor (150nM). 200 μl of the diluted virus was added to each well and the slides were incubated

for 24 h at 37°C at 5% CO2. The cells were fixed using 4% formaldehyde in PBS for 10 min at room

temperature (RT) in chamber slides and washed three times in PBS.

Primary human bronchial epithelial cells (Lonza, CC-2540S) and bronchial epithelial cell line BEAS-

2B (ATCC) were received as a gift from Professor Madeleine Rådinger group, Gothenburg University,

Sweden, and were cultured in monolayer following manufacturer instructions. Primary human

bronchial epithelial and BEAS-2B cells were infected with the B.1.1.7 variant of SARS-CoV-2 in a

similar way to Vero cells as described above in their corresponding culture media and fixed using 4%

formaldehyde in PBS for 10 min at RT in chamber slides 72 h post-infection.

SARS-CoV-2 infection of reconstructed human bronchial and nasal epithelia

MucilAirTM cultures, corresponding to reconstructed human bronchial and nasal epithelia (HBE and

HNE, respectively) differentiated at the air/liquid interface (ALI), were purchased from Epithelix

(Saint-Julien-en-Genevois, France). Cultures were maintained in ALI conditions in transwells with 700

µL of MucilAirTM medium (Epithelix) in the basal compartment and kept at 37°C under a 5% CO2

atmosphere. SARS-CoV-2 infection was performed in epithelial cultures as previously described

(Robinot et al. 2021). Briefly, the apical side of ALI cultures was washed once, and cells were then

incubated with the isolate BetaCoV/France/IDF00372/2020 (EVAg collection, Ref-SKU: 014V-03890)



diluted in 150 µl of DMEM medium. The viral input was left on the apical side for 4 h at 37 °C, and

then removed by 3 apical washes. Positivity for SARS-CoV-2 infection was tested by RT-qPCR as

described below.

Immunofluorescence Staining

Cells were fixed with 4% formaldehyde for 10 min, followed by two washes with phosphate-buffered

saline (PBS). Then cells were permeabilized using 0.25% Triton X-100 in PBS for 10 min followed by

two washes with PBS-0.1% Tween 20 (PBST). Blocking was performed in 3% bovine serum albumin

(BSA) in PBST for an hour at RT. The cells were incubated overnight at 4 °C with the following primary

antibodies: anti-METTL3 rabbit antibody (1:300, ab195352; Abcam), anti-METTL14 rabbit antibody

(1:300, HPA038002; Atlas Antibodies), anti-α-Tubulin mouse antibody (1:1000, T5168; Merck), anti-

SARS-CoV-2 Spike glycoprotein rabbit antibody (1:300, ab272504; Abcam), anti-G3BP mouse

antibody (1:500, ab56574; Abcam), anti-m6A rabbit antibody (1:400, 202003, Synaptic Systems), and

anti-YTHDF2 rabbit antibody (1:100, ab246514; Abcam). The slides were washed three times for 5

min in PBST and subsequently incubated with secondary antibodies conjugated with Alexa Fluor 488

and Alexa Fluor 555 fluorochromes (1:800; Invitrogen), for an hour in the dark at RT. After incubation

with the secondary antibodies, cells were washed three times for 5 min in PBST. Prolong Gold with

DAPI (Thermo Fisher Scientific–Life Technologies) was added to each coverslip and air-dried in the

dark to detect nuclei. Slides were imaged in a fluorescence microscope (EVOS™ FL Auto, Thermo

Fisher Scientific) using 20X and 60X oil immersion objectives by keeping the same parameter during

image acquisition.

For immunofluorescence staining in HNE, MucilAirTM cultures were fixed in 4% PFA for 30 mins at

RT, washed two times with PBS, and cut using a scalpel blade. Membrane pieces were placed in 10 μl

drops on parafilm, and subsequent staining steps were performed on parafilm at RT. Cells were

permeabilized with 0.5% Triton X-100 in PBS for 20 min and then blocked in 0.1% Tween 20, 1%

bovine serum albumin (BSA), 10% fetal bovine serum, 0.3 M glycine in PBS for 30 min. Samples were

incubated overnight at 4°C with AF647 conjugated rabbit anti-METTL3 primary antibody (ab217109;

Abcam; 1:100 dilution), AF488 conjugated rabbit anti-β-IV-Tubulin (ab204003; Abcam; 1:250

dilution) and anti-spike (1:100, is a gift from Hugo Mouquet (Pasteur Institute). The samples were



washed thrice in PBS followed by one hour incubated at RT with secondary antibody AF555-conjugated

goat anti-mouse (1:500 dilution). Samples were counterstained with Hoechst and mounted in

FluoromountG (Thermo Fisher Scientific) before observation with a Leica TCS SP8 confocal

microscope (Leica Microsystems).

For quantification of METTL3 localization, images were analyzed with ImageJ. Fluorescence channels

corresponding to the nuclear marker (DAPI/ Hoechst) and cytoplasmic marker (anti- α-Tubulin or anti-

β-IV-Tubulin) were split to mark the nuclear and cytoplasmic border followed by quantification of

METTL3 intensity (Relative Fluorescence Unit: RFU) in nucleus and cytoplasm.

RT-qPCR and m6A RIP-qPCR

For performing m6A RIP-qPCR, 3 μg of RNA from Vero cells infected with SARS-CoV-2 B.1.1.7

variant or human patient RNA samples from throat/nose swabs (ethical permit # 2020-03276, #2020-

01945 and #2022-01139-02) were used. RIP was performed with 1μg of m6A antibodies (synaptic

systems, 202003) or IgG antibodies (SantaCruz, SC-2027). The input and m6A RIP-RNA were

converted to cDNA using the High-Capacity RNA-to-cDNA™ Kit (Thermo Fisher Scientific, 4387406)

and random primers. qPCR was performed on a Quant Studio 3 thermocycler (Thermo Fisher Scientific)

using gene-specific PCR primers (Supplemental Table S1) mixed with Power SYBR Green Master

Mix (Thermo Fisher Scientific, 4367659) and diluted cDNA (10-fold dilution) as a template. The data

is represented as percentage input values.

For RT-qPCR, the RNA was directly converted to cDNA and subjected to qPCR as mentioned above,

using primers listed in Supplemental Table S1. Expression values presented for each gene are

normalized to TBP and POL2RG or to GAPDH using the delta-delta Ct method.

To check m6A levels in both forward and reverse strands of the viral RNA, cDNA was synthesized with

primers specific for each strand separately at 50 °C (Supplemental Table S1) using the ImProm-II™

Reverse Transcription System (Promega, A3800) and subjected to qPCR with primers specific for the

viral N-protein (Supplemental Table S1).

Human patient RNA samples from throat/nose swabs were converted to cDNA and subjected to qPCR

as mentioned above, using primers listed in Supplemental Table S1. Expression was normalized to

ACTB.



The cellular level of SARS-CoV-2 RNA was measured by RT-qPCR in HBE and HNE infection as

described previously (Samelson et al. 2022).

G3BP1 and YTHDF2 RNA Immuno-precipitation qPCR (RIP-qPCR)

Uninfected Vero cells treated with the METTL3 inhibitor STM2457 (5μM for 48h) or with DMSO were

harvested and fixed for 10 mins with formaldehyde (1% final concentration) and quenched with Glycine

(0.125 M, final concentration). Fixed cells were lysed in RIPA buffer (50mM Tris pH7.4, 150mM NaCl,

0.5% Sodium Deoxycholate, 0.2% SDS, 1% IGEPAL-CA630, Protease inhibitor, and RNase inhibitor)

and sonicated for 10 cycles (30 secs on 30 secs off) on a Bioruptor (Diagenode) sonicator. The cleared

lysate was used for RIP with anti-G3BP1 (Abcam, Ab181150), anti-YTHDF2 (Abcam, Ab246514) and

IgG (SantaCruz, SC-2027) antibodies. The RNA-protein-antibody complex was captured using protein

A/G magnetic beads (Thermo Fisher Scientific, 10002D and 10004D). Magnetic beads were washed

with low salt buffer (1X PBS, 0.1% SDS and 0.5% IGEPAL-CA630) and high salt buffer (5X PBS,

0.1% SDS and 0.5% IGEPAL-CA630) before eluting in elution buffer (10mM Tris pH7.4, 100mM

NaCl, 1mM EDTA, 0.5% SDS) with Proteinase K. RNA was extracted using TRIzol reagent and cDNA

synthesis and RT-qPCR were performed as described above. The data is represented as percentage input

values.

LC-MS/MS quantification of m6A in viral RNA

LC-MS/MS-based quantification of m6A was done as previously described (Liu et al. 2021, 2020a). In

brief, RNA from B.1 viral particles was isolated from Vero cell supernatant and digested by P1 nuclease

(Sigma, N8630) followed by treatment with phosphatase (NEB, M0289S). The sample was then filtered

(0.22 µm pore size) and directly injected into the LC-MS apparatus. As a positive standard for LC-

MS/MS, and to estimate the number of m6A modifications in viral RNA, we parallelly processed

commercially synthesized RNA oligos (Supplemental Table S1) with or without internal m6A mixed

at a 5:1 A/m6A ratio. We made triplicate injections of the standard RNA oligos and the viral RNA and

estimated the A/m6A ratios for both samples. LC-MS/MS profiles were monitored using the parallel

reaction-monitoring (PRM) mode for: m/z 268.0–136.0, and m/z 282.0–150.1 that corresponds to A

and m6A respectively, as previously described (Sun et al. 2021).



METTL3 knock-down andWestern blot analysis

Vero cells with stable METTL3 (METTL3-KD) and control knockdown (Control-sh) were generated

using lentivirus expressing shRNA against METTL3 or non-targeting genomic regions. The shRNA

sequences used in the study are provided in Supplemental Table S1.

Total proteins were extracted from cells using RIPA buffer (Sigma-Aldrich, #R0278) and quantified

using the Pierce BCA Protein Assay Kit (Thermo Scientific, #23225) as per the manufacturer's

instructions. An equal amount of proteins per sample were resolved by SDS- PAGE on NuPAGE Bis-

Tris gels (4-12%) (Invitrogen), followed by transfer onto 0.2 μm Nitrocellulose membrane using a

Trans-Blot Turbo Transfer System (Bio-Rad). The membrane was blocked for 1 h at RT with a blocking

solution (PBST- 5%Milk) before incubation with the primary antibodies, anti-METTL3 (1:400,

Ab195352; Abcam), anti-G3BP1 (1:1000, Abcam, Ab181150), anti-YTHDF2 (1:1000, Abcam,

Ab246514) or anti-GAPDH (1:5000, ab9485, Abcam), in blocking solution overnight at 4°C. After

washing, the membranes were incubated with a secondary antibody for 1 h at RT, and the proteins were

then detected with the SuperSignal West Pico PLUS Chemiluminescent Substrate (Thermo Scientific,

#34579) using a ChemiDoc XRS+ system (Bio-Rad).

Proliferation assay

5,000 cells/well were seeded in a 96-well plate to assess the proliferation of cells treated with either

DMSO or Selinexor (150nM). The CellTiter 96 Non-Radioactive Cell Proliferation Assay kit (Promega,

#G4000) was used to determine cell growth as per the manufacturer’s instructions. Absorbance was

measured using a microplate reader Infinite 50 (Tecan, Austria).

Excluding potential N6,2′-O-dimethyladenosine (m6Am) signals

To evaluate the presence of potential m6Am modification located at the first-transcribed nucleotide (Tan

et al. 2018; Liu et al. 2020b), we bioinformatically excluded m6A RIP-seq signals located near the

transcription start sites (TSS) that could correspond to m6Am modifications captured by the m6A

antibody. For this, the summit coordinates of predicted m6A RIP-seq peaks were overlapped with the

first 20 nt (close to transcription start sites) of all transcripts using the plyranges package (Lee et al.

2019) according to each reference genome (chlsab2, hg38 or wuhCor1). The m6A peaks located within

the 20 bp regions from transcription start sites were excluded from the analysis.



Quantification of viral reads

Counts of reads uniquely mapped to the SARS-CoV-2 genome were obtained with featureCounts (Liao

et al. 2019) and normalized to the spike-in scaling factor. TPM values were then calculated using these

counts by further normalizing with the gene lengths to obtain viral gene expression. Averaged TPM

expression values were calculated for all replicates in Vero, HBE, and HNE post-infection samples,

reflecting the different numbers of viral reads depending on the host cells.

Analysis of m6A-readers from publicly available SARS-CoV-2 interactome

We collected publicly available data from the SARS-CoV-2 interactome in Schmidt et al., 2021 to

analyze the reported interactions of known m6A-readers. For this, we selected proteins with a significant

log2 enrichment over the background. As reported by the original authors, the SARS-CoV-2 RNA-

protein interactome can be further divided into a core (adjusted p-value < 0.05) and expanded

interactome (adjusted p-value < 0.2), containing 57 and 119 RNA interacting proteins, respectively.

After matching the significantly enriched SARS-CoV-2 RNA-protein interactome data with the

publicly available m6A-reader protein interactors collected from STRINGdb, we found 16 overlapping

proteins. From these, 8 proteins belong to the core SARS-CoV-2 RNA-protein interactome (YTHDF2,

YBX1, SYNCRIP, PABPC1, MOV10, DDX3X, HNRNPA1, and IGF2BP2) and 8 proteins (IGF2BP1,

HNRNPA3, HNRNPA0, HNRNPAB, HNRNPL, G3BP1, PCBP2, and HNRNPA2B1) form part of the

expanded SARS-CoV-2 interactome. The resulting interaction network was analyzed and visualized

using StringApp Cytoscape plugin (Doncheva et al. 2019).

Analysis of RNA-seq data for differential gene expression

Aligned reads were quantified using featureCounts from the Rsubread package (Liao et al. 2019)

following differential expression analysis with DESeq2 using two replicates per condition (Love et al.

2014). Genes were considered differentially expressed if they had an absolute log2 fold change value >

1 and an adjusted p-value cutoff of < 0.01 for Vero data and log2 fold change > 0.5 and adjusted p-value

< 0.1 for HBE data. Heatmap visualization of differentially expressed genes was generated using the

pheatmap package in R. Principal component analysis of gene expression patterns after infection with

different SARS-CoV-2 variants was calculated on the regularized normalized counts obtained from

DESeq2 using the factoextra package. Correlation analysis of the gene expression changes was



performed between cells infected with different SARS-CoV-2 variants and also at the level of

differentially expressed genes in different infection conditions. Publicly available data were used as

well (Riva et al. 2020). Functional enrichment analysis was carried out using clusterProfiler (Yu et al.

2012) or Enrichr (Chen et al. 2013) against the Gene Ontology biological process or Enrichr COVID-

19 related gene sets databases, respectively, with the selection of significantly enriched terms (p-value

< 0.05). GO term clustering and visualization analysis was carried out using ClueGO (Bindea et al.

2013) from Cytoscape v3.8.2. Briefly, common enriched terms across any pair of variants previously

identified with clusterProfiler and associated with m6A related genes were selected and their

relationships were analyzed using ClueGO, enabling the visualization of shared genes between common

terms. Calculation of network connectivity and comparison to random networks were performed using

the igraph R package (https://cran.r-project.org/package=igraph). Differential exon usage analysis was

performed with the DEXSeq R/Bioconductor package (Anders et al. 2012) on TPM normalized

sequence counts quantified with Salmon v1.4.0 (Patro et al. 2017) in mapping-based mode using the

stranded reverse library type parameter (-l SR).



Reference:

Anders S, Reyes A, Huber W. 2012. Detecting differential usage of exons from RNA-seq data. Genome
Res 22: 2008–17.
Bindea G, Galon J, Mlecnik B. 2013. CluePedia Cytoscape plugin: pathway insights using integrated
experimental and in silico data. Bioinformatics 29: 661–3.
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A. 2013. Enrichr:
interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14: 128.
Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. 2019. Cytoscape StringApp: Network Analysis and
Visualization of Proteomics Data. J Proteome Res 18: 623–632.
Lee S, Cook D, Lawrence M. 2019. plyranges: a grammar of genomic data transformation. Genome
Biol 20: 4.
Liao Y, Smyth GK, Shi W. 2019. The R package Rsubread is easier, faster, cheaper and better for
alignment and quantification of RNA sequencing reads. Nucleic Acids Res 47: e47.
Liu J, Dou X, Chen C, Chen Chuan and Liu C, Xu MM, Zhao S, Shen Bin and Gao Y, Han D, He C.
2020a. N 6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and
transcription. Science (1979) 367: 580–586.
Liu J, Li K, Cai J, Zhang M, Zhang X, Xiong X, Meng H, Xu Xizhan and Huang Z, Peng J, Fan J, et
al. 2020b. Landscape and Regulation of m6A and m6Am Methylome across Human and Mouse Tissues.
Mol Cell 77: 426–440.e6.
Liu J, Xu Y-P, Li K, Ye Q, Zhou H-Y, Sun H, Li X, Yu L, Deng Y-Q, Li R-T, et al. 2021. The m6A
methylome of SARS-CoV-2 in host cells. Cell Res 31: 404–414.
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq
data with DESeq2. Genome Biol 15: 550. http://www. (Accessed December 28, 2022).
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon provides fast and bias-aware
quantification of transcript expression. Nat Methods 14: 417–419.
Riva L, Yuan S, Yin X, Martin-Sancho L, Matsunaga N, Pache L, Burgstaller-Muehlbacher S, de Jesus
PD, Teriete P, Hull M v, et al. 2020. Discovery of SARS-CoV-2 antiviral drugs through large-scale
compound repurposing. Nature 586: 113–119.
Robinot R, Hubert M, de Melo Guilherme Dias and Lazarini F, Bruel T, Smith N, Levallois S, Larrous F,
Fernandes J, Gellenoncourt S, Rigaud S, et al. 2021. SARS-CoV-2 infection induces the dedifferentiation
of multiciliated cells and impairs mucociliary clearance. Nat Commun 12: 4354.
Samelson AJ, Tran QD, Robinot R, Carrau L, Rezelj V v, Kain A mac, Chen M, Ramadoss GN, Guo X,
Lim SA, et al. 2022. BRD2 inhibition blocks SARS-CoV-2 infection by reducing transcription of the host
cell receptor ACE2. Nat Cell Biol 24: 24–34.
Schmidt N, Lareau CA, Keshishian H, Ganskih S, Schneider C, Hennig T, Melanson R, Werner S, Wei
Y, Zimmer M, et al. 2021. The SARS-CoV-2 RNA-protein interactome in infected human cells. Nat
Microbiol 6: 339–353.
Sun H, Li K, Zhang X, Liu J, Zhang M, Meng H, Yi C. 2021. m6Am-seq reveals the dynamic m6Am
methylation in the human transcriptome. Nat Commun 12: 4778.
Tan B, Liu H, Zhang S, da Silva SR, Zhang L, Meng J, Cui X, Yuan H, Sorel O, Zhang S-W, et al.
2018. Viral and cellular N6-methyladenosine and N6,2’-O-dimethyladenosine epitranscriptomes in the
KSHV life cycle. Nat Microbiol 3: 108–120.
Yu G, Wang L-G, Han Y, He Q-Y. 2012. clusterProfiler: an R package for comparing biological themes
among gene clusters. OMICS 16: 284–7.


	Genome Res.-2023-Vaid-gr.276407.121
	Supplemental_Materials

