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Transcription commonly occurs in bursts resulting from alternating productive (ON) and qui-
escent (OFF) periods. Yet how transcriptional bursts are regulated to determine spatiotemporal
transcriptional activity remains unclear. Here we perform live transcription imaging of key de-
velopmental genes in the fly embryo, with single polymerase sensitivity. Quantification of single
allele transcription rates and multi-polymerase bursts reveals shared bursting relationships among
all genes, across time and space, as well as cis- and trans-perturbations. We identify the allele’s
ON-probability as the main determinant of the transcription rate, while changes in the transcription
initiation rate are limited. Any given ON-probability determines a specific combination of mean
ON and OFF times, preserving a constant characteristic bursting time scale. Our findings point to
a convergence of various regulatory processes that predominantly affect the ON-probability, thereby
controlling mRNA production rather than mechanism-specific modulation of ON and OFF times.
Our results thus motivate and guide new investigations into the mechanisms implementing these
bursting rules and governing transcriptional regulation.

INTRODUCTION

Eukaryotic transcriptional regulation is an inherently
dynamic and stochastic process. Multiple molecular
events orchestrate, in space and time, the initiation of
productive transcription by individual RNA polymerases
(Pol II complexes), leading to the synthesis of nascent
RNA [1, 2]. The amount of transcribed mRNA molecules
in turn shapes protein production and thereby dictates
cellular behavior. Studies across various systems, from
yeast to mammalian cells, have revealed that transcrip-
tion occurs in bursts, namely the release of multiple Pol
IIs in what is often referred to as an ON period, followed
by a quiescent OFF period [3–8]. Yet it remains unclear
how the kinetic parameters of transcriptional bursting
determine mRNA production and govern spatiotemporal
transcription dynamics. Is the transcription rate con-
trolled primarily by tuning the durations of ON or OFF
periods, the initiation rate (the rate of Pol II release
during active periods), or by a combination of these?
Furthermore, are distinct bursting parameters controlled
by specific regulatory processes, and are distinct burst-
ing strategies underlying temporal versus spatial (tissue-
specific) control of transcription?

As a multitude of molecular processes is known to influ-
ence transcriptional activity, several studies aimed to un-
cover links between regulatory determinants and param-
eters of transcriptional bursting [9–11]. Transcriptional
bursting is commonly described by parameters such as
burst size, burst frequency, the kinetic rates governing
ON and OFF times as well as transcription initiation
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[3, 12, 13]. Regulatory determinants, such as transcrip-
tion factor (TF) binding, cis-regulatory elements, nucle-
osome occupancy, histone modification, and enhancer-
promoter interactions were suggested to affect distinct
bursting parameters [14–22]. Yet, it is difficult to inte-
grate these observations and form a unified understand-
ing of transcriptional control via bursting dynamics.

Much of our quantitative knowledge about transcrip-
tional bursting heavily relies on fixed data [3, 14, 23–26].
Capturing transcriptional bursts in vivo across space and
time remains challenging [20, 27–29]. Adding to this chal-
lenge, live measurements need to be quantifiable in ab-
solute units (i.e., mRNA count) to facilitate comparisons
between different genes and conditions [30–32]. More-
over, to understand the entire spectrum of bursting dy-
namics, there is a need to probe the full dynamic range
of a gene’s activity [25]. Measurements in an endogenous
system where tightly regulated spatiotemporal transcrip-
tional dynamics dictate cell-fate determination can fur-
ther elucidate the functional consequences of bursts and
their relation to different regulatory determinants. The
early Drosophila embryo provides a unique system that
meets all these requirements [33].

Here we quantify the endogenous transcription dynam-
ics of key developmental genes in living Drosophila em-
bryos. We identify a single control parameter, the in-
stantaneous ON-probability of an allele as the dominant
determinant of transcriptional activity, while the initia-
tion rate is mostly conserved. This finding holds across
spatial domains, developmental times, genes, and pertur-
bations of cis-regulatory elements and trans-regulators.
Surprisingly, we find a largely constant ON-OFF switch-
ing correlation time of roughly one minute. A corollary
of the latter is that mean ON and OFF times are tightly
coupled, regardless of the trans-environment or the cis-
regulatory architecture. While perturbations in the up-
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stream regulatory processes lead to dramatic changes in
the ON-probability, i.e., spatiotemporal changes in tran-
scription rate, the underlying changes in ON and OFF
periods are predicted from wild-type. Instead of a partic-
ular perturbation type dictating changes in specific burst-
ing parameters, we observe that more generally lowly
transcribing alleles are tuned to higher expression levels
by increasing burst frequency, while highly transcribing
alleles are mostly tuned by increasing burst size.These
results imply that for the examined genes, the burst-
ing phenomenon can be quantitatively understood by a
few simple rules: two of the transcription parameters are
quasi-constant, and all others are determined by the ON-
probability. Hence, future investigations necessitate a
re-examination of our mechanistic understanding of tran-
scription, focusing on how regulatory processes influence
a unique control parameter.

RESULTS

Instantaneous single allele transcription rate mea-
surements. To study the principles that govern tran-
scription dynamics across space and time, we need ac-
cess to the endogenous bursting kinetics at a single allele
level. We designed an approach to obtain such quantita-
tive measurements in living Drosophila embryos [31, 35].
A versatile CRISPR-based scheme is employed to in-
corporate MS2 cassettes into the gap genes’ introns (or
3’UTR) [36]. These form stem-loops in the transcribed
nascent RNA that are subsequently bound by fluores-
cent coat-proteins (Fig. 1A, S1A and Methods) [37, 38].
A custom-built two-photon microscope generates fluores-
cence images, capturing RNA synthesis at one tagged al-
lele per nucleus with a 68-fold signal improvement over
previous studies [31], approaching single-mRNA sensitiv-
ity (Fig. S1D-E). An optimized field-of-view yields 10 s
interval time-lapses for hundreds of nuclei per embryo,
during nuclear cycles (NC) 13 and 14 (Fig. 1A-B; Videos
V1-V4), essential for statistical analysis.

To achieve a fully quantitative characterization, we cal-
ibrate our measurements to absolute units. We convert
the fluorescence signal at the site of transcription into
equivalent cytoplasmic mRNA units (C.U.) by matching
the mean transcriptional activity to previously calibrated
smFISH measurements (Fig. 1B, see Methods) [25, 34].
We find high agreement between smFISH and live mea-
surements, as a single conversion factor adjusts for the
difference in fluorescence signal between the two meth-
ods, with an average relative error of ∼ 5% across all
gap genes and MS2 insertion sites (Fig. 1C and S1B).
This agreement extends to higher moments (Fig. S1C),
despite the fully orthogonal nature of these techniques:
one being non-invasive genetically but involving fixation,
while the other involves gene editing and stem-loop cas-
sette insertions. This strongly suggests that our live ap-
proach captures the endogenous situation and provides

means to express our dynamic transcription measure-
ments in terms of absolute mRNA counts.

Our unique combination of absolute calibration and
near single transcript sensitivity (Fig. S1D-E) allows us
to reconstruct the underlying single allele transcription
initiation events by individual Pol II, namely the events
in which Pol II complexes are released onto the gene and
engage in productive elongation. To infer these initiation
events for each time series, we adopt a Baysian decon-
volution approach that accounts for measurement noise
(Fig. S1D and Methods). The convolution kernel models
the fluorescent signal resulting from the Pol II elongation
process through the stem-loop cassette (with constant
and deterministic elongation, Fig. 1D) [20, 27]. For each
time series, the approach generates multiple configura-
tions of transcription initiation events (Fig. 1E). Aver-
aging these configurations gives us a time-dependent in-
stantaneous single allele transcription rate r(t) per time
series (Fig. 1F).

We validate this kernel-based deconvolution approach
by performing dual-color tagging of the gene body (a 5’
proximal intron and a 3’UTR tag). These measurements
support our key assumptions (see Methods) and allow
us to extract a Pol II elongation rate of Kelo = 1.8± 0.1
kb/min, which is in line with previous measurements [31,
39] (Fig. S2). Our inferred transcription rates are thus
no longer masked by the Pol II elongation dwell time,
unlike the directly measured intensities of transcriptional
activity. Transcription rates are thus independent of gene
length, enabling the direct comparison between different
genes and opening a path to identify common principles
underlying transcription dynamics.

Single allele transcription rates hint at a universal
bursting regime. Before analyzing the gap genes’ tran-
scription dynamics at the single allele level, we sought
to determine whether the averages of the deconvolved
single allele transcription rates r recapitulate the well-
documented average protein dynamics [40]. We compute
a mean transcription rate R = 〈r〉 per gene along the
anterior-posterior (AP) axis for all time points during
NC13 and NC14 (Video V5); averaging occurs over 200-
300 nuclei (each contributing one allele) in the same AP
and time bin from 10-20 embryos (Fig. 1A and 1B). The
extracted mean transcription rate profiles (Fig. 2A and
S3A) strongly resemble the ones reconstructed from care-
fully staged gap gene antibody staining, including the
well-documented posterior shifts during NC14. Indeed,
with simple assumptions on diffusion and lifetime, the
mean transcription rates R predict protein patterns with
minimal post-transcriptional regulation (Fig. S4, Video
V6). Thus, in this system, the rules governing transcrip-
tion rate modulation will largely determine function, i.e.,
protein synthesis.

While the examined genes exhibit a common range of
mean transcription rates R (Video V5), they display dis-
tinct spatiotemporal profiles, giving rise to gene-specific
protein patterns. Yet when we examine the distributions
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FIG. 1. Live single-cell transcription rate measurements of endogenous gap genes. (A) Transcriptional activity
measured of a single gap gene allele using a custom-built two-photon microscope in a living fly embryo. An 24xMS2 stem-
loop cassette is inserted in the first intron of the gap genes. Constitutively expressed MCP-GFP binds stem-loops formed on
nascent transcripts, making transcription sites appear bright above background (green hotspots) and enabling quantification
of transcriptional activity at single allele resolution along the anterior-posterior (AP) axis of the embryo. (For genomic
strategy of all gap gene loci see Fig. S1A). (B) Example single allele transcription time series for the gene hunchback across
nuclear cycles NC13 and NC14 (sampled every 10 s) from a single AP bin (width ∼ 2% embryo egg length L) at x/L =
0.435± 0.010. Intrinsically low embryo-to-embryo variability (compared to the total variance in our data, Fig. S1F) facilitated
by the Drosophila system allows for pooling alleles from multiple spatially and temporally aligned embryos (n =10–20). Mean
transcriptional activity (black line) obtained from pooling 200–350 alleles. (C) Calibration of transcriptional activity in absolute
units performed by matching mean activity profiles in a 5-min-interval during NC13 (gray shade in B) from live (color) and
previously calibrated fixed smFISH (black) measurements for all examined gap genes [25]. A global conversion factor (one
for all genes) leads to a match within 5% error between live and fixed profiles (Fig. S1B), resulting in our activity unit, i.e.,
cytoplasmic unit (C.U.) equivalent to the intensity of a fully elongated transcript [34]. (D) Reconstruction of transcription
initiation events from deconvolution of single allele transcription time series. The signal is modeled as a convolution between
transcription initiation events and a kernel accounting for the elongation of a single Pol II through the MS2 cassette and the
gene body (using an elongation rate Kelo = 1.8 kb/min, Fig. S2). Bayesian deconvolution is performed by sampling from the
posterior distribution of possible configuration of initiation events given the measured activity and measurement noise (Fig.
S1D-E). (E) Example deconvolved initiation configuration (gray bars) and corresponding reconstructed signal (red) from a
single allele transcription time series (black). (F) single allele transcription rate (gray) from same allele as in E (black). The
rate is estimated by counting the number of initiation events within 10 s intervals for a given sampled configuration and averaged
over 1’000 of such configurations. The displayed solid line and envelope for transcription rate (gray) and reconstructed signal
(red) correspond to the mean and one standard deviation of the posterior distribution.

of single allele transcription rates, r, underlying a simi-
lar mean transcription rate, P (r|R), we find that these
distributions collapse across genes (Fig. 2B). Strikingly,
for low- to mid-levels of R, the underlying distributions
differ starkly from a constitutive regime, which would re-
sult in a Poisson distribution. At these levels, the large
amounts of non-transcribing or barely transcribing alleles
hint at quiescent OFF periods deviating from a consti-
tutive regime. As the mean transcriptional activity in-
creases, the distributions become more Poissonian, sug-

gesting that PON, i.e., the probability of the genes being
ON, increases. These observations are consistent with
bursting behavior, where the gene alternates between ON
and OFF states.

The collapse of our data and the deviation from a con-
stitutive, Poisson regime, are readily observed also when
we compute the relationships between R and the higher
moments of the P (r|R) distributions (Fig. 2C and S3C).
Our data approaches the Poissonian regime only on the
extreme ends of the R spectrum, implying that the gap
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FIG. 2. Transcription rates display signatures of a universal bursting regime. (A) Snapshot of mean transcription
rates R as a function of AP position in early NC14 (t = 15 min after mitosis) for different gap genes (color). AP profiles
are obtained by averaging the deconvolved single allele transcription rates over ∼ 200 nuclei within each AP bin. The black
dashed lines correspond to the mean activity (Fig. 1C) of each gap gene at the same position and time normalized by the
effective elongation time (see Methods, Fig. S3A and Fig. S4A). Tight agreement of colored and dashed profiles supports the
deconvolution approach (error bars are one standard deviation across the means of 10–20 embryos). (B) Distribution P (r|R) of
single allele transcription rates estimated within 1-min-intervals in both NC13 (color dotted lines) and early NC14 (color solid
lines). These distributions are computed over all the nuclei from time points and AP bins whose mean transcription rate R is
either in a low [2.1, 3.2], mid [7.5, 8.5] or high regime [12.8, 13.9] (as gray shade in A and C). The various gap gene distributions
collapse at all regimes and differ from the Poisson distribution (black dashed line), suggestive of a universal bursting regime.
(C) Variance of single allele transcription rates as a function of mean transcription rate R in both NC13 (square) and early
NC14 (circle) (estimated over 1-min-intervals). Note a strong departure of the variance from a constitutive Poisson regime
(dashed line, σ2 ∼ R). All gap genes follow the same trend suggestive of a common bursting regime. For higher moments
see Fig. S3C. Vertical gray bars correspond to low, mid, and high R, as in A. (D) Auto-correlation (AC) functions of single
allele transcription rates estimated within 10 s intervals for hb in early NC14 and averaged across time, and within a given AP
bin across alleles. Color code stands for position along the AP axis. The AC functions are normalized by the variance and
highlight an uncorrelated and a time-correlated component in the single-cell transcription rate fluctuations. The correlated
component is characterized by a magnitude σAC and an exponential decay with time scale τAC. Such correlated fluctuations
are expected to arise in a bursting regime due to ON–OFF gene switching (Fig. S3D). (E) Magnitude ΣAC of the correlated
fluctuations in the single allele transcription rate as a function of mean transcription rate R. All gap data (color) collapses
showing a universal trend (dashed line, guide to the eye). The fraction of correlated variability decreases as R increases, as
expected when approaching a constitutive regime of uncorrelated Poisson initiation (Fig. S3E). (F) Correlation time of the
correlated fluctuations in the single allele transcription rate as a function of mean transcription rate R. The correlation times
are obtained by fitting exponentials to the correlated component of the AC function as in D. Strikingly, the correlation time is
mostly conserved across genes and transcription levels. Error bars are bootstrapped 68% confidence interval.
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genes transition all the way from fully OFF (PON = 0)
to fully ON (PON = 1). The gap genes thus provide an
opportunity to investigate how an underlying bursting
regime can account for a full dynamic range of transcrip-
tional activities.

The dynamic nature of our measurement allows us to
examine single allele transcription rates not only via dis-
tributions pooled across nuclei but also within individual
transcription time series. We find the auto-correlation
function of the single allele transcription rates provides
further evidence for an underlying common bursting
regime (Fig. 2D). An initial sharp drop of magnitude
1 − ΣAC at our sampling time scale (∼ 10 s) indicates
the presence of uncorrelated noise, consistent with inde-
pendent Pol II initiation events. This drop is followed
by a longer decay of correlated noise at time scale τAC.
Such correlated noise is expected in a bursting regime,
as the switching between ON and OFF states introduces
temporal correlation in transcriptional activity. A the-
oretical and computational analysis using the two-state
model of transcription [12] supports both the interpre-
tation of the auto-correlation functions (Fig. S3D), and
our ability to estimate ΣAC and τAC properly from the
deconvolved rates (Fig. S3E-G).

We find both the magnitude of correlated noise ΣAC

(Fig. 2E) and the correlation time τAC (Fig. 2F) col-
lapse across AP bins and different genes. Notably, the
magnitude ΣAC is highly constrained and drops at high
R, consistent with the behavior of the variance (Fig.
2C). Furthermore, the correlation time τAC is largely con-
served across nuclear cycles, across AP bins, and across
genes, confined within the range of 1–2 min and averag-
ing to a value of 1.37 ± 0.31 min (Fig. 2F). This sur-
prising invariance of τAC with respect to R suggests that
a key temporal characteristic of transcription dynamics
is highly conserved. Thus, both the static moment and
correlation-based analyses point to a common bursting
regime, applicable across genes and space, motivating a
time-dependent analysis of transcriptional bursts at the
level of individual time series.

Allele ON-probability is the key regulated tran-
scriptional parameter. To directly quantify individ-
ual transcriptional bursts at the single allele level, we
take advantage of our deconvolved initiation events and
instantaneous transcription rate time series that are un-
encumbered by the signal-blurring effect of elongation
(Fig. 3A). They allow us to identify distinct periods of
active transcription, characterized by consecutive initia-
tion events (i.e., multiple Pol IIs released into produc-
tive elongation), interpreted as ON periods, followed by
quiescent periods, namely OFF periods (Fig. 3A). We
define the switch of an allele from an OFF to an ON
state when a moving average of the single allele tran-
scription rate exceeds 2 mRNA/min (see Methods). This
threshold is consistent with our detection sensitivity of
1–2 mRNAs, and the size of the moving window for aver-
aging is set based on the correlation time scale from the

auto-correlation analysis. The main strength of our burst
calling routine is its sole reliance on a minimal cluster-
ing model, and as such being devoid of any mechanistic
assumptions on the underlying bursts (no explicit mech-
anistic model is needed, see Methods).

Given a computed bursting profile (demarcated ON
and OFF periods) for every single allele, we can now
ask how bursting dynamics underlie transcription rates.
Specifically, the mean transcription rate at time t, R(t),
can be decomposed into two parameters: the instan-
taneous probability of an allele being in the ON state
PON(t) (i.e., the fraction of ON alleles) and the mean
initiation rate in the ON state K(t). Starting with the
gene hb, we thus estimate, for a given AP bin, the time-
dependent parameters R(t) and PON(t) by averaging all
(∼ 250) single allele instantaneous transcription rates
and counting the fraction of alleles in the ON state at
time t, respectively (Fig. 3B-C). To compute K(t), we
average initiation events restricted to the ON state (as
opposed to R, which is averaging initiation events regard-
less of allele state). We repeat this procedure for each
position of the AP-axis to obtain the full spatiotempo-
ral dependence (Fig. 3D-F). We validate our approach
for burst calling and the recovery of bursting parameters
from transcription time series on simulated data (based
on a 2-state model) with an overall median error of 10%
(see Methods, Fig. S5 and Fig. S6).

All three parameters vary significantly across both
space and time (Fig. 3D-F). However, given that these
are related by R = K · PON (Fig. S7A), it is possible
that most of the variation in R stems from changes to
either K, or PON, or both. When R is plotted against
PON, all data points across time and space collapse in a
tight monotonically increasing function (Fig. 3G), with
PON spanning from 0 to 1 (fully OFF to fully ON), echo-
ing back to the noise analysis above (Fig. 2B-C). Simi-
larly, the initiation rates K tightly collapse across space
and time when plotted against PON. However, K only
covers a two-fold change in dynamic range (Fig. 3H),
which is marginal compared to R spanning from 0 to 15
(mRNA/min) (Fig. 3I and S7B-C). This two-fold change
is largely due to the existence of two optically unresolved
sister chromatids and a modest time dependence of K
throughout the nuclear cycle (Fig. S7D-I, see Methods).
With these considerations we estimate the mean Pol II
spacing for a single active chromatid at 303±73 bp, con-
sistent with the classic Miller spreads with average Pol
II spacing of 330± 180 bp [41].

Overall, we find that R is tightly controlled by PON,
while K is only moderately modulated and has signif-
icantly less predictive power over R. These results for
hb suggest that transcriptional activity is mainly con-
trolled through the probability of an allele being in the
ON state. Once in the ON state, transcription initiates
at a quasi-constant rate.

Constant switching correlation time restricts ON
and OFF periods. Given the central role of PON in con-
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K (F) as a function of time in NC14 for all AP positions (color coded). R and PON are computed as in B and C, respectively, and
K is obtained by averaging the single allele transcription rate (B) conditioned on the locus being ON (C) over all nuclei in each
AP bin. (For tests of burst calling procedure on simulated data see Figure S3.) (G-H) Transcription rate R (G) and initiation
rate K (H) as a function of PON, for all time points and positions, demonstrating a massive data collapse, suggesting that
PON is the central regulatory parameter for transcriptional bursting. (I) Transcription rate R as a function of both controlling
parameter PON and K in log-space. Since log (R) = log (K) + log (PON) by construction, changes in PON determine changes in
R below the dashed line (R ∼ 8.5 mRNA/min, corresponding to PON = 0.75).

trolling hb’s transcription rate, we aim to examine how
it decomposes into ON and OFF periods in individual
alleles. To this end we compute the mean ON and OFF
times, averaged across alleles of the same AP bin, and at
a given time (TON and TOFF, Fig. 4A-C; see Methods).
Near steady state, we expect the ON-probability PON to

be given by the ratio of TON and TON + TOFF. We ver-
ify this relationship (Fig. 4D), showing good agreement
(i.e., beyond an initial 7.5 min transient post mitosis, Fig.
S7J-K). This is a strong indication of the self-consistency
of our general approach for extracting these bursting pa-
rameters. Moreover, despite temporal changes in PON
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FIG. 4. Allele ON-probability controls ON and OFF times. (A) Binarized heatmap from Fig. 3C. Instantaneous mean
OFF-time TOFF (bottom, gray) and mean ON-time TON (bottom, blue) are obtained by the weighted average of the ON and
OFF times over all nuclei (see methods). The weights are given by the inverse of the number of time points within each period.
(B-C) Mean OFF-time TOFF and mean ON-time TON as a function of time and position (color coded) for hb in NC14. (D)
The ratio of TON over the sum of TON and TOFF versus ON-probability PON for all positions and time points beyond the 7.5
min mark in B and C (near-steady state both quantities are expected to be equal after initial transient, see Fig. S7J-K). Thus,
temporal changes in transcriptional parameters must be slow enough to allow relaxation. (E-F) Mean OFF-time TOFF (E)
and mean ON-time TON (F) as a function of PON, for all positions and time points beyond the 7.5 min mark in B and C. (G)
Effective switching correlation time TC (defined as: 1/TC = 1/TON +1/TOFF) as a function of PON, computed using data points
in E and F. TC is mostly conserved across time points and position and is PON independent.

due to developmental regulation, transcriptional burst-
ing in this system seems to operate in a near-steady-state
regime.

While TON and TOFF change over time and in differ-
ent AP bins (Fig. 4B-C), when we plot TON and TOFF

against PON all data points collapse again across time and
space onto two tight anti-symmetric relationships (Fig.
4E-F). Various combinations of TON and TOFF could po-
tentially give rise to any given PON, however, here we
observe a highly restricted range for these mean dura-
tions. Hence a given PON is unequivocally linked to a
specific pair of TON and TOFF, regardless of space and
time.

An allele switching dynamically between ON and OFF
states will have a correlation time TC, which determines,
on average, the time needed for the single allele transcrip-
tion rate to become uncorrelated. For such a system, TC
can be computed directly from the mean ON and OFF
times and is defined by 1/TC = 1/TON + 1/TOFF (Fig.
4G, see Methods). Surprisingly, for all AP and time bins,
TC is confined between 1− 1.5 min and thus largely con-
stant and independent of PON. Moreover, TC matches
quantitatively the correlation time τAC from the auto-
correlation analysis (Fig. 2F), which we found to be inde-
pendent of the transcription rate. Given that TC charac-
terizes allele switching correlations by construction, this

match suggests that the nature of τAC could indeed be
related to bursting.

The fact that TC seems to remain conserved across
space and time restricts the mean ON and OFF times.
Indeed, TON and TOFF can be expressed as a function
of PON and TC (via TON = TC/1 − PON and TOFF =
TC/PON, since PON = TON/(TON+TOFF) near the steady
state, cf. Fig. 4D). Thus, the constancy of TC mathe-
matically explains the tight anti-symmetric relationships
of TON and TOFF with respect to PON (Fig. 4E-F), so
that PON not only governs the mean transcription rate
R but also the entire transcriptional bursting dynamics.

Common bursting relationships underlie the reg-
ulation of all gap genes. Should we expect these burst-
ing parameter relationships found for hb to generalize to
other gap genes or are they gene-specific? The gap genes
differ in their cis-regulatory elements, namely different
numbers and arrangement of enhancers and promoters
(Fig. S1A), and different compositions of transcription
factors binding sites within each enhancer. Correspond-
ingly, and as discussed above, the gap genes display dis-
tinct transcriptional activities along the body axis (Fig.
1C) and across time (Video V8), which, in the case of hb
we found to be largely governed by PON.

When we apply our deconvolution and burst calling
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FIG. 5. Transcriptional parameters collapse for all gap genes. (A) Kymographs of ON-probability PON for all gap genes
as a function of position and time for NC13 and NC14. The spatiotemporal transcriptional pattern of the gap genes arises
from a complex regulation of PON (color map). (B-E) Transcriptional parameters collapse for all gap genes across time and
position. Transcription rate R (B), Mean OFF- (C) and ON-time (D) (TOFF and TON, respectively), and switching correlation
time TC (E) as a function of the ON-probability PON. Colored data points represent individual gap gene (same color code as
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into account (see Figure S8D).
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procedure (Fig. 3A) to the measured single allele tran-
scription time series of other gap genes (gt, Kr, and kni),
we observe that all genes differ substantially in their spa-
tiotemporal PON profiles (Fig. 5A). These differences
are expected and reflective of the above-mentioned dis-
tinct underlying cis architectures and trans regulators of
these genes. Strikingly, despite these differences, they
show an almost identical mean transcriptional rate R to
PON relationship (and K to PON relationship, Fig. S8C),
substantiating PON as the governing factor for the tran-
scriptional activity not only across time and space but
also across genes (Fig. 5B).

Computing the various bursting parameters for all gap
genes and plotting these as a function of PON, we find
the genes display the same PON-dependent relationships:
all genes share common TOFF to PON (Fig. 5C) and
TON to PON (Fig. 5D) relationships. Thus, when differ-
ent genes display a specific PON value, possibly at differ-
ent spatiotemporal coordinates, the underlying TON and
TOFF periods employed are nonetheless largely similar.
This finding can be related to the switching correlation
time TC, which we find to be conserved across genes (Fig.
5E). The average TC value across all genes, positions, and
times is 1.25±0.37 min, very close to the prediction from
the single rate auto-correlation analysis (Fig. 2F).

Pooling all our data across all genes, times, locations,
and embryos (N > 106 data points) and plotting each
of the computed bursting parameters (R, K, TC, TOFF

and TON) against PON (Fig. 5F) – including the often-
used burst frequency F = 1/(TON +TOFF) and burst size
B = K · TON (Fig. S8E) – reveals highly constrained
relationships. Indeed, all data points occupy only a very
small subset of the parameter space (see methods). Tight
functions can be mapped out (black lines) that confirm
the exceptional predictive power conferred by PON. Sep-
arating all the data into three developmental time win-
dows (NC13 & early NC14, mid NC14, and late NC14),
shows a further tightening of the relationships in these
developmental stages (Fig. S9). This separation thus
confirms that parts of the dispersion results from slow
and moderate changes in K (and to a lesser extent TC)
over developmental time (at most 40% reduction of K
and 25% for TC).

All measured bursting dynamics seem to adhere to this
simple set of rules, across genes, space, and time. The
mean transcription rate R is essentially dictated by PON,
with a largely constant K. A near-constant switching
correlation time TC leads to a specific functional relation-
ship for TON and TOFF of inverse proportionality. Thus,
only one of these two parameters is principally modu-
lated and the other remains quasi-constant. While lowly
transcribing alleles are tuned to higher expression lev-
els predominantly by decreasing TOFF, medium-to-high
transcribing alleles are mostly tuned by increasing TON.
These simple rules contain all information necessary to
govern bursting and consequently transcriptional activity
in the system.

The common bursting relationships predict the
effects of cis- and trans-perturbations. Diverse reg-
ulatory mechanisms have been implicated in the control
of transcriptional activity, including cis-regulatory ele-
ments (e.g., enhancers) and trans-factors (e.g., TF re-
pressors). It is often assumed that distinct regulatory
mechanisms directly control distinct bursting parame-
ters. Will the established bursting parameter relation-
ships based on wild-type measurements predict bursting
dynamics when we perturb regulatory mechanisms?

To address this question, we devised a strategy to per-
turb the endogenous system in cis and in trans. For
cis-perturbations, we delete a distal hb enhancer from
the hb locus that has an MS2-stem loop cassette in the
first intron (Fig. 6A). This enhancer removal has a com-
plex effect on hb activity, including increased and de-
creased transcriptional activity at different times and AP
locations (Fig. 6B), consistent with previous observa-
tions [42–44]. Despite the stark deviation in the mutant
spatiotemporal transcriptional activity compared to the
wild-type, we find that mean transcription rates across
space and time are governed by PON. Thus, the predic-
tive power of this parameter observed for the wild-type
holds for the mutant as well (Fig. 6B). The mutant fur-
ther adheres to the other bursting relationships identified
in the wild-type. In particular, the restrictive TON and
TOFF to PON relationships hold, as well as the largely
conserved switching correlation time TC (Fig. 6C).

A second enhancer deletion, namely, the removal of
the kni distal enhancer results in a significant reduction
in kni activity. The mutant samples have a smaller dy-
namic range of activity, yet we find a similar data collapse
within that range (Fig. S10A-C). Finally, to examine a
trans-perturbation, we measure kni activity in embryos
with a hb null background. kni activity was substan-
tially altered, consistent with earlier studies [45] (Fig.
S10D-E). Yet, again, we observe the collapse of the mu-
tant bursting parameters onto the wild-type busting rules
(Fig. 6D).

The consistency of these bursting rules suggests that
the wild-type derived relationships (Fig. 5F) can predict
how changes in TON and TOFF account for the change in
transcriptional activity upon the perturbation. Specifi-
cally, to examine the perturbation’s effect on transcrip-
tional activity at a given AP bin and time in devel-
opment, we can consider the pair {Pwt

ON, P
mut
ON } at that

spatiotemporal position (two examples of such pairs are
marked in the kymographs in Fig. 6B). Using the depen-
dencies of TON and TOFF on PON, we predict whether the
change in transcriptional activity (i.e., the change from
Pwt
ON to Pmut

ON ) stems predominantly from a change in TON

or in TOFF (Fig. 6E). For our two example pairs, one is
predicted to be mostly governed by TOFF (“o” mark),
while the other is mostly governed by TON (“?” mark).
This exercise can be generalized to all {Pwt

ON, P
mut
ON } pairs

and subsequently verified using the measured TON and
TOFF values for wild-type and the perturbations (Fig.
6C-D and Fig. S11A-C). We find that over ∼ 90% of the
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pairs correctly verify the type of modulation predicted
by our rules (Fig. 6F). We reached the same conclu-
sions predicting changes in burst size and burst frequency
(Fig. 6G and S11G-I). Importantly we find that each
type of perturbation displays both predominant TON or
TOFF modulation at different times and positions.

The generalization of our bursting rules to cis- and
trans-perturbations have strong consequences. From our
examination, the type of perturbed regulatory mecha-
nism can hardly be linked to changes in a specific burst-
ing parameter and vice versa. Indeed, as is the case for
wild-type, PON emerges as the main governing parameter
of the transcriptional activity also for the mutants, while
K and TC remain largely unchanged. PON changes upon
a perturbation (i.e., wild-type to mutant) are sufficient
to determine the corresponding changes in R, TON, and
TOFF. Moreover, the functional form of the relationships
implies that the PON regime (low versus high) is crucial in
determining which parameter is predominantly affected.
Different regulatory mechanisms have a different propen-
sity for PON modulation. Yet, the single-parameter regu-
lation set in place by the identified bursting rules points
towards general mechanisms conserving K and TC, and
linking TON and TOFF.

DISCUSSION

While it is appreciated that mRNA production likely
occurs in bursts across various systems, quantitatively
measuring endogenous, single allele transcriptional burst-
ing in real-time, across a wide range of gene activities,
still poses a challenge. This hinders our understand-
ing of how the kinetic parameters of bursting underlie
transcriptional dynamics across genes, space, and devel-
opmental time. In this study, we devised an approach
to perform such measurements in the context of the de-
veloping early Drosophila embryo, a system that relies
on large changes in transcription rates, as a means to
govern protein abundance (Fig. S4A). The spatiotem-
poral transcriptional activity of the examined genes is
regulated by a myriad of processes (e.g. repressor and
activator binding, chromatin accessibly, PIC formation
and pause-release, histone modifications, etc.) [42, 46–
48]. These processes are mediated by gene-specific cis-
architectures, with distinct combinations of enhancers
and promoters, further differing in their internal motif
compositions. Surprisingly, despite the complexity of the
regulatory processes involved and the differences between
the genes, we find highly restricted, unifying properties
of the underlying bursting dynamics.

We observed that the mean transcription rate is gov-
erned by a single tunable control parameter, the ON-
probability (PON), with a near-constant Pol II initiation
rate (K). We further found a conserved time scale (TC)
of about a minute, over which the allele states, either
active (ON) or inactive (OFF), remain correlated. This
time constant explicitly links the mean durations of ON

and OFF periods that are thus largely determined by
the control parameter (PON). PON, together with the
mostly conserved K and TC, fully parameterize the ob-
served bursting dynamics, across genes, space, and de-
velopmental time.

While consistent with predictions from our previous
measurements on fixed tissues (Fig. S12A) [25], the pre-
sented live measurements allow us to go beyond a model-
based inference of kinetic parameters from a static snap-
shot of distributions of nascent transcripts. Our current
approach measures the dynamics directly rather than in-
ferring the kinetics indirectly. Therefore, we are relieved
from the constraints imposed by a specific mechanistic
model and can thus further relax the steady state as-
sumption. Both aspects are often used in the analyses
of fixed and live data [3, 6, 25, 49]. Moreover, access to
the full dynamics of individual transcription time series
(throughout more than 1 hour of development) allows
us to estimate time-dependent transcriptional parame-
ters from the underlying bursts, rather than obtaining
only a single transcriptional parameter value per condi-
tion.

Using synthetic data, we verify the capacity of this pro-
cedure to reliably recover a wide range of bursting param-
eters, including the estimation of TC (Fig. S5C-D). The
conserved nature of TC and its value (i.e., 1.25±0.35 min
as estimated from individual bursts) quantitatively agree
with the auto-correlation analysis (τAC = 1.37 ± 0.31
min), an orthogonal approach not involving burst calling.
It is intriguing to consider the functional consequences of
a constant correlation time TC and of the relatively small
measured value. TC not only sets the time scale of the
bursting dynamics, linking the mean ON and OFF times,
but it has further implications on transcription noise fil-
tering: a small TC value minimizes noise as bursts are
easily buffered by long mRNA lifetimes. A small TC fur-
ther allows gene transcription to respond more rapidly to
input TF changes, by means of facilitating a fast relax-
ation to a steady state (Fig. S7J-K).

The identified bursting rules point to a surprising pre-
dictive power of PON on the mean ON and OFF times
(Fig. 5F). This observation is only possible because our
system allows for the quantification of bursting parame-
ters across a large dynamic range of transcriptional ac-
tivity, with PON values ranging from fully off (0) to fully
on (1) for most of our examined genes and conditions.
This leads us to uncover a strict relationship between
TOFF and TON (Fig. 6E and Fig. 7A). It is commonly
thought that distinct regulatory processes will alter tran-
scriptional activity by predominant regulation of specific
bursting parameters (e.g., the mean ON durations of a
burst versus the mean OFF intervals in between bursts).
Yet, when we perform a cis- or trans-perturbation, which
substantially alters transcriptional activity, the predomi-
nantly modulated bursting parameters (TOFF versus TON

or burst frequency versus burst size) can be predicted by
the wild-type and mutant PON regimes, rather than by
the type of the perturbation performed (Fig. 6E-G and



12

0 0.5 1
PON

100

101

102

K 
[m

R
N

A/
m

in
]

0 0.5 1
PON

10-1

100

101

T C
 [m

in
]

0 0.5 1
PON

10-2

10-1

100

F 
[1

/m
in

]

0 0.5 1
PON

100

101

102

103

B 
[m

R
N

A]

0 0.5 1
PON

100

102

T O
FF

 [m
in

]

0 0.5 1
PON

100

102

T O
N

 [m
in

]

A B

PON

enhancer architecture
core promoter architecture

chromatin modifications

chromatin looping
TF binding/unbinding

co-factors
?

K and TC
mostly conserved

TCTOFF = PON
TCTON = 1-PON

1
F =

TON +TOFF 

B = K TON

R = K PON = B F. .

.

Suter et al. 2011
endogenous and

syntehtic promoter

Mammalian cellsDrosophila
Pimmett et al. 2021

core promoter
manipulation

Hoppe et al. 2020
TF concentration

manipulation

Brouwer et al. 2023
chromatin, TF & PIC

manipulation

Yeast

FIG. 7. Decoupling between mechanism and response points to unifying rules. (A) Scatter plot of the transcriptional
parameters as a function of PON (color code same as Fig. 5F). Transcriptional parameters from two other Drosophila studies
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minimal description of bursts requires three independent parameters, such as initiation rate K, switching correlation time TC,
and ON-probability PON. PON is the main regulated parameter controlling the transcription rate R, while K only accounts for
small changes (at most 2-fold), and the correlation time TC sets a conserved bursting time scale. Conservation of both K and
TC implies that TOFF and TON, or, alternatively, the burst size B and burst frequency F , are fully determined by PON. Thus,
whether changes in R are mediated by TOFF versus TON, or B versus F dominated modulation only depends on PON. (B) While
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affects solely PON, which in turn determines unequivocally all of the underlying bursting dynamics.

S11).

To further examine the generality of these results, we
investigated previously published transcription measure-
ments in the early fly embryo. These measurements in-
clude both endogenous genes and synthetic reporters,
where transcription was altered by varying BMP signal (a
dorsoventral morphogen) [28] or core promoter composi-
tion [20]. Strikingly, we find that these datasets collapse
on our established bursting rules (Fig. 7A). As suggested
in these studies, the first dataset shows mainly effects on
TOFF, while the latter principally changes TON. Intrigu-
ingly, the two independent datasets cluster in disjoint
halves of the full spectrum of PON values captured by
our measurements. Our analysis thus raises the possi-

bility that the predominantly changed parameter (TOFF

versus TON) might not be inherent to the examined reg-
ulatory manipulation (e.g., input TF concentrations or
core promoter elements), but rather a consequence of the
limited expression range of these genes.

The striking manifestation of general rules underly-
ing bursting parameters in the Drosophila embryo, as
well as the conserved nature of regulatory processes and
the transcription machinery across eukaryotes, naturally
leads to the question of whether our rules apply more
broadly [50]. Recent measurements of an extensively per-
turbed yeast gene [21] provide an equivalent set of burst-
ing parameters that faithfully adhere to our transcription
rules (Fig. 7A). Although, the yeast gene initiation rate
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K appears mostly constant across conditions (similar to
the fly genes), calibration of its value was only possi-
ble under specific hypotheses leading to a lower bound
that needs to be further tested (Methods). Earlier yeast
gene data have shown a significantly smaller initiation
rate [5, 38]. A comprehensive study allowing multiple
gene classes across multiple organisms will be necessary
to verify whether our rules hold more generally in eu-
karyotes.

Mammalian genes are often lowly transcribed [6, 29,
51], potentially exploring a different parameter regime.
Indeed, while bursting parameters inferred from measure-
ments of a luminescent reporter protein [6] are restricted
to very small PON values (0 to 0.05), they appear to be
consistent with our established relationships (Fig. 7A).
Again, only the initiation rate K seems to deviate. Pos-
sible deviations in K across species leave open the pos-
sibility that the overall levels of K might be linked to
species-specific rates, such as those linked to metabolism
[52, 53]. Mammalian time-lapse data with a broader PON

range will be necessary to make a stronger parameter
comparison possible.

Revisiting previously performed genome-wide studies
in mammalian systems shows trends that are possibly
compatible with our established bursting relationships.
Similar to our fly genes (Fig. 7A), one study found that
while burst frequency is predominantly modulated for
low expressing genes, burst size is tuned for high express-
ing ones, independent on the reporter control sequences
[13]. Another study using single-cell RNA-seq found a
functional dependence of burst frequency and burst size
on mean expression that seems compatible with our es-
tablished rules (for PON < 0.5) [51]. However, scRNA-
seq parameters are significantly influenced by mRNA loss
and long mRNA lifetimes, making the mapping of the
sets of units between the vastly different approaches chal-
lenging.

The potentially wider applicability of our bursting re-
lationships to other species calls for a new framework un-
derlying the regulatory processes governing transcription.
Instead of specific regulatory processes being inherently
linked to specific bursting parameters, the tuning of tran-
scription seems to be funneled through the sole control

of PON, that all regulatory processes act on (Fig. 7B).
Future investigations will have to determine the molec-
ular mechanisms that can implement such a funneling
at the level of PON control. How do diverse processes
tune PON? How is the constancy of the switching cor-
relation time TC implemented molecularly? As for the
latter, our work suggests that a highly conserved and
general mechanism across eukaryotic genes should be at
work. The generality of such a mechanism implies in-
dependence from the particularity of a given gene locus
and thus could rather be implemented by the environ-
ment, including structural consideration of the nuclear
architecture [54–56] or the molecular assembly of com-
ponents of the transcription machinery [57, 58].

Despite the complexity of transcriptional dynamics
across species, genes, space, developmental time, and
perturbations, our quantitative real-time measurements
revealed strict bursting rules, that set strong constraints
on mechanistic models of transcriptional regulation. Our
work also has some indicators for the generality of these
rules across systems, their functional implications, and
their molecular underpinning. As is the case with other
areas in which organizing principles are increasingly
emerging [59–63], these rules offer new ways to think
about complex processes and point to conserved mecha-
nisms at their core.
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FIG. S1. Signal calibration, measurement error and embryo-embryo variability. [Caption see next page.]
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FIG. S1. Signal calibration, measurement error and embryo-embryo variability. (A) The four trunk gap genes, giant
(gt), hunchback (hb), Kruppel (Kr) and knirps (kni) were imaged using the MS2/PP7 stem-loop labeling systems. Stem-loop
cassettes (vertical black arrow) were inserted either in the first/second intron or in the 3’UTR of each gene. Gap genes harbor
different cis-architectures as characterized by the number of promoters, number of enhancers (color boxes), and composition
of these cis-regulatory elements (TF binding motifs, core promoter elements, etc.). (B) Relative calibration unit (left) and
relative error (right) for each gap gene construct related to Fig. 1C. The conversion of the live signal to absolute units is
performed by comparison to a smFISH-based measurement. Calibration was performed by matching the mean full embryo
length transcriptional activity profiles (reconstructed by averaging over all nuclei in 2.5% AP bins, within a 5 min time window
in NC13) measured by live imaging to those previously measured with smFISH (Zoller et al., 2018). (Left) The procedure was
performed using all measured gap profiles at once, leading to a final calibration unit (horizontal back line, dashed lines are
plus/minus one standard error). We then repeated the procedure for each individual construct separately (color circles), and
the derived units are expressed in percent of the global fit. (Right) Relative error for the calibration unit of each individual
gene construct with respect to the global unit and mean relative error (dashed line), which is below 5%. Error bars are 68%
confidence intervals. (C) Comparison of higher cumulants versus mean activity relationships obtained by live imaging and
smFISH measurements; right column panels are reproduced from Figure 3B-D in Zoller et al. (2018), left column panels are
from live data analyzed equivalently. Live cumulants of transcriptional activity (mean, variance, 3rd and 4th cumulant) are
estimated over all nuclei in 2.5% AP bins, within a 5 min time window in NC13. Cumulants are converted from equivalent
cytoplasmic mRNA units (C.U.) to Pol II counts for a single gene copy of average length (3.3 kb). The cumulants are normalized
with respect to g0 defined as the intercept of the Poisson background (dashed line) and the polynomial fit to the data (black
solid line for live and doted for smFISH). The number g0 can be interpreted as the mean number of Pol II on a 3.3 kb long
gap gene at maximal activity. We get g0 = 13.6 for live and g0 = 15.2 with smFISH measurements, a difference of 12%.
Overall, the higher cumulants versus mean relationships obtained from live (left column) and from smFISH (right column) are
extremely close (black solid versus dotted line), confirming the quantitative nature and the proper calibration of our live assay.
Two independent methods leading to the same quantitative conclusions validate each other reciprocally. It strongly suggests
that our synthetic modifications of the endogenous gap gene loci have no currently measurable effect on the transcriptional
output of the system. (D) Two independent methods to assess the imaging error. (Left) An interlaced cassette of alternating
MS2 and PP7 stem-loops, labeled with two differently colored coat proteins (MCP-GFP and PCP-mCherry), is inserted in the
first intron of Kr. In absence of imaging error, the transcriptional activity in the green and red channels when calibrated to
C.U. should perfectly correlate (on the diagonal). We fitted the spread σimg orthogonal to the diagonal (black line, slope one)
to characterize the imaging error; assuming σ2

img scales as σ2
b + αI with mean intensity I, where σ2

b is the background noise
and αI a Poisson shot noise term. The resulting fit for σimg is highlighted by the dashed lines (plus minus one std around
the diagonal). (Right) Imaging error estimation from the single allele transcriptional time series (with the assumption that
the measured transcriptional fluctuations result from the sum of uncorrelated imaging noise and correlated noise due to the
elongation of tagged nascent transcripts). We computed the time-dependent mean activity µ(t), variance σ2(t) and covariance
between consecutive time points Cov(t, t + ∆t) (where ∆t is 10 s), over all nuclei within 1.5–2.5% AP bins for all measured
genes. The uncorrelated imaging variability σ2

img is then approximated by σ2
img −Cov(t, t+ ∆t), which is plotted as a function

of µ(t) for all time points. We characterized σ2
img by fitting the data with a line σ2

b +αµ. Fitting results are shown in E. (E) Our
two estimates for the imaging error (interlaced dual-color construct (solid line) and correlation-based approach (dashed line))
are consistent. The signal-to-noise-ratio (SNR), defined as µ/σimg, is close to one (dotted line) when µ ≈ 1, indicating that the
sensitivity of our live measurements is close to one mRNA molecule. (F) Fractional embryo variability profiles as a function of
AP position and developmental time, for all gap genes. We define embryo variability σ2

emb as the variance of the mean activity
across embryos, and report the fractional embryo variability as the ratio σ2

emb/σ
2, where σ2 = σ2

emb +σ2
nuc is the total variance,

and σ2
nuc corresponds to the transcriptional allele-to-allele noise across nuclei. Overall, the fractional embryo variability is

∼ 10%, meaning that most of the variability arises from σ2
nuc. Thus, together D, E, and F show that σ2

tot = σ2
img + σemb + σ2

nuc

is a good proxy for σ2
nuc, which is the relevant noise contribution that contains all the bursting phenomenology.
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FIG. S2. Dual color measurements to validate single-cell deconvolution and measure elongantion rate. (A)
Validation of the kernel assumption for the deconvolution of initiation events from single allele transcription time series using
a dual-color (confocal) imaging approach for hb and Kr. For hb (Kr), we generated fly lines with dual-insertions of a MS2
(PP7) stem-loop cassette in the respective first intron and a PP7 (MS2) stem-loop cassette in the 3’UTR. In both cases, the two
cassettes were labelled using two different colors (MCP-GFP green and PCP-mCherry red). Since the two signals are correlated
through the elongation process, the simultaneously measured pair of time series has a further constrained set of underlying
initiation configurations and represents thus a good test for the approach. To deconvolve single allele dual color time series
together (i.e., a single train of polymerases needs to match two signals), using two kernels modeling each loop-cassette location
and satisfying our key assumptions (i. constant and deterministic elongation rate; ii. no Pol II pausing/dropping in gene body;
iii. fast termination). In addition, the dual-color strategy allows estimation of the average elongation rate from the overall
delay between the two signals (using the known genomic distance between the MS2 and PP7 insertion sites). (B) Dual-color
signal reconstructed from deconvolved single allele transcription time series (black lines for raw measured data). single allele
transcription rate (gray line with one std envelope) is deconvolved from the single depicted pair of measured time series (black
lines). The signal (red and green lines with one std envelope) is devoid of imaging noise (as it was modeled from Fig. S1D
during the deconvolution process) and is reconstructed by convolving back the resulting transcription rate with the kernel of
each channel. Qualitatively, the signal (color) matches well (see C) the measured time series (black) in strong support of our
kernel assumptions. (C) Distribution of residuals from the dual-color reconstruction. We quantified the mean and standard
deviation of the normalized residuals, i.e., of the difference between the measured signal (black in H) and the reconstructed
signal (color in B) divided by the standard deviation of the imaging noise, for each recorded individual allele (for hb N = 2666
(blue) and for Kr N = 2594 (pink)). Overall, the dispersion of the means and standard deviations of normalized residuals
(black line, 95% confidence ellipse) is close to the expected dispersion of a perfect model (dotted line, 95% confidence ellipse).
(D-E) Estimated elongation rate Kelo from dual-color measurements. (D) Average elongation rate computed over nuclei across
10 embryos as a function AP position (both hb (blue) and Kr (pink)) in NC13 (square) and NC14 (circle), with error bars
representing one standard deviation across the embryo means. (E) Average elongation rate computed for individual embryos
(color code and symbols as D), with error bars representing the standard deviation across the means over positions. The
elongation rate is globally conserved across genes and nuclear cycles, with Kelo = 1.8± 0.1 kb/min (corresponding to the mean
across embryos (black line) plus/minus one standard deviation (dashed line).
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FIG. S3. Transcription rate fluctuations reveal key bursting characteristics. [Caption see next page.]
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FIG. S3. Transcription rate fluctuations reveal key bursting characteristics. (A) Snapshots of the gap gene mean
transcription rate R as a function of AP position in late NC13 and at 40 min in NC14. Gap gene profiles (color) are obtained
by averaging the deconvolved single allele transcription rate over all nuclei within each AP bin (width of 2.5% and 1.5%
embryo egg length in NC13 and NC14 respectively) and at each time point (10 s temporal resolution). The black dashed lines
correspond to the mean activity of each gap gene at the same position and time normalized by the effective elongation time.
Both the colored and dashed profiles agree, justifying our deconvolution approach. Error bars are one standard deviation across
embryo means. Overall, we have effectively deconvolved Ng = 7 “genes” (4+gt male and female and anterior and posterior
regions), over Nt = 362 time points (NC13+NC14), across Nx =9–18 positions, leading to a total of 33′214 bins, each averaging
∼ 200 nuclei (with a single allele per nucleus). (B) Fraction of spatial and temporal bins whose single allele transcription rate
distribution P (r) is consistent with the conditional transcription rate distribution P (r|R) determined by pooling nuclei over
multiple bins at a given mean transcription rate R. We computed the 95% confidence interval on the cumulative distribution
of P (r|R) and checked for all the underlying bins at a given R whether their individual cumulative distribution was within
the overall confidence interval. We repeated this process for four distinct developmental time windows: NC13 (6.5 ≤ t min
after mitosis) plus early NC14 (7.5 ≤ t < 20.5 min), mid NC14 (20.5 ≤ t < 34.5 min), late NC14 (34.5 ≤ t < 48 min), and a
wider NC14 window (7.5 ≤ t < 48 min). Overall, bins that share similar R within the same time window have very similar
P (r) distribution (median given by dashed line over 80%), which justifies the pooling of these bins. On the other hand, when
pooling bins over the whole NC14 we observe further dissimilarities between bins, suggesting that P (r|R) might moderately
change over time. (C) 3rd cumulant and 4th cumulant of single allele transcription rate as a function of mean transcription
rate R in NC13 (square) and early NC14 (7.5 ≤ t < 20.5 min; circle). The single allele transcription rates are estimated
within 1-min-intervals, highlighting a strong departure of the variance from a constitutive Poisson regime (dashed line, κ3 and
κ4 = R). All gap genes follow the same trend suggesting a common bursting regime. (D) Interpreting auto-correlation function
using the 2-state model of transcriptional bursting. In this model for a single gene copy (top), the gene promoter switches

stochastically between an OFF and ON state with rates kOFF and kON, where in the latter Pol II can be loaded at rate K(1)

and elongate at rate Kelo. Of note, the superscript (1) specifies the parameter for a single gene copy. The auto-correlation

functions displayed here are computed from the model using a switching correlation time T
(1)
C = 1/(kOFF + kON) = 2 min,

a Pol II elongation time τelo = Lg/Kelo = 2 min (where Lg is the gene length) and an initiation rate K(1) = 8 mRNA/min;

the steady state ON-probability P
(1)
ON = kON/(kON + kOFF) varies from 0 to 1 (i.e., blue to red color code, fraction of nuclei

in ON state or fraction of time a nucleus is in ON state). In principle, promoter switching (generating bursts) leads to
temporal correlations in the transcriptional activity time series (Activity AC). However, from the raw live measurements, these
correlations are hard to distinguish from the ones introduced by elongation (left), specifically when the switching correlation

time T
(1)
C is close to or smaller than the elongation time τelo. Instead, performing auto-correlation analysis on deconvolved

single allele transcription rates resolves the switching correlations (Transcription AC, right), since correlations due to elongation

have been removed. Thus, the switching correlation time T
(1)
C can be estimated by fitting an exponential to the decay of the

Transcription AC. (E) Expected effect of the ON-probability (left) and Pol II initiation rate (right) on the magnitude of the

correlated noise, ΣAC. Computation of ΣAC using same parameters as in D. (Left) As P
(1)
ON increases, the transcription rate

R = 2K(1)P
(1)
ON increases (here for 2 sister chromatids), and ΣAC decreases until it vanishes at P

(1)
ON = 1 (Poisson regime).

This behavior is consistent with our data, see Fig. 2E. (Right) At fixed P
(1)
ON (P

(1)
ON = 0.5) and varying initiation rate K(1),

the ΣAC increases with growing transcription rate R. This behavior is the opposite of what we observed in our data (Fig.
2E). In both cases (Left and Right) the dotted line corresponds to the exact solution for ΣAC, which is well-approximated by

ΣAC = ∆tK(1)(1 − P (1)
ON)/(1 + ∆tK(1)(1 − P (1)

ON)), where ∆t = 10 s corresponds to the data sampling time. (F) Correlation
time and correlated noise magnitude are properly retrieved after single allele deconvolution. Using the Gillespie algorithm,
we generated simulated data (N = 200 and 50 min long cell recordings per condition) according to the two-state model in D.

For each input condition (P
(1)
ON from 0.03 to 0.9 and T

(1)
C from 0.5 to 10 min), we performed single allele deconvolution and

computed the auto-correlation on the resulting transcription rates. We estimated the correlation time T
(1)
C and the magnitude

ΣAC by fitting exponential. Both parameters are properly retrieved with minimal biases. Color code stand for P
(1)
ON and dashed

line for slope 1. (G) Estimating deconvolution biases due to elongation rate measurement bias. As in F, we generated simulated

data (P
(1)
ON from 0.03 to 0.9 and T

(1)
C = 2 min) and aimed to deconvolve the data with elongation rate higher (orange dot) or

lower (yellow dot) than the correct value (blue dot, used to generate the data as in F). Overall, the estimated parameters are

estimated correctly, with larger biases at large P
(1)
ON and when underestimating the elongation rate (yellow).
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FIG. S4. Transcription rate explains dynamic pattern establishment. (A) A simple modeling attempt for protein
accumulation from mean transcription rate measurements. The mean transcription rate (left column) across space and time
is estimated by normalizing the measured mean activity by the elongation time and applying a minor correction for the delay
(< 1 min) resulting from the loop insertion location. Horizontal white dashed lines correspond to the transition (mitosis) from
NC13 to NC14. Protein accumulation (middle column) is computed from the mean transcription rate as the convolution of the
latter with a kernel modeling protein decay, diffusion, and delay due to mRNA export, translation, and nuclear import. This
simple model introduces three free parameters, a protein lifetime, a diffusion constant, and a time-delay (see B). These three
parameters were set by minimizing the mean squared error with previously measured protein patterns (right column; Dubuis
et al., 2013). Small residual deviations between middle and right columns might be due to post-transcriptional regulatory
processes that our simple model does not account for. (B) Parameters estimated for the modeled accumulation of effective
proteins as described in A. The three parameters were either estimated for each gene separately (color bars) or all genes together
(dashed lines, used for middle column in A). Overall, the effective parameters are mostly in line with previous estimates [64].
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FIG. S5. Validation of transcriptional parameter estimation using stationary simulated data. Burst calling permits

effective estimation of transcriptional parameters. For each set of input parameters (K(1), T
(1)
C , P

(1)
ON), we generated simulated

data (200 alleles and 50 min long time series at 10 s intervals and with the same imaging noise as measured in real data). Using
the two-state model (Fig. S3D) and the Gillespie algorithm, we generated time series for each individual sister chromatid. We
summed the initiation events of both chromatids assuming independence. The resulting initiation events were convolved with
the elongation kernel to generate synthetic single allele signal data over which measurement noise was added. We performed
single allele deconvolution and burst calling as described (Fig. 3A) to estimate the effective mean transcription parameters (R,
K, PON, TON, TOFF and TC) for each simulated set of alleles. (A-B) Comparison between the theoretically expected (top row)
and the estimated from burst calling effective parameters (bottom row) as a function of time, using stationary (constant in time)

input parameters (T
(1)
C = 2 min, K(1) = 8 mRNA/min and P

(1)
ON varies from 0.03 to 0.9 that is color coded from blue to orange).

Overall, the estimated effective parameters are recovered very well. (A) Despite sampling fluctuations, the constancy of the
parameters in time is properly preserved (bottom row), as it should be based on input (top row). (B) Despite the stationary

nature of the input parameters T
(1)
C and P

(1)
ON, biases for TON, TOFF and TC (top row) are expected due to the finite length of

the simulated time series (censoring), especially noticeable near the beginning and the end, where the estimations are “bent”
(the resulting mean time estimate cannot exceed the width of the time window used to perform the estimate). However, our
parameter estimation (bottom row) is very much in line with the expected biases (top row). (C) Global comparison between
expected and estimated parameters for the stationary case (input parameters are constant in time). The parameter estimation

was performed on a large simulated data set that includes data in A and B (T
(1)
C = 2 min, P

(1)
ON from 0.03 to 0.9) and data for

other values of T
(1)
C comprised between T

(1)
C = 0.5 (blue dots) to T

(1)
C = 10 (red dots). Each dot results from one combination of

input parameters (K(1), T
(1)
C , P

(1)
ON) and corresponds to the median effective parameter and the error bars to the 68% confidence

interval estimated over 50 min. Our deconvolution and burst calling approach leads to an excellent estimation of the effective

parameters over a large range of T
(1)
C and P

(1)
ON values, albeit with noticeable biases in PON, K and TON when T

(1)
C approaches

0.5 min (blue dots). Importantly, biases for the effective switching correlation time TC are small, supporting our ability to
detect its constancy in real data. (D) Summary of median relative error for each effective parameter estimated from the data

in C as a function of input T
(1)
C . Parameter estimated from real data (Fig. S9B) suggests that T

(1)
C lies within 1 and 3 min

(black border). (E) Summary of median relative error for each effective parameter estimated from the whole data set in C as a
function of the burst calling parameters. Burst calling depends on two free parameters: the time window W over which the rate
is estimated, and the rate threshold Rd applied to call the burst (see Fig. 3A). Our default parameter values are W = 1 and
Rd = 2, which should be close to optimal given the estimated correlation time of τAC ∼ 1 min (Fig. 2F) and our measurement
sensitivity of 1–2 mRNA. When testing the effect of different W and Rd values on the median relative error, our default choice
leads to the lowest global relative error.
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FIG. S6. Validation of transcriptional parameter estimation using hb-like non-stationary simulated data. Simu-
lated data is generated as in Fig. S5, except that the input parameters are non-stationary (time-dependent). (A-B) Comparison
between expected (A, B, top row) and estimated effective parameters (A, B, bottom row) for time-dependent input param-
eters (A, B, top row), mimicking the transcriptional output of hb in NC14. Color code (blue to orange) stands for virtual
AP position. Estimated effective parameters tightly recapitulate the time-dependence of the expected parameters, allowing
us to also capture the temporal regulation of the gap genes. (C, D) We show with this realistic test case that our estimated
parameters (A, B, bottom row) using burst calling very closely match the expected effective ones (A, B, top row). Indeed,
most of the time points (circles) lie on the line of slope one (dashed line), which strongly supports our ability to precisely
characterize the transcriptional parameters from real data. (E–F) Comparison between input (E, F, top row) and burst call-
ing estimated single-gene copy parameters (E, F, bottom row) as a function of time. The time-dependent input parameters
(E, F, top row) were used to generate the synthetic hb data in A and B. Color code (blue to orange) stands for virtual AP
position as in A and B. The estimated single-gene copy parameters were computed from the effective ones (A, B, bottom row)

assuming the latter originate from two independent sister chromatids. Namely, we get R(1) = R/2, P
(1)
ON = 1 − (1 − PON)1/2,

K(1) = K(1+(1−PON)1/2)/2, which are exact, and assuming steady state T
(1)
C = 2TC/(1+(1−PON)1/2), kON = P

(1)
ON/T

(1)
C and

kOFF = (1 − P (1)
ON)/T

(1)
C . (G-H) Even though the single gene copy parameters are deeply buried in the data, our simple burst

calling procedure still manages to recover them correctly. Some discrepancies are observed for kON, kOFF and T
(1)
C , mostly

near the beginning when the transient after mitosis violates the near-steady-state assumption. But these are expected as the

relationships kON = P
(1)
ON/T

(1)
C and kOFF = (1− P (1)

ON)/T
(1)
C are only valid for near-steady state.
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FIG. S7. Single gene copy parameter and transient for hunchback in NC14. [Caption see next page.]
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FIG. S7. Single gene copy parameter and transient for hunchback in NC14. (A) Transcription rate R versus the
product of the initiation rate K and the ON-probability PON for hb in NC14 at all time points and positions. The color code
stands for AP position as in Fig. 3 and 4. As it should be by construction, R can be decomposed into the product of K and
PON. (B) Log-derivative with respect to PON of the controlling parameter K (gray) and PPON (blue) as a function of PON.
Since R = K · PON, d logK/dPON + d logPON/dPON = d logR/dPON and changes in R are thus dominated by changes in PON

when d logPON/dPON = 1/PON > d logK/dPON. The log-derivative is computed from the mean trend in data (Fig. 3I) and
the transition is at PON = 0.75 (black dashed line). (C) Fraction of changes in R explained by PON as a function of PON. Black
line shows d logPON/dPON normalized by the sum d logK/dPON + d logPON/dPON (see B). The solid black line is computed
as in B, whereas the dotted black line is the corrected contribution assuming two independent sister chromatids (see G and
H). Most of the changes in R are thus mostly dictated by PON. (D-F) Single gene copy (sgc) parameter computed from the
estimated effective parameters for hb in NC14, assuming two independent sister chromatids. The color code stands for AP as

A. The spatiotemporal regulation of the sgc transcription rate R(1) (D) and the sgc ON-probability P
(1)
ON (E) are very similar to

their corresponding effective parameters, R and PON. On the other hand, the sgc initiation rate K(1) (F) no longer varies across

position, but only as a function of time. During NC14, the sgc initiation rate K(1) decreases by 38%, from 8.0 mRNA/min
(first dotted line) to 5.0 mRNA/min on average (third dotted line), with most of the decrease happening between the 16th and
34th minute mark (second dotted line at 6.1 mRNA/min). (G-I) Temporal changes in sgc initiation rate and independent sister
chromatid assumption explain the dependence of the effective initiation on the ON-probability. Color code stands for three
time-windows in NC14: early (cyan, 2.5-16.7 min), mid (purple, 16.7-34.2 min), and late (magenta, 34.2-50 min). (G) Most of

the variation in K(1) is explained by time, rather than P
(1)
ON. The dotted lines are drawn at the same K(1) values as in C. (H)

The sgc transcription rate R(1) appears almost linearly dependent on P
(1)
ON. The nonlinearity is mostly explained by temporal

changes in K(1), as highlighted by dotted lines whose slopes are the K(1) values from F and G. (I) Under the two independent

sister chromatids assumption, the effective initiation rate K depends on PON and on K(1), which varies as a function of time
(see F). As PON increases, the propensity to observe two gene copies initiating transcription at the same time increases, which
explains up to a factor of two in the dependence of K on PON. Indeed, the dotted lines correspond to the predicted behavior
using the same three constant values of K(1) as in F. In addition, K(1) varies by up to 38% along time during NC14, as can
be seen in F. Together, it explains close to a factor of 3.2 in K variation with PON. This reasoning explains the observed
relationships very well (black line) and argues for a very weak dependence of K on PON. (J) Close-up of the first 10 min of
Fig. 3D shows a rapid transient in the ON-probability for hb at the onset of NC14. The vertical dashed line at 7.5 min marks
the transition between the transient and the near-steady-state regime as observed in H. (K) Evidence for out-of-steady state
transient for hb in NC14. Near the steady-state regime, PON should be well-approximated by TON/(TON + TOFF), as it is the
case beyond the 7.5 min mark in NC14 (gray circles tracing the diagonal; see also Fig. 4D). However, at the post-mitotic onset
of transcription (∼3–7.5 min into NC14) we observe strong deviations from the expected near-steady state relationship at all
positions (color curves). The system is undergoing a fast transient relaxation that drives it near-steady state within the first 8
min after mitotic exit.
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FIG. S8. Further transcriptional parameters collapse. (A) Kymograph of ON-probability for gt transcription in male
embryos, as a function of position and time. As for the other gap genes, the spatiotemporal transcription patterns arise from
complex regulation of the ON-probability. (B) Transcriptional parameters for gt in male embryos for NC13 and NC14 as a
function of PON (orange data points) and all the other gap gene data sets (gray). (C) Initiation rate K as a function of PON.
K collapses for all gap genes across time and position. Colored data points represent individual gap genes (same color code as
in Fig. 5A-E and S8A-B); underlying is the remaining data of all other genes (gray). The K–PON relationship for hb is shown
in Fig. 3H. (D) Near-steady state relationship between ON-probability PON and TON/(TON + TOFF) for all gap genes in NC13
(t ≥ 6.5min) and NC14 (t ≥ 7.5min). Although the data is distributed near the expected relationship (dash line), we observe a
slight but clear bias at the extreme ends of the PON spectrum (solid line), namely TON/(TON + TOFF) is slightly above zero at
PON = 0 and slightly below one at PON = 1. This is a consequence of the finite nature of our recording (50 min in NC14 and
18.4 min in NC13). Thus, our recording time sets an upper limit on the length of measurable ON and OFF intervals. That
limit leads to the observed bias. (E) Global scatter of the burst size B and burst frequency F (color) as a function of PON

for all gap genes in both NC13 and NC14 and putative accessible space (gray region). See definitions of B and F at top of
respective panels. Color code and accessible space defined as in Fig. 5F. Solid line stands for the bursting rules derived with
bias (solid line in C) and dashed line without.
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FIG. S9. Common bursting rules across developmental time and for single gene copy. (A) Global scatter of effective
transcriptional parameters as a function of PON for all gap genes estimated within three time windows, corresponding to NC13
(6.5 ≤ t min) plus early NC14 (7.5 ≤ t < 20.5 min), mid NC14 (20.5 ≤ t < 34.5 min), and late NC14 (34.5 ≤ t < 48
min). The observed bursting relationships are further refined when accounting for possible temporal changes (color scatter)
compared to all time-pooling (gray scatter, Fig. 5F). Indeed, small changes in K and TC over developmental time (∼ 40%
decrease) explain part of the observed spread in Fig. 5F. (B) As in A, but for single gene copy parameters computed from the

effective ones assuming independent sister chromatids. Interestingly, the relationship between sgc transcription rate R(1) and

sgc ON-probability P
(1)
ON is almost linear, confirming that the sgc initiation rate K(1) does not depend strongly on P

(
ON(1)).

Thus, the apparent dependence of K(1) on P
(
ON(1)) is only effective and results from measuring two sister chromatids (two gene

copies) together, instead of an isolated single gene copy.



28

0.55 0.6 0.65 0.7
Position x/L

0

10

20

30

40

50

Ti
m

e 
[m

in
]

0.55 0.6 0.65 0.7
Position x/L

0

10

20

30

40

50

Ti
m

e 
[m

in
]

0.55 0.6 0.65 0.7
Position x/L

0

10

20

30

40

50

Ti
m

e 
[m

in
]

0.55 0.6 0.65 0.7
Position x/L

0

10

20

30

40

50

Ti
m

e 
[m

in
]

0.4 0.5 0.6 0.7 0.8
x/L

0

5

10

15

R
 [m

R
N

A/
m

in
]

0.4 0.5 0.6 0.7 0.8
x/L

0

5

10

15

R
 [m

R
N

A/
m

in
]

0.4 0.5 0.6 0.7 0.8
x/L

0

5

10

15

R
 [m

R
N

A/
m

in
]

0.4 0.5 0.6 0.7 0.8
x/L

0

5

10

15

R
 [m

R
N

A/
m

in
]

D

0

0.2

0.4

0.6

0.8

1

O
N

-fr
ac

tio
n 

P
O

N

NC14, t=15min

NC14, t=40min

kni kni in hb nullE

A

0

0.2

0.4

0.6

0.8

1

O
N

-fr
ac

tio
n 

P
O

N

NC14, t=15min

NC14, t=40min

kni kni distal enhancer removedB

hb kni

gt kr

MS2kni

Distal
MS2kni

kni distal enhancer removed

Cis-pertubation: kni distal enhancer removed
wt
mutant

C

FIG. S10. Bursting rules verified by cis- and trans-perturbations. (A) Distal kni enhancer removal. The MS2-stem
loops are inserted at the same location in the mutant (enhancer deletion) and wild-type fly lines. (B) Quantification of kni
wild-type and mutant (A) phenotypes. Both transcription rate R as a function of x/L (left) and the kymograph for PON

(right) display a significant level decrease underlying the expression patterns of the mutant. Dotted arrow indicates time point
in kymograph at which rate profiles (left) are depicted. (C) Transcription parameters for kni cis-mutant (olive) collapse on
corresponding wild-type parameters (gray), as for hb cis-mutant (see Fig. 6C). Solid black lines correspond to the endogenous
bursting rules from Fig. 5F. (D) kni measurements in a hb null background. The absence of hb expression alters the network,
namely the concentration of input transcription factors sensed by kni in the mutant fly line. (E) Quantification of kni wild-type
and mutant (D) phenotypes. Both transcriptional rate R (left) and PON kymograph (right) display a significant shift of the
anterior boundary in the mutant expression patterns. Dotted arrow indicates time point in kymograph at which rate profiles
are depicted.
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FIG. S11. Bursting rules predict ON and OFF modulation by cis- and trans-perturbations. (A-C) Predicted
TOFF versus TON bursting modulation for mutant based on wild-type-derived rules (Fig. 5F, black lines). (A) The type of
modulation is predicted by first approximating TOFF and TON as a function of PON using the wild-type rules. The predicted
fold change in TOFF (Tmut

OFF/T
wt
OFF) and TON (Tmut

ON /Twt
ON) are then computed for all possible pairs of PON (i.e. Pwt

ON and Pmut
ON ).

The dotted line delimits the regions where changes in transcription rate are either dominated by changes in TOFF (gray region,
| log (Tmut

OFF/T
wt
OFF)| > | log (Tmut

ON /Twt
ON)|) or TON (blue region, | log (Tmut

OFF/T
wt
OFF)| < | log (Tmut

ON /Twt
ON)|)). The solid black lines

delimit the region, where changes in TOFF and TON are not significant given the “thickness” of our relationships (95% confidence
intervals, see Methods). Thus, this procedure defined a look-up table enabling prediction of the type of modulation using pairs
of PON. (B) Scatter plot of all the PON pairs from hb wt and cis-mutant (at same spatiotemporal location). Colors correspond
to the predicted modulation (TOFF dominated in gray and TON dominated in blue) using the look-up table in A. (C) Verification
of predicted modulation in B (color code as in B). For each PON pair, we computed the TOFF (Tmut

OFF/T
wt
OFF) and TON (Tmut

ON /Twt
ON)

fold change using the estimated TOFF and TON from data (Fig. 6C). Supporting our ability to predict the modulation, almost
all the blue data points (predicted as TON modulation) are located above the slope 1 diagonal (dashed line), whereas most
of the gray ones (predicted as TOFF modulation) are below. Thus, for most data points (> 85%) the prediction is correct
(Fig. 6F). (D-F) Initiation rate K, burst size B, and burst frequency F for hb in cis-mutation (cyan), kni in cis-mutation
(olive) and for kni in trans-mutation (light green) collapse on corresponding wild-type parameters (gray). Solid black lines
correspond to the endogenous bursting rules from Fig. 5F and S8E. (G-I) Predicted F versus B modulation for mutant based
on wild-type-derived rules (Figure S8E, black lines). (G) F and B are first approximated as function of PON using the wild-type
rules. The predicted fold change in F (Fmut/Fwt) and B (Bmut/Bwt) are then computed for all possible pairs of PON (i.e.
Pwt
ON and Pmut

ON ). The dotted line delimits the regions where changes in transcription rate are either dominated by changes
in F (gray region, | log (Fmut/Fwt)| > | log (Bmut/Bwt)|)) or B (blue region, | log (Fmut/Fwt)| < | log (Bmut/Bwt)|)). As for
TOFF and TON (in A), the solid black lines delimit the region of significance and we have thus defined a look-up table enabling
prediction of F vs B modulation using pairs of PON. (H) Scatter plot of all the PON pairs from hb wt and cis-mutant (at same
spatiotemporal location). Colors correspond to the predicted modulation (F dominated in gray and B dominated in blue) using
the look-up table in G. (I) Verification of predicted modulation in H (color code as in H). For each PON pair, we computed
the F (Fmut/Fwt) and B (Bmut/Bwt) fold change using the estimated F and B from data (E and F). Supporting our ability
to predict the modulation, almost all the blue data points (predicted as B modulation) are located above the slope 1 diagonal
(dashed line), whereas most of the gray ones (predicted as F modulation) are below. Thus, for most data points (> 95%) the
prediction is correct (Figure 6G).
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FIG. S12. Validating bursting rules with smFISH data. (A) Bursting relationships in NC13 and early NC14 are consistent
with parameters inferred from previous smFISH measurements. We converted the single gene copy parameters of the gap genes
in mid-late NC13 (Zoller et al.) into effective parameters for two sister chromatids (color dots). Overall, these parameters
closely verify our relationships derived from live measurements.
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