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Abstract: The improvement of our knowledge of the virosphere, which includes unknown viruses,
is a key area in virology. Metagenomics tools, which perform taxonomic assignation from high
throughput sequencing datasets, are generally evaluated with datasets derived from biological
samples or in silico spiked samples containing known viral sequences present in public databases,
resulting in the inability to evaluate the capacity of these tools to detect novel or distant viruses.
Simulating realistic evolutionary directions is therefore key to benchmark and improve these tools.
Additionally, expanding current databases with realistic simulated sequences can improve the
capacity of alignment-based searching strategies for finding distant viruses, which could lead to
a better characterization of the “dark matter” of metagenomics data. Here, we present Virus Pop,
a novel pipeline for simulating realistic protein sequences and adding new branches to a protein
phylogenetic tree. The tool generates simulated sequences with substitution rate variations that
are dependent on protein domains and inferred from the input dataset, allowing for a realistic
representation of protein evolution. The pipeline also infers ancestral sequences corresponding to
multiple internal nodes of the input data phylogenetic tree, enabling new sequences to be inserted
at various points of interest in the group studied. We demonstrated that Virus Pop produces
simulated sequences that closely match the structural and functional characteristics of real protein
sequences, taking as an example the spike protein of sarbecoviruses. Virus Pop also succeeded at
creating sequences that resemble real sequences not included in the databases, which facilitated
the identification of a novel pathogenic human circovirus not included in the input database. In
conclusion, Virus Pop is helpful for challenging taxonomic assignation tools and could help improve
databases to better detect distant viruses.

Keywords: sequence simulation; sequence evolution; phylogenomics; amino acid substitution rates;
database

1. Introduction

In virology, metagenomics tools performing taxonomic assignation from high through-
put sequencing datasets are currently key for detecting unknown viruses and improving
our knowledge of the virosphere (e.g., [1–3]). They are generally evaluated with datasets
derived from biological samples or in silico spiked samples, which all contain known viral
sequences present in public databases. This considerably limits the evaluation of their
capability of finding distant viruses. Given the high degree of variability in viral protein
sequences, simulating realistic evolutionary directions appears to be key to challenge tools
in their capability to identify such distant viruses. Going further, expanding the current
databases by realistic simulated sequences could improve the capacity of alignment-based
searching strategies for finding distant viruses.
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The simulation of realistic biological sequences has been instrumental in bioinformatics
for some time. For instance, phylogenetic method evaluation [4,5], machine-learning
tool training [6] and, when data are limited, hypothesis testing [7] have been relying on
simulated data. Following the development of advanced methods for inferring substitution
matrices and complex substitution models, several protein sequence simulation tools have
been developed. Generally, simulations will mimic evolutionary processes with random
draws, deciding for amino-acid mutations over time (Appendix A). The random draws
follow probability laws that reflect the observed chances of mutation from one amino acid
to another, but they do not take into account that biological constraints can occur at specific
positions, which limit the spectrum of possible mutations. Some models can also simulate
insertions and deletions.

Two of the most comprehensive and commonly used programs are Seq-gen [8] and
IQTREE [9,10]. Both allow the user to choose a substitution model or to input one.

However, the currently available tools generate data mimicking evolutionary parame-
ters in a statistical way, without maintaining site specificities. For instance, if a sequence
alignment is composed 50% of quickly evolving sites and 50% of invariant sites, the sim-
ulation will respect the 50/50 ratio but will randomly decide which site evolves quickly
and which does not. As a result, although simulated sequences can be considered as
representative of a clade in terms of evolution parameters, they could not be considered as
homologous to real proteins. Furthermore, the currently available tools usually offer the
possibility to fill a given tree with simulations, starting from one input sequence as the tree
root. However, no tool provides a practical way to populate a tree with new branches at
various positions.

Here, we introduce Virus Pop, a pipeline for adding new branches to a protein phylo-
genetic tree. Virus Pop leverages the tools provided by the last version of IQ-TREE [9] and
integrates them in a comprehensive process that simulates protein evolution in a realistic
way in terms of site-dependent substitution rate in the input dataset. From collecting
the input dataset of existing proteins to retro-translating simulated sequences, several
options are available to simplify the construction of the starting dataset, and configurable
steps allow the user to precisely constrain the locations of the generated sequences within
the tree. The outcome is a set of simulated sequences that complete the initial tree with
new branches connected at the desired topological position. The evolutionary distances
simulated, represented by the new branch lengths, can either be set automatically based on
observed distances in the starting dataset, or manually specified.

We evaluated the realism of the simulated sequences by examining the conservation
of protein structure in generated sequences of the Sarbecovirus spike protein. We also illus-
trated two examples of how simulated sequences with varying parameters and increasing
distances can serve as input data to evaluate Blast-based assignation. Finally, we showed
that simulated sequences may be close to real sequences not yet indexed in databases and
that the addition of such sequences in databases used for taxonomic assignment could help
to reduce the number of unassigned reads in metagenomic data.

2. Materials and Methods
2.1. The Virus Pop Pipeline

Virus Pop was developed as a simple command-line program with Python and Snake-
make [11]. The pipeline uses the Dendropy [12], Ete3 [13], Biopython [14] and iTOL [15]
python libraries. The main steps of the pipeline are as follows:

• Building the starting dataset. Many options are provided to offer convenient ways for
the user to quickly build a dataset. At the end of this step, Virus Pop will have one
or multiple fasta files, each representing a protein type and containing homologous
sequences;

• Finding the best evolutionary model and phylogenetic tree for each set of homolo-
gous proteins;
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• Choosing nodes (automatically or manually) in the phylogenetic tree and reconstruct-
ing ancestral sequences at these node positions;

• Simulating the evolution of the reconstructed ancestral sequences (retro-translated
nucleotide sequences are also provided).

Figure 1 illustrates the full pipeline. Each step is detailed hereafter.

Figure 1. The Virus Pop pipeline. This figure presents the complete pipeline, starting with only the
input of a taxonomic group taken as an example: the Orthopneumovirus genus. However, the user
can provide a NCBI accession ID list, genome fasta files (both the complete nucleotide genome and
protein sequences in fasta files) or files of homologous proteins. The final outputs are simulated
sequences, in both nucleotides and amino acids, for each group of homologous proteins.

2.1.1. Building the Starting Homologous Protein Dataset

The user can directly input protein sequence fasta files, however, Virus Pop provides
an automated dataset construction tool for helping the user to gather sets of aligned
homologous protein sequences. Each set must be large enough to be representative of the
variability amongst the group of interest, while remaining small enough to allow reasonable
time-efficiency. This tool constitutes a quick and easy solution for working on any virus
group and protein type, without the need to manually select the sequences.

The input parameter for automatic dataset construction is the name of a taxonomic
group. The process can be decomposed in the following steps:

1. Parsing the NCBI taxonomy tree to extract all species belonging to the taxonomic
group entered;

2. Requesting, from NCBI, the number and identifier of available complete genomes in
each species and selecting randomly a list of identifiers within each species;

3. Fetching the selected genomes;
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4. Clustering proteins: running BLASTp [16], then extracting from the results clusters
of homologous protein sequences with SILIX [17]. SILIX is run with the following
parameters: 20% minimum identity and 60% minimum overlap; and BLAST is run
with a cost of 1 and 9 to open and close gaps, respectively;

5. Aligning the sequences in each cluster with MAFFT [18] (with default parameters);
6. Generating a descriptive protein name for each cluster, based on word frequency in

the protein annotations.

The result of the fetching tool is a ready-to-use dataset of aligned homologous protein
clusters from the virus taxonomic group of interest with descriptive names that will help
the user to know which proteins were extracted.

Alternatively, the user can provide a list of taxa to download, a set of full genomes
(complete nucleotide genomes and protein sequences in fasta files), or fasta files with ho-
mologous proteins. The data preparation process will then start from steps 3, 4, respectively,
or it will have nothing to do.

2.1.2. Finding the Best Evolutionary Model

The first step of the evolutionary model construction is to infer a substitution model
with site-dependent rates. This process also generates a phylogenetic tree. Virus Pop uses
the Model Finder tool provided within IQTREE [19]. Except for the constraints on the
type of substitution model wanted, all other parameters are left to their default value. The
construction of the model is as follows:

• The Model Finder tool is used in basic mode (no rate variation and no invariant
site), to find in a limited amount of time the substitution model best representing the
alignment. Let M be the best model found.

• The Model Finder tool is used again, but constrained so that it will fit a 5-discretized
gamma profile with the M model: M + 5G. A 5-discretized gamma profile is an
evolutionary model that differentiates five substitution rate categories. Each locus in
the protein considered is associated to one category. This is outputted in the form of a
file which indicates, for each locus, the mean substitution rate corresponding to the
category to which it belongs. Although the optimal number of bins is dependent on
the dataset, we used five as it yields good results in most cases [20].

• The mean substitution rate distribution is retrieved and turned into a partition descrip-
tion file. Originally, partition files were meant to define different segments along an
alignment that will follow different substitution models. Here, we use this option but
only the substitution rate varies. Tweaking with partition models is a way to simulate
site-dependent substitution rates without fully implementing a new method.

• Using Model Finder one last time, constrained with the partition file, a phylogenetic
tree is inferred with the ancestral sequence statistics. This consists of a file with, for
each internal tree node and each site, the probabilistic amino acid distribution.

At this point, each set of homologous protein is described with a substitution model, a
site-dependent substitution rate profile, a phylogenetic tree and the probabilistic composi-
tion of ancestral sequences.

2.2. Choosing Internal Node of Interest and Building Ancestral Sequences

The next step is to choose the nodes at which ancestral sequences will be reconstructed.
The chosen node may vary depending on the purpose of the user. In most cases, however,
it is of no interest to simulate within a subgroup of very closely related sequences. Thus,
nodes of interest are usually internal nodes that are the common ancestor of, at least, a
whole clade of related sequences. By whole, we mean that no other sequence is very close
to the group.
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Virus Pop provides a way to automatically select nodes according to this strategy.
Based on a maximum distance, it creates clusters of sequences in which one sequence
cannot be more distant than a defined maximum distance to the closest sequence within
the group. It then selects the node representing the most common ancestor of each group.
Figure 2 illustrates this operation with a varying distance threshold.

Figure 2. Example of automatic node selection by leaf clustering. Solid circles represent the selected
nodes for a maximum distance of 0.025 (yellow), 0.2 (orange) and 0.25 (blue).

This step is a bottleneck in the pipeline at which it is recommended that the user
checks the nodes selected automatically. The user should visualize the phylogenetic
tree and, if needed, manually select the desired nodes. The Virus Pop project includes a
tool for automatically loading the constructed trees in iTOL [15] and facilitate this step.
Alternatively, if the purpose of the user is to create a great diversity of new sequences,
they may want to populate the tree with new branches at every single internal node.
Virus Pop also provides this option.

Finally, with the selected nodes and inferred statistics of ancestral nodes provided
at the previous step (see Section 2.1.2), Virus Pop reconstructs ancestral sequences: the
user can choose to build single majority-rule consensus sequences for each selected
node. In this case, Virus Pop will select the most probable amino acid at each site.
Alternatively, Virus Pop randomly picks amino acids based on the statistics for each
site. In the first case, only one sequence reconstruction is built. In the second case, any
number of ancestral sequences can be constructed.

2.2.1. Evolutionary Distance, Simulation and Gaps

With the partition model and ancestral sequences, the last requirement for per-
forming the simulations is to choose the evolutionary distances that will be simulated.
Virus Pop provides two ways to define these distances: the first one is to manually
input distances as a list; otherwise, Virus Pop will automatically generate distances.
Considering one ancestral node and N requested simulations from each ancestral se-
quence, Virus Pop will simulate distances regularly distributed within half and twice
the mean distances from the ancestral node to its child leaves.
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Simulations are then performed with one of IQTREE tool: ALISIM [10]. This tool
can take a root sequence, a partition model and a tree, and will populate the tree leaves,
respecting the model, the topology and the distances. However, in our case, the objec-
tive is to constrain the branching of new sequences within the topology of the real data
phylogenetic tree. The position of the simulated sequence in the subtree is left to the
randomness of evolution simulation. To achieve this, simulations are performed on “tiny
trees” sequentially constructed as presented in Figure 3.

Figure 3. Principle of the Virus Pop simulation process. Starting from the phylogenetic tree inferred
from real data, selected internal nodes and their reconstructed ancestral sequences, each simulation
is generated with IQ-TREE Alisim tool. The tool is launched on a “tiny tree” made of an ancestral
sequence at the root (R), and with two branches which length corresponds to the targeted evolutionary
distance. When inferred back in the phylogenetic tree, the new sequences should be inserted at the
desired topological position.

Each “tiny tree” is a simple tree-node graph, with an ancestral sequence at the root and
two empty leaves on branches with the desired simulation distance. The position within the
complete tree is constrained thanks to the ancestral sequence construction. Running ALISIM
will generate two sequences (S1 and S2 in Figure 3), but only one (selected randomly) is
kept and integrated to the pipeline outputs.

Because this method generates sequences with amino acids on all sites of the alignment,
we implemented a method to guaranty that a region that is always a gap in some part of the
phylogenetic tree will not be filled randomly. This post-processing adds gaps presenting
the subtree in which the simulation is occurring. Based on each gap frequency in this
subtree, a weighted random draw is performed to decide whether to reproduce the gap or
not in the simulation. However, no insertion or deletion pattern that was not observed in
the subtree is simulated.
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2.2.2. Retro-Translation

Because one of the main purposes of the development of Virus Pop is to provide
datasets for characterizing, testing and improving taxonomic tools that often operate on
metagenomic sequencing reads, the user may need nucleotide sequences. Virus Pop thus
provides a retro-translation of the simulated sequences.

The retro-translation is based on a probabilistic analysis of the codon usage in each
amino-acid neighborhood, within the alignment. The principle is as follows:

for each site i with amino acid AA
k← 0
while no corresponding codon usage is found

look for coding of AA in sites [i− k : i + k]
k← k + 1

draw a codon amongst found codons

This simple approach will provide retro-translations that preserve possible varia-
tions of the codon usage along the sequences. Indeed, if an amino acid at one site is
always coded with the same codon, the retro-translation method proposed will maintain
this characteristic.

2.3. Datasets

We used two datasets for presenting and testing the pipeline.

2.3.1. Sarbecovirus Spike Protein Dataset

The Sarbecovirus dataset was hand-built to be representative of the Sarbecovirus sub-
genus variability, with a special focus on the SARS-CoV-2 clade, including bat-related
sarbecoviruses. It consists of 300 complete genomes, from two different sources: GISAID [21]
and GenBank [22].

We translated the viral genes to protein sequences and selected the spike protein
sequences from each genome. As the spike protein includes a well-characterized receptor
binding domain (RBD), which binds to the human ACE2 protein, it is an adequate protein
for testing the simulation process: first, because the structure of the RBD-ACE2 complex
is well-characterized at the amino-acid level since the emergence of SARS-CoV-2, and
mainly because the study of its evolution and variation is a key example that illustrates the
comprehension of human susceptibility to viruses from animal reservoirs.

Figure 4A presents the phylogenetic tree constructed from the spike amino acid
sequences with IQTREE [9]. The SARS-CoV-2-like group is outlined.

2.3.2. The Circovirus Capsid Protein Dataset

To test Virus Pop in the context of a protein sequence more variable than the spike
protein of sarbecoviruses, we worked on the capsid protein of the members of the Circovirus
genus (Circoviridae family) which are known to infect a large spectrum of animals, including
a first case of human infection we recently discovered [23]. The dataset was built with the
automatic dataset construction tool. As we later tested the possibility to predict recently
discovered Circovirus sequences based on this dataset, we manually checked that the
database did not include the new genomes [23,24].

As the NCBI database includes a high number of species from the Circovirus genus,
we used the –target_n_genome option to limit to 1 the number of genomes fetched within
each species. The –min_cluster_size option was set to 30 to limit the substitution model
inferences to protein clusters containing at least 30 sequences.
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Figure 4. (A). The Sarbecovirus dataset phylogenetic tree of the spike protein. The tree was built
with IQ-TREE. Solid colored circles indicate the internal nodes selected for ancestral sequence
reconstruction and simulation. (B). Phylogenetic tree of the Sarbecovirus spike protein dataset
completed with sequences simulated with the Virus Pop pipeline. The model used for the tree
constructions is the model inferred by IQ-TREE for the simulation. Solid circles with black
outline are the closest equivalent to the selected ancestral nodes in (A). Corresponding simulated
sequences are solid circles of the same color located at the tree leaves. Three sequences with
varying evolutionary distances were simulated from each ancestral sequence. Sequences and
Newick tree are available in Supplementary Data (Folder S1).

The complete command is as follows:
./run_virus_pop.py group_name Circovirus Circovirus_project -t 1 -s 30
The result is a dataset of 97 Circovirus complete genomes with annotated proteins.

The clustering detects 4 homologous groups amongst which the two biggest are the
replication (86 sequences) and the capsid protein (65 sequences). Based on the anno-
tations, the automatic name construction respectively described them as “replication
[associated] protein” and “capsid protein”. The dataset is available in Supplemen-
tary Data (Folder S1).

Figure 5 shows the phylogenetic tree constructed from the capsid Circovirus sequences.
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Figure 5. (A). The Circovirus dataset phylogenetic tree. The tree was built with IQ-TREE. Solid colored
circles indicate the internal nodes selected for ancestral sequence reconstruction and simulation. The
red square indicates the ancestral node from which we generated the closest sequences to the two
new human circoviruses studied in Section 3.4. (B). Same tree with the simulated sequences. In
this example, seven evolutionary distances of 0.1, 0.5, 1, 2, 3, 4 and 5 were simulated from each
reconstructed ancestral sequence. The dark green ancestral node is not reported here as the new
sequences changed the topology such that there is no equivalent node.

2.4. Performances

The pipeline was developed and tested on an Ubuntu system with 32 GiB RAM and
Intel Core i9 with 16 cores at 2.40 GHz. Most steps within the pipeline exploit the availability
of multiple cores. Our tests have shown that more than 8 cores are rarely needed, so this
number was set as the maximum core number allocated to one job. Furthermore, thanks
to the Snakemake framework, if more than one homologous protein is identified and if
enough cores are available, Virus Pop will automatically parallelize the computation of
multiple protein simulations.

When launched for the simulation of the Sarbecovirus spike protein sequences pre-
sented in Figure 4B, it ran in 53 min. Most of this time is related to building the evolutionary
model. Reconstructing ancestral sequences and simulation only take up 3 s of the total time.
This means that once the model is inferred, the user can quickly test different simulation
parameters. For the Circovirus dataset presented in Figure 5B, it ran in 22 min with 1.5 min
to build the dataset and only 8 s to generate the simulations.

However, when required to simulate a high number of nodes, the time needed for the
simulation part increases. For instance, to generate 100 ancestral sequences at each selected
node presented in Figure 4A and simulate 3 evolution distances from each reconstructed
ancestral sequence, it takes 28 s.

2.5. Structure of the Simulated Spike Protein Receptor Binding Domain

To assess the biological significance of the simulated protein sequences, we quantified
in silico the affinity of the RBDs of the simulated spike sequences to the human ACE2
(hACE2) receptor using the following pipeline.
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1. We used AlphaFold2 [25] to build structural models of the hACE2 and of the spike
RBD of each simulated sequence.

2. We created models of the hACE2-RBD complex using a local installation of HAD-
DOCK [26]. hACE2 and RBD were first docked into a complex guided by inter-
subunits distance restraints extracted from the X-ray structure of the SARS-CoV-2
RBD bound to hACE2 (PDB code 6M0J; [27]). The models were then refined by short
MD simulations in explicit solvent during the last step of the HADDOCK modelling
pipeline. For each RBD sequence, we created 200 models of the hACE2-RBD complex.

3. The empirical scoring function FoldX v. 5 [28] was used to estimate the RBD-hACE2
binding free energy.

3. Results
3.1. Phylogeny of Simulated Sequences

To verify that the constraints on the topology and evolutionary distances of simulated
sequences were respected, we compared the phylogenetic tree before and after adding
the simulated sequences. We performed this test on the Sarbecovirus spike (Figure 4) and
Circovirus capsid protein datasets (Figure 5). The complete sequences and Newick trees are
available in Supplementary Data (Folder S1).

For the Sarbecovirus spike protein, ten ancestral nodes were selected for sequence
reconstruction. Then, evolution was simulated on each ancestral sequence with default
parameters for the number and distances of simulation. As a result, three sequences
were generated from each ancestral node with a distance varying from 0.5 to 2 times the
median distance in the ancestral node subtree. This automatic setting generates distances
comparable to the ones observed in the tree (Figure 4). Furthermore, all simulated sequences
are branched at the desired position.

In the case of the Circovirus capsid protein, we selected nine ancestral nodes and
generated fixed distances of 0.1, 0.5, 1, 2, 3, 4 and 5. The resulting trees are presented in
Figure 5. For this test viral genus, we imposed distances far from the observed distances. In
all but one case, the simulations were branched below their corresponding ancestral node.

Nevertheless, in most cases Virus Pop succeeds at populating the phylogenetic trees
with new sequences at the desired position and distances. This provides an additional
argument to verify the realism of the simulated sequences, showing that they represent
realistic possibilities in terms of an evolutionary scenario.

3.2. Biological Significance of Simulations: Structural Evaluation of the Sarbecovirus Spike Dataset

We completed the phylogeny visual inspection presented in Section 3.1 with an evalu-
ation of the affinity of the simulated spike protein receptor binding domain (RBD) for the
human ACE2 (hACE2) receptor. For this calculation, we used a computational pipeline
that combines structure prediction from sequence with AlphaFold2 [25], assembly of the
hACE2-RBD complex with HADDOCK, and binding free-energy estimation with FoldX
(see Section 2.5). We consider that a well-predicted affinity is an indicator that the structure
of the RBD is preserved enough for binding to hACE2 to be possible. This would mean
that the simulated evolution went in a realistic direction and can then be under positive
selection pressure but does not inform on the conservation of the whole spike protein
structure, which can also influence the binding of the RBD. The result of the pipeline is
presented in Figure 6.

We present the binding free energy of the complex as a function of the RBD sequence
identity. Full data are available in Supplementary Materials as well as a visualization of
five predicted structures (Folder S2). The first striking result is that there is no correlation
between the sequence identity and the ability of simulated sequences to bind the human
ACE2 receptor, as represented by the binding free energy (correlation coefficient of 0.08).
This indicates that the evolutionary model constructed is accurate enough to allow sim-
ulating long evolutionary distances while preserving the physicochemical properties of
the RBD domain. Moreover, amongst the 240 tested sequences, 61 ( 25%) have a dissoci-
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ation constant (Kd) below 1 µM (equivalent to a binding energy below −8.175 kcal/mol
at 298 K) which corresponds to a stable complex. Almost 10% of the sequences have an
estimated binding energy even greater than the reference SARS-CoV-2 RBD, meaning that
they could bind hACE2 with a better affinity than SARS-CoV-2, as in the case of several
bat coronaviruses close to SARS-CoV-2 [29]. These results demonstrate that Virus Pop is
efficient in producing viral sequences that could be under positive selection pressure and
potentially found in nature.
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Figure 6. Binding energy vs sequence identity of simulated sequences. The identity is measured
by comparing the simulated RBD sequences with the SARS-CoV-2 reference RBD sequence. Colors
correspond to ranges of per-residue confidence estimation (plddt) of the structure as constructed
by AlphaFold. Very high: >90 and Confident: [70–90] . The gray area corresponds to a binding
energy low enough for the complex to be stable (Kd < 1 µM) while the dashed line indicates the
experimentally measured binding free energy for the complex formed with the reference SARS-CoV-2
RBD sequence [29].

3.3. Virus Pop for Tools and Pipeline Testing

To illustrate how Virus Pop can be used for challenging and comparing taxonomic
assignation tools, we tested the alignment results of BLASTp [16] and DIAMOND [30]
with our simulated sequences against our initial set of real sequences. The purpose was
to illustrate how the local alignment performance varies with simulated distances and
how different tools yield different performances. We chose BLASTp and DIAMOND as
they are widely used for local sequence alignment of protein sequences and are often
integrated within taxonomic assignation pipelines (e.g., [1–3]). Depending on the software
used within each taxonomic assignation pipeline, their parameters and cut-off values, their
performances will be affected in a different way.

The results presented here were obtained on our two datasets. We generated 100 ances-
tral sequences at each selected internal node position (see Figures 4 and 5) and simulated
evolutionary distances of 0.1, 0.5, 1, 2, 3, 4 and 5 from each reconstructed ancestral sequence.
Testing the generated sequences with BLASTp and DIAMOND, we kept 25 hits per query
but discarded the ones with a bit score below 40 [31]. Diamond was launched with its
“sensitive” mode. For the sake of clarity, we depict here the complete simulated sequences,
corresponding to a case in which NGS read assembly creates contigs corresponding to the
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full proteins. Figures 7 and 8 present the ratio of aligned sequences along the alignment, as
well as the size of the alignments returned by BLAST and DIAMOND.

Figure 7. Alignment results of BLASTp and DIAMOND on 6300 simulated Circovirus Capsid protein
against real Circovirus Capsid protein, with varying simulated distances. Left: ratio of sequence
aligned at each site and ratio of gaps at each site along the multiple sequence alignment. For each
alignment plot, BLAST (B) and DIAMOND (D) results are displayed. Right: histograms of the
alignment size. Only alignment with an e-value below 10 and a bit score above 40 were considered.

As presented in Figure 7, on the highly variable Circovirus capsid protein, BLAST
and DIAMOND perform similarly up to a distance of 1 on our test. Beyond that, the
alignment coverage drops quickly, with DIAMOND performing worse than BLAST. On
the Sarbecovirus spike protein, because many sites are almost invariant, the performances
of the two tools are similar. The only slight alignment number decrease is visible before
and at the very beginning of the NTD region (red arrow in Figure 8). However, this does
not constitute a formal benchmarking of those tools as we present results here on a limited
amount of data, and as they could both be tested with different parameters that include
computing times. For instance, the “ultra sensitive” mode of DIAMOND would produce
alignment results almost similar to those of BLAST. The purpose here is to illustrate how
Virus Pop can help in assessing the performance of a tool or a full pipeline. Depending on
the input data type, time performances or other constraints, it can participate in making
development choices.
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Figure 8. Alignment results of BLASTp and DIAMOND on simulated Sarbecovirus spike protein
against real spike proteins, with varying simulated distances. Analyzed sequences are available in
Supplementary Data (Folder S3) Left: ratio of sequence aligned at each site and ratio of gaps at each
site along the multiple sequence alignment. For each alignment plot, BLAST (B) and DIAMOND
(D) results are displayed. Right: histograms of the alignment size. Only alignment with an e-value
below 10 and a bit score above 40 were considered. The red arrow indicates the only region in
which a decrease of the performances is visible. The regions’ limits are based on the reference
SARS-CoV-2 sequence.

3.4. Improving Taxonomic Tool Sensibility by Expanding Reference Databases

Beyond testing and evaluating taxonomic assignation tools, an application of Virus
Pop that we put to the test was the interest of using the simulations to expand databases.
We hypothesized that if the simulations represent realistic evolution directions, then they
may be closer to yet unobserved viruses than any of the indexed viruses. Thus, integrating
simulations to databases may increase the range of the detection tool.

We tested this hypothesis on two recently discovered Circovirus capsid proteins [23,24]
that were not part of our initial dataset. To mimic in a simple and deterministic way the
read alignment issue, we generated all 50-amino-acid-long segments of the two proteins.
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We obtained a total of 330 fake “perfect” reads (165 for each of the two 214 amino-acid
long proteins).

For the simulation part, as we were in a context where we wanted to expand the tree
at all possible positions and in many evolutionary directions, we generated 200 ancestral
sequences for each of the 130 internal nodes. We used the default parameters for the
distances which means that three sequences were created from each ancestral sequence.
As a result, we obtained 600 simulations under each internal node which corresponds to a
total of 78,000 simulated sequences. The sequences are available in Supplementary Data
(Folder S4)

Finally, we compared the result of blasting the protein segments against the initial
database and against the augmented database. We discarded all alignments with a bit
score below 40. Note that, in this protocol, the initial dataset was generated randomly with
each species of the taxonomic group on NCBI being represented by only one sequence.
Other indexed sequences that were not fetch in this run may be closer to the two recently
discovered Circovirus.

Out of the 330 simulated reads, 170 were aligned at least once against the initial real
database. This figure goes up to 202 against the augmented database, meaning that we
aligned 10% more reads. In addition, with 6000 and 60,000 simulations at each internal
node, we increase this score to 16% and 33% more reads detected, respectively.

To complete this approach and visualize how close to the targets the simulated se-
quences are in the scenario with 600 simulations at each internal node, we present a zoom
of the augmented tree (Figure 9). It contains the two closest real sequences in the starting
dataset, the 600 simulations created from their common ancestor (this internal node is
highlighted in Figure 5) and the two new protein sequences. The sequences on which were
aligned most of the fake reads are indicated. This verifies that Virus Pop does generate
enough variability such that we create sequences close to real proteins that are not yet
recorded in the database.

Figure 9. Phylogenetic tree of the two new capsid proteins (blue stars), the two closest sequences in
the database (pink stars) (MW686209 and MH603564) and the 600 simulations based on the closest
common ancestor of the two closest sequences. This common ancestor is highlighted in Figure 5. The
green check marks indicate the simulated sequences on which ten or more reads were aligned. The
tree was generated with IQ-TREE.

3.5. Database

We ran Virus Pop on 80 virus genera infecting humans and 110 genera affecting
other vertebrates. These virus lists were obtained from ViralZone [32]. In the first group,
57 genera had a sufficient number of full genome sequences available with protein clusters
detected by Virus Pop. In the second group, only 36 genera met these two conditions,
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allowing the pipeline to run through to completion. With the increasing availability of NGS
sequencing data, simulating additional genera with Virus Pop will be possible.

For each genus, up to 15 full genomes of each species within were fetched. Then, for
each homologous protein group found, 300 simulations (100 ancestral sequences times
3 automatically computed distances) were generated at each internal node of the inferred
phylogenetic tree. To gather enough sequences within 3 genera with few species (Sapovirus,
Parechovirus and Hepatovirus), the number of fetched genomes was increased to 25.

The result is a total of 995 simulated homologous protein groups with a grand total
of 24,138,277 sequences in both amino acid and nucleotide. The number of homologous
protein groups found and simulated within one genus ranges from 1 (for 21 genera) to 138
for Orthopoxvirus.

The resulting database is available at https://doi.org/10.5281/zenodo.7712690.

4. Discussion

Although several tools for creating fake amino-acid and nucleotide sequences have
been proposed [8,10,33], none of them provide a ready-to-use method for populating a
given taxonomic group with new realistic sequences. How Virus Pop tackles this shortfall
is three-fold:

• Generating simulations with substitution rate variations depending on sites and
inferred from the input dataset. Existing tools do allow to simulate substitution rate
variations. For instance, IQ-TREE and Seq-gen both give the possibility to generate
rate heterogeneity based on a gamma-model [34]. However, they are implemented
without the possibility for the user to constrain which site will be in which gamma-
rate category. As a result, for instance, if 20% of the amino acid sites evolve slowly,
simulations will statistically reproduce this parameter. However, the 20% of slowly
evolving sites will be randomly spread over the alignment and conserved segments
may be lost. Other methods for rate heterogeneity simulations exist but, so far, no
tool provides an easy way to analyze the rate heterogeneity in real dataset and to
reproduce it.

• Inferring ancestral sequences corresponding to multiple internal nodes of the input
data phylogenetic tree. This allows Virus Pop to generate new sequences that will be
branched at various points of interest in the group studied, and not only new sub-tree
deriving from a leaf sequence.

• Adapting the simulated evolutionary distances so that the new sequences will be
inserted within the input phylogenetic tree at realistic distances compared to sur-
rounding real sequences. Alternatively, the user may manually choose any distance.

Embedded in a complete pipeline with as many automatic steps as possible and mul-
tiple configurable options, Virus Pop provides a complete solution to efficiently generate
new sequences within a given taxonomic group.

The visualization of the final phylogenetic tree built with both the starting set of
sequences and the phylogenetic sequences shows that the simulations are inserted within
the tree at the chosen positions and distances. Moreover, the use of a carefully selected
substitution model generates mutations that have more chance to preserve the physico-
chemical properties of the protein, while site-dependent substitution rates promote the
positioning of mutations in variable regions and preserves conserved regions. During our
test, only long simulated branches sometimes end up branching more deeply in the tree
(see the most distant yellow sequence in Figure 5). This is likely due to the difficulty of
accurately positioning very long branches [35].

When checking the validity of simulated biological sequences, one must be careful
to avoid redundant reasoning. Indeed, our perception of evolutionary processes is based
on the same mathematical models on which bioinformatics tools are built. Additionally,
simulated data, by definition, respect the mathematical models with which they are con-
structed. Thus, there is a risk in considering our simulated sequences as validated simply
on the basis that they rely on the mathematical structure of a substitution model.

https://doi.org/10.5281/zenodo.7712690
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To escape this issue and test further the “realness” of the sequences, we performed
a structural analysis to evaluate the conservation of a protein function: the affinity of
the Sarbecovirus RBDs of the simulated spike sequences to the human ACE2 (hACE2)
receptor. Although limited by prior functional knowledge, it constitutes a way to escape
the redundancy of a reasoning based on creating and evaluating sequences with the same
mathematical model. Our result shows that some sequences lost their function, but that
Virus Pop is still able to generate 25% of sequences that may be functional even amongst
the most evolutionary distant. This means that the precise substitution model inferred with
substitution rate variations does create sequences with a predicted good preservation of
their physicochemical and functional properties. Of note, experimental confirmation of this
result is needed, for example by measuring the real binding affinity of simulated sequences
with the hACE2 receptor.

Another solution to improve the preservation of the protein structure would be to
apply a mathematical model that would integrate interactions between residues. Indeed,
overall structure is partly the result of internal interactions within monomers or between
multimers, with dependencies between sites that will co-evolve to preserve their interaction.
Integrating the interactions within the mathematical model would amount to simulate
evolution in a “structure-aware” way. However, this would mean going beyond the
initial assumption of site independence on which the evolution models are based. But
this drastic simplification is currently necessary as evolutionary models are inherently
very complex mathematical objects. For instance, determining an empirical amino-acid
substitution model, as those used in Virus Pop, consists in finding 210 parameters (see
Appendix A.1). Having a dataset in which each type of substitution is represented in a
quantity sufficient to derive representative rates is already a challenge. Thus, even if we
could define models with dependencies amongst sites and if we had the computational
power to solve them, we would be limited by the availability of data. There have been,
however, some published efforts put into trying to incorporate protein structure constraints
to account for site dependencies. However, they were defined on case-by-case observations
of some amino acid interactions [36,37].

To illustrate the usefulness of Virus Pop, we then presented how precisely constrained
new sequences constitute a well-defined dataset convenient for testing and comparing the
performances and limits of taxonomic assignation tools. Our two examples (see Section 3.3)
show how different the results are, depending on the ratio of highly preserved loci. On the
Sarbecovirus spike protein, simulated substitutions are stacked on a few loci that, compared
to the preserved areas, have a substitution rate that is more than 1000 times faster. However,
even on proteins with these characteristics, a test performed with reads simulated on poorly
preserved areas will tend to show decreasing performances as the distances increase. To
conclude on this matter, tests should be performed on varying protein types and with
varying distances to constitute a good prediction on our ability to detect novel viruses.
One downfall of the Virus Pop pipeline is however that, as it is based on protein evolution
models, the retro-translation step adds silent mutations that are not well accounted for in
any defined parameters. Thus, Virus Pop is more suitable for assessing pipelines within
which reads and contigs are translated and alignment steps are performed on amino-acid
sequences, such as Microseek, which was recently released [2].

In addition, we demonstrated how generating a high number of simulated sequences
(for example the Circovirus capsid protein) succeed at creating new sequences close enough
to retrospectively identified real sequences, illustrating the usefulness of Virus Pop in
discovering new viruses if simulated sequences are included in public databases used for
virus taxonomic assignation. As suggested by the fact that the simulated sequences on
which the tested real new proteins were aligned are scattered in the tree (see Figure 9),
there are probably multiple generated sequences that are locally very close to the real ones
and that participate in the detection of reads. Though the increase of alignment score is
moderate, adding simulations to taxonomic assignation tool databases could constitute
a strategy to lower the risk of missing viruses belonging to groups of particular concern.



Viruses 2023, 15, 1227 17 of 20

Moreover, as the simulations are built with highly constrained evolution models, they
should not be responsible for much additional background noise.

Finally, this strategy could be improved with a filter based on an approach similar
to the one presented for the Sarbecovirus spike protein in Section 3.2. The combination of
Virus Pop predictions regarding virus evolution with corresponding predictions of protein-
protein interactions inform on which signal should be the most relevant to be detected in
metagenomics data. Filtering Virus Pop simulations with a structural analysis could thus
also help to predict the existence of still unknown viruses with a spillover potential for
humans. This way, we could also imagine purposely decreasing the constraints on our
evolutionary models to allow bigger evolutionary jumps. However, the test presented here
for the affinity of the RBD sequences was carefully hand-built and relies on the possibility
to test the stability of a complex. Efficiently generalizing this scheme to any type of protein
needs a good knowledge of their functional domains.

Alternatively, one could integrate a simple filter based on the elimination of sequences
that do not preserve some residues known to be involved in the protein function. The
implementation of such a solution would be much faster. However, crossing the results
from Section 3.2 on the Sarbecovirus spike protein with the number of preserved residues
shows that some simulations generated present a good preservation of the predicted affinity,
although few contact residues are preserved (see Supplementary Data Folder S2). This
solution would thus reduce the liberty of the simulation process and may limit Virus Pop
ability to discover functional evolutionary jumps.

In conclusion, Virus Pop is a valuable tool for generating new realistic biological
sequences within a given taxonomic group. By selecting the best empirical substitution
model and implementing site-dependent substitution rates, it creates mutations that tend
to preserve the physicochemical properties of the protein and promotes the positioning
of mutations in variable regions, while conserving preserved regions. The ability to insert
new sequences anywhere within the phylogenetic tree and at realistic distances compared
to surrounding real sequences makes it a complete solution for expanding viral databases
with realistic sequences. The well-defined datasets provided by Virus Pop are useful for
testing and comparing taxonomic assignation tools and could also be integrated in data
banks in order to enhance the sensibility of pattern-based taxonomic tools for detecting
unknown viruses in groups of particular concern.
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mdpi.com/article/10.3390/v15061227/s1. Folder S1: fasta files (real sequences and simulated sequences)
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presented in Section 2.3, Folder S2: table of results presented in Figure 6, clustal alignment of 15
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Appendix A. Evolutionary Scenario and Simulation—Basic Principle

In bioinformatics, simulating the processes of evolution involves modeling these
processes mathematically, with inferable parameters and reproducible steps. As we want to
reproduce real evolution processes, the simulation relies primarily on our ability to analyze
real protein sequences in order to deduce the parameters of such a model.

As Virus Pop works on protein sequences, we will focus on protein evolution models
and simulation, and set aside nucleotide and codon sequence simulation.

Appendix A.1. Characterizing Protein Sequence Evolution

The main component of an evolution model is the substitution matrix. This
20× 20 diagonal matrix indicates the probability for each amino acid to be substituted
to another amino acid, or to remain unchanged in the sequence [38]. Inferring a sub-
stitution model from a set of proteins consists in determining at least 210 parameters
(190 parameters in the matrix plus an equilibrium frequency for each amino acid). In
more complex models, additional parameters determine the probability for deletions and
insertions to appear. Because the full model’s calculation requires a large amount of data
and a substantial computational effort, empirical models inferred in dedicated work are
usually selected based on the type of data.

The first empirical protein model proposed was the PAM (Point Accepted Mutation)
model [38]. It is based on the counting of substitutions amongst about 1300 sequences
belonging to 71 homologous proteins. Since then, other empirical matrices have been
proposed that specifically describe the substitutions observed in some types of organisms
and/or proteins. The most famous models are WAG [39], JTT [40] and BLOSUM [41]. The
FLU model [42] and the rtREV model [43], inferred on viruses, often came out as the most
adapted to our data (as confirmed by IQ-Tree model selection).

To complete the characterization of the evolution of a homologous group of protein, the
other mathematical object used in bioinformatics is the phylogenetic tree. A phylogenetic
tree is a condensed representation of the history of the sequences: how they are related
and how distant they are from one another. The topology τ reflects the speciation events
and the branch lengths the evolutionary time between two nodes. A branch length of k
means that, between the upper and the lower node, a mean of k% of the amino acids will
be substituted [44].

Several methods exist for inferring the substitution matrix and the phylogenetic
tree best representing an evolutionary scenario, the most common being the maximum
likelihood and clustering methods. In Virus Pop, the ModelFinder tool of IQ-TREE selects
the empirical model that corresponds the best to the considered set of proteins and infers a
phylogenetic tree.

Appendix A.2. Monte-Carlo Simulation of Protein Sequence Evolution

Given an evolutionary model and a starting sequence, the evolution along a distance k
can be simulated with a Monte-Carlo method [44].

In the general case, in which we consider a model without insertion and deletion
values and a substitution matrixM, the matrixMk is first computed. EachMkij is the
probability for an amino acid in the state i in the starting sequence to be in the state j at the
other end of the branch of length k. Thus, sequential Monte Carlo draws for each site in
the sequence are performed. The output is one possible outcome of the evolution, given
our model.

A number of bioinformatic tools implement this process, each with some particularities.
The most common are Seq-Gen [8], INDELible which allowed extensions of the models
on indels [33] and Alisim, which is provided within the IQ-TREE software and offers the
most complete set of options [9,10]. Virus Pop exploits the possibilities of the latter.
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