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Abstract: Senior individuals can suffer from immunosenescence and novel strategies to bolster the
immune response could contribute to healthy ageing. In this double-blind, randomised, controlled
pilot trial, we investigated the ability of non-digestible polysaccharide (NPS) preparations to enhance
the immune response in a human vaccination model. In total, 239 subjects (aged 50–79 years)
were randomised to consume one of five different NPS (yeast β-glucan (YBG), shiitake β-glucan
(SBG), oat β-glucan (OBG), arabinoxylan (AX), bacterial exopolysaccharide (EPS)) or control (CTRL)
product daily for five weeks. After two weeks of intervention, subjects were vaccinated with seasonal
influenza vaccine. The post-vaccination increases in haemagglutination inhibition antibody titres
and seroprotection rate against the influenza strains were non-significantly enhanced in the NPS
intervention groups compared to CTRL. Specifically, a trend towards a higher mean log2 fold increase
was observed in the AX group (uncorrected p = 0.074) combined with a trend for an increased
seroprotection rate, AX group (48.7%) compared to CTRL (25.6%) (uncorrected p = 0.057), for the
influenza A H1N1 strain. Subjects consuming AX also had a reduced incidence of common colds
compared to CTRL (1 vs. 8; p = 0.029 in Fisher exact test). No adverse effects of NPS consumption
were reported. The findings of this pilot study warrant further research to study AX as an oral
adjuvant to support vaccine efficacy.

Keywords: adjuvant; immunity; non-digestible polysaccharide; prebiotics; arabinoxylan; β-glucan;
cold; influenza; vaccination
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1. Introduction

The process of ageing is associated with a deterioration in the function of the immune
system, referred to as immunosenescence [1]. As a consequence of impaired immune
responses, the elderly are highly susceptible to infection and have an increased risk of
complications resulting in hospitalisation and mortality [1,2]. Although vaccination is
considered the most effective measure to prevent or reduce the severity of infections and
their associated complications [2], the response to vaccination in the elderly has been
found to be considerably weaker than in younger adults, due to immunosenescence [3].
To improve protection against infectious diseases in the elderly, there is a need for novel
strategies to boost the immune response [4]. Nutritional interventions might be promising
strategies to modulate immune system responsiveness, thereby improving health and
reducing disease risk [5].

To assess the immunomodulatory effects of foods or food components, a human
vaccination model is considered highly suitable [5]. In this model, stimulation of the
immune response to a standard vaccination (e.g., seasonal influenza vaccination), which can
be measured by increased vaccine-specific serum antibodies, indicates immunostimulatory
effects and enhancement of immune defences. Additionally, according to the European
Food Safety Authority (EFSA), stimulation of vaccination responses, as measured by
increased numbers of individuals attaining protective antibody levels or by increments
in antibody titres in groups of individuals, is an appropriate outcome for the scientific
substantiation of beneficial effects of food components on the function of the immune
system related to immune defence against pathogens [6,7]. Therefore, novel nutritional
strategies targeting the immune response should be investigated in human vaccination
trials to provide conclusive evidence on their beneficial immunomodulatory effects.

Non-digestible polysaccharides (NPS) are increasingly recognised for their potential
immunostimulatory properties. There is strong evidence for direct and indirect beneficial
effects of NPS intake on the immune response [8,9]. The NPS carbohydrate structures them-
selves can exert direct immunomodulatory effects by interaction with pattern recognition
receptors on the surface of immune cells [10]. In addition, indirect beneficial effects of NPS
on the immune system may be exerted through modulation of the intestinal microbiota
and the production of metabolites such as short-chain fatty acids (SCFA) [9,11], which are
considered important regulators of the immune response [12]. Indeed, many fermentable
NPS are considered candidate prebiotics, beneficially affecting host health by selectively
stimulating the growth and/or activity of a limited number of health-promoting bacterial
species resident in the intestinal colon [13]. Given their immunomodulatory properties, a
number of polysaccharide compounds from plants, bacteria, fungi, and synthetic sources
have emerged as promising vaccine adjuvant candidates [10,14]. Among these polysaccha-
rides, the NPS β-glucans, arabinoxylans and exopolysaccharides are of particular interest,
as their immunomodulatory properties have been studied with promising results in vitro
as well as in vivo [15–23].

β-Glucans represent a heterogeneous group of homopolysaccharides composed of
β-linked D-glucose residues that are found in cereal grains (e.g., oat, barley), in the cell
wall of Saccharomyces cerevisiae (baker’s yeast) and in different edible mushrooms and
seaweed [24]. In humans, a particular β-glucan from S. cerevisiae was found to reduce
the number of influenza symptoms and duration and severity of upper respiratory tract
infections in three randomised, placebo-controlled trials [25–27]. Furthermore, studies in
mice have shown that lentinan, a β-glucan from shiitake (Lentinula edodes), could enhance
vaccine efficacy [28,29].

Arabinoxylans (AX) are plant cell wall heteropolysaccharides consisting of a linear β-
linked xylose backbone with variable side chains of arabinose and/or other sugar residues
and different degrees of polymerization, depending on their origin in the grain [30]. AX is
the most abundant dietary fibre in cereal grain endosperm of wheat and rye and has been
shown to significantly increase the antibody response to sheep red blood cell injection in
chicken, indicating its potential to stimulate antibody mediated immune responses [31].
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Exopolysaccharides (EPS) are extracellular polysaccharides secreted by lactic acid
bacteria and consist of branched, repeating units of sugars with variable structures and
compositions [32]. Several EPS have been reported to possess immunomodulatory or
potential adjuvant activities to vaccination in vitro and in vivo [22,23,33,34]. Indeed, EPS
from the strain utilised in the present study, Limosilactobacillus mucosae DPC 6426, has
previously been shown to be highly immunomodulatory in macrophages under in vitro
conditions [35]. Despite the emerging evidence suggesting that NPS may enhance the
immune response to vaccination, the effectiveness of NPS as oral vaccine adjuvants has not
been confirmed yet in humans [4]. Therefore, the aim of this pilot trial was to investigate
the effects of a five-week consumption period of different dietary NPS on the antibody
response to influenza vaccination, respiratory tract infections and cellular immunity of
healthy volunteers aged 50–79 years. Furthermore, the effects on faecal microbiota and its
metabolites as well as on gastrointestinal wellbeing were investigated.

2. Materials and Methods

The clinical trial was approved by the ethics committee (Ärztekammer Schleswig-
Holstein, Ethik-Kommission, DE/EKSH44) on 8 August 2012 and was prospectively regis-
tered at ClinicalTrials.gov (NCT01896154). The trial was conducted at Clinical Research
Center Kiel (Kiel, Germany) in the period from 28 August 2012 to 27 March 2013. All
subjects gave written informed consent for participation in the study.

2.1. Study Population

Eligible subjects were community-dwelling men and postmenopausal women, aged
50–79 years, willing to have an influenza vaccination in season 2012/2013. Subjects were
recruited from the database of Clinical Research Center Kiel and from advertisements in the
Kieler daily newspaper. Among other conditions, suffering from influenza or influenza-like
illness within the previous 10 months and usage of drugs altering the immune system (e.g.,
antibiotics or corticosteroids) led to exclusion of subjects. The full list of eligibility criteria
is available at ClinicalTrials.gov and in the supplement (Methods S1).

2.2. Study Products

Subjects were asked to consume one sachet of NPS powder or maltodextrin (Glucidex
IT, Roquette Frères, Lestrem, France; 12.0 g, control (CTRL)), stirred in 200 mL milk or
apple juice once daily for five weeks. The sachets with NPS powder contained either: (i) a
β-glucan preparation from yeast (Wellmune®, Soluble Powder, Lot 12111-016, Biothera,
Eagan, MN, USA supplied by Immitec, Nøtterøy, Norway; 500 mg, YBG), (ii) a β-glucan
preparation from shiitake prepared according to a pre-specified procedure (Methods S2) by
Wageningen Food and Biobased Research (Wageningen, the Netherlands; 500 mg, SBG),
(iii) a β-glucan preparation from oat (Oatwell® 28%, Swedish Oat Fiber AB, Bua, Sweden;
10.0 g, OBG), (iv) an arabinoxylan preparation from wheat endosperm (Naxus®, BioActor,
Maastricht, the Netherlands; 10.0 g, AX) or (v) an exopolysaccharide preparation from
Limosilactobacillus mucosae DPC 6426 prepared according to a detailed procedure (Methods
S3) by Teagasc (Fermoy, Ireland; 2.3 g, EPS). More detailed information on the NPS powders
can be found in Supplementary Table S1 and was slightly modified from [36]. All sachets
with NPS powder were supplemented with maltodextrin adding up to a net weight of
12.0 g. Before and after mixing into milk or apple juice, the NPS test products and CTRL
product had a similar appearance and taste.

2.3. Study Design

This study was designed as a randomised, controlled, double-blind, parallel-group
study. Subjects were randomly assigned to one of six intervention groups: YBG, SBG,
OBG, AX, EPS, or CTRL. To avoid selection bias, a randomisation list was generated by
data managers of tecura GmbH (Kiel, Germany) in line with the Cochrane guidelines [37]
using a software implementation by G.E. Dallal of the pseudo-random number generator
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of Wichmann and Hill [38] (http://www.randomization.com(accessed on 17 July 2012)).
The randomisation list was kept confidential at the premises of tecura GmbH and was
only provided to Nofima (Ås, Norway) for filling sachets with the intervention products
and labelling. Nofima was solely responsible for this task and not involved in the study
conduct. The key for unblinding was maintained until statistical analyses were performed
by statistical managers, who were not otherwise involved in conducting the study. Neither
the investigators nor the subjects were aware of the content of the sachets until all analyses
were completed.

The study lasted at least seven weeks per subject with a two-week period of wash-
out between enrolment (visit 0 (V0)) and randomisation (V1), followed by two weeks
of test product consumption once daily until vaccination (V2) and continued product
consumption for three weeks post-vaccination with visits after one week (V3) and after
two additional weeks (V4) (Figure 1). Subjects were instructed to abstain from foods and
supplements containing probiotics, prebiotics or other fermented products, supplements
containing vitamins and minerals as well as to sustain a low dietary fibre diet for the
complete duration of the study (V0–V4). This was based on the notion that these dietary
factors may exert immunomodulatory effects and aimed at keeping background noise by
interfering factors low. Compliance and adverse events were monitored and recorded by
the investigators throughout the study.

Figure 1. Design of the pilot study (n = 239). A screening visit (visit 0) was conducted at least two weeks prior to
randomisation (visit 1). After randomisation, subjects started consuming NPS or CTRL product daily for five weeks. After
two weeks consumption, subjects were vaccinated against influenza (visit 2). Follow-up visits were conducted one week
(visit 3) and three weeks (visit 4) post-vaccination. Black boxes indicate parameters that were measured at each visit. Subjects
kept a diary assessing compliance and respiratory symptoms and followed a low dietary fibre diet for the complete duration
of the study. Adverse events were monitored by investigators throughout the study. NPS: non-digestible polysaccharide,
YBG: yeast β-glucan, SBG: shiitake β-glucan, OBG: oat β-glucan, AX: arabinoxylan, EPS: exopolysaccharide, CTRL: control
(maltodextrin), GI: gastrointestinal.

http://www.randomization.com(accessed
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2.4. Compliance Assessment

Subjects were asked to return any unused test products at V4, which were counted in
order to calculate compliance (the number of test products consumed related to the tar-
get number of test products to be consumed (consumed/target × 100%)). Moreover,
compliance was assessed by the Morisky score. Subjects completed a questionnaire
concerning product consumption compliance by answering four questions according
to Morisky et al. [39]. Compliance was defined as low if three or four questions were
answered with “yes”, medium if one or two questions were answered with “yes”, and high
if none of the questions were answered with “yes”.

2.5. Influenza Vaccine

Subjects were vaccinated at V2 with the split virion, inactivated influenza vaccine
Vaxigrip® (season 2012/2013; Sanofi-Pasteur MSD, Lyon, France), containing an A/California/
7/2009 (H1N1)pdm09-like virus, an A/Victoria/361/2011 (H3N2)-like virus and a B/Wisconsin/
1/2010-like virus (Influenza B). This vaccine complied with the WHO recommendations
for the Northern Hemisphere and EU decision for the 2012/2013 influenza season [40].

2.6. Acquisition of Blood

Blood was drawn from the median cubital vein in the antecubital fossa using a 21 G
butterfly needle and collected with the blood collection system S-Monovette® (Sarstedt,
Nümbrecht, Germany). For blood cell counts EDTA monovettes, for electrolytes, liver en-
zymes, creatinine and haemagglutination inhibition (HI) titres serum monovettes with clot
activator and for whole blood incubation (cellular immunity) lithium-heparin monovettes
were used.

2.7. Antibody Titres

Influenza-specific serum antibody titres against each of three influenza strains (H1N1,
H3N2, and Influenza B) were quantified by a standard HI assay as recommended by the
European Medicines Agency (EMA) [41]. HI titres against each of the influenza strains
were measured in duplicate in 0.5 titre steps, and their geometric mean titre (GMT) was
transformed using log2(titre/10). Log-transformed titres were provided in 0.25 titre steps.
These GMT were used to calculate mean log2 fold increase (MLFI) between baseline (V1)
and three weeks post-vaccination (V4) (Log2(titre V4/titre V1)). In addition, seroprotec-
tion and seroconversion rates were calculated. The seroprotection rate is defined as the
percentage of subjects attaining an antibody titre ≥40 in the HI assay. Seroconversion rate
is defined as the percentage of subjects with an HI antibody titre <10 at baseline and a
post-vaccination titre ≥40 or a titre ≥10 at baseline and at least a fourfold increase in titre
post-vaccination [42].

In addition to HI assays, micro-neutralization assays were performed. After heat
inactivation at 56 ◦C for 30 min, serial two-fold dilutions of serum (1:10 to 1:320) were
added in quadruplicate to 103 TCID50 of the influenza strains and incubated at 37 ◦C
for two hours before being transferred to a 96-well microtiter plate containing confluent
MDCK cells. Plates were incubated for three days at 37 ◦C under a humidified atmosphere
containing 5% CO2. The neutralization antibody titre, expressed as the reciprocal of the
highest serum dilution providing complete protection from infection, was used to calculate
the GMT of quadruplicates, MLFI between baseline (V1) and three weeks post-vaccination
(V4), and seroprotection and seroconversion rates.

2.8. Respiratory Tract Infections

During the intervention period, respiratory tract infection (RTI) symptoms were
assessed at V1, V2, V3, and V4.
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2.8.1. Common Cold (Upper Respiratory Tract Infection)

The severity of common cold episodes (with rhinitis, pharyngitis, and general signs)
was quantified during the intervention period (V1–V4) by the total symptom score, i.e., the
sum of the daily symptom scores according to Predy et al. [43] across all days of a common
cold episode during the study period. These scores were based on 10 symptoms (runny
nose, sneeze, nasal congestion, sore throat, hoarseness, cough, malaise, fever, headache, and
earaches) rated on a four-point scale (0 = no symptoms, 1 = mild symptoms, 2 = moderate
symptoms, and 3 = severe symptoms). A two-day total symptom score greater than 14 was
considered to indicate a verified cold; these were used in the analysis of number of colds.
A daily symptom score exceeding 4 defined the days with symptoms of cold and by that
defined the duration of cold episodes.

A further evaluation was based on common cold criteria according to Jackson et al. [44].
According to these criteria, the daily symptom score was based on seven symptoms
(sneezing, nasal discharge, nasal obstruction, sore throat, cough, headache, and malaise),
the degree of which was estimated on a four-point scale (0 = no symptoms, 1 = mild
symptoms, 2 = moderate symptoms, and 3 = severe symptoms). This was one symptom
(i.e., chilliness) less than the original eight-symptom score of Jackson. A common cold was
verified if two out of three listed criteria were met: (1) a total symptom score of 14 or more
over baseline during a 6-day period, (2) the impression of the subject that a common cold
had developed, (3) an increase in nasal discharge on three or more out of six days.

2.8.2. Influenza or Influenza-Like Illness

Influenza-like illness was evaluated according to the Centre for Disease Control and
Prevention criteria (CDC, Atlanta, GA, USA). It was defined by a body temperature ≥37.8 ◦C
and concomitantly either cough or sore throat. In addition to the CDC criteria, the time
course of onset of the disease was recorded.

2.8.3. Acute Bronchitis and Pneumonia (Lower Respiratory Tract Infection)

Acute bronchitis and pneumonia were diagnosed by the following clinical symptoms:
common cold symptoms, expectorations, retrosternal burning and—only in the case of
pneumonia—dyspnoea, tachypnoea, tachycardia, and inspiratory rales.

2.9. Cellular Immunity

Within 60 min after blood withdrawal at V1, V2, and V3, fresh heparinised whole
blood of subjects was diluted five times with RPMI1640 medium (Invitrogen®, Thermo
Fisher Scientific, Waltham, MA, USA) containing 100 units/mL penicillin and 100 µg/mL
streptomycin. Diluted blood (950 µL, each) was added to 48-well plates containing 50 µL
medium or 100 ng/mL lipopolysaccharides (LPS, E.coli LPS ultra-pure, Cayla-InvivoGen,
Toulouse, France) or 5 µg/mL of the lectin concanavalin A (ConA, Concavalin A Type
IV, Sigma Aldrich, St. Louis, MO, USA) as stimulants and incubated for 24 h at 37 ◦C
and 5% CO2. After 24 h, cell culture supernatants were harvested into 96-well plates and
stored at −20 ◦C until cytokine analysis. Cytokines of the innate and cellular immune
response (interferon-γ (IFN-γ), tumour necrosis factor α (TNF-α), interleukin (IL)-1β, IL-2,
IL-12, and IL-10) were measured in the supernatants using Bio-Plex Pro Reagent Kit (Bio-
Rad, Veenendaal, the Netherlands) according to the manufacturer’s instructions. In brief,
50 µL magnetic beads were dispersed in a plate together with 50 µL of supernatant or
standard and incubated for 30 min at room temperature while shaking 300 rpm in the
dark. Subsequently, the beads were incubated with 25 µL detection antibodies for 30 min
at room temperature while shaking 300 rpm in the dark followed by 50 µL streptavidin-
PE for 10 min at room temperature while shaking 300 rpm in the dark. The beads were
resuspended in 125 µL assay buffer and read by Bio-Plex® MAGPIX™ Multiplex Reader
(Bio-Rad). Data processing was performed using Bio-Plex Manager 5.0, and concentrations
(in pg/mL) were interpolated from standard curves. In the few cases that data points were
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below or above the standard curves, the lower or upper limits of the standard curve were
used for data points, respectively.

2.10. Microbiota Analysis

Subjects were instructed to collect five stool samples at home the first day of defecation
within the last three days prior to the test visit, to freeze them at −20 ◦C and bring them to
the study site at V1 and V4. Faecal microbiota composition after five weeks intervention
(V4) were analysed solely for OBG and AX compared to CTRL, as these two intervention
groups contained the highest dosage of NPS.

Sequencing of microbial rRNA samples was performed at Teagasc (Fermoy, Ire-
land). The V3-V4 regions of the 16S gene were amplified using the primer pair 5′-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′ and
5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-
3′, as per the preparation instructions for Illumina MiSeq (San Diego, CA, USA). Samples
were barcoded using the primer combinations available in the Illumina Nextera XT kit (Il-
lumina) prior to quantification with the Qubit high-sensitivity DNA kit (Life Technologies,
Thermo Fisher Scientific, Waltham, MA, USA), equimolar pooling and high-throughput
sequencing on the MiSeq platform. Bioinformatical analyses were performed as described
elsewhere [45].

2.11. Faecal pH and Short-Chain Fatty Acids

Faecal pH and SCFA were analysed for OBG and AX compared to CTRL. To determine
the faecal pH, a sample of approximately 0.5 g faeces was homogenised by mixing into
4 mL demineralised water and the pH was immediately measured upon homogenisation.
SCFA were analysed as described by De Weirdt et al. [46]. In short, SCFA were extracted
from the faecal samples with diethyl ether, after the addition of 2-methyl hexanoic acid
as an internal standard. Extracts were analysed using a GC-2014 gas chromatograph
(Shimadzu, ‘s-Hertogenbosch, the Netherlands) equipped with a capillary fatty acid-free
EC-1000 Econo-Cap column (dimensions: 25 mm× 0.53 mm, film thickness 1.2 µM; Alltech,
Laarne, Belgium), a flame ionisation detector, and a split injector. The injection volume was
1 µL and the temperature profile was set from 110 to 160 ◦C, with a temperature increase of
6 ◦C/min. The temperature of the injector and detector were 100 and 220 ◦C, respectively.
Nitrogen was used as a carrier gas. Total SCFA were calculated by summing the molar
concentrations of acetate, propionate, and butyrate.

2.12. Gastrointestinal Symptoms, Stool Consistency and Stool Frequency

Gastrointestinal symptoms and discomfort over the weeks before and during inter-
vention were assessed at V1 and V4, respectively, using the irritable bowel syndrome (IBS)
score by Francis [47]. Stool frequency and stool consistency were assessed by the Bristol
stool scale [48]. The Bristol score (weighted consistency) was calculated as follows:

Bristol score =
7

∑
i=1

wi fi (1)

where wi = weighting factor assigned to each stool type of the Bristol stool scale (3, 2,
1, 0, −1, −2, −3 for stool type 1 to type 7) and fi = frequency of stool type (0 = never,
1 = sometimes, 2 = frequently).

2.13. Diet

In order to monitor dietary factors that might exert immunomodulatory effects and
to assess whether the volunteers were compliant with the request for abstaining from a
high-fibre diet, which might interfere with NPS effects, the dietary intake of subjects was
analysed using the food frequency questionnaire (FFQ) provided by the German Institute
of Human Nutrition Potsdam-Rehbrücke [49] before intervention (V1; diet history with
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regard to the past 12 months before intervention) and after the intervention period (V4;
diet history with regard to the five weeks of intervention).

2.14. Safety Laboratory Parameters

Blood cell counts, liver enzymes, electrolytes, and renal function were assessed in an
accredited laboratory (Labor Dr. Krause & Kollegen MVZ GmbH, Kiel, Germany) using a
clinical laboratory automation system (Cobas® analyzer series, Roche, Basel, Switzerland).

2.15. Vaccination Side Effects

Vaccination side effects were recorded and monitored as adverse events. According
to the EMA [41], the frequency of local reactions (i.e., indurations >50 mm diameter,
ecchymosis) and general symptoms (i.e., temperature ≥38 ◦C for >24 h, malaise, shivering)
were assessed during the total post-vaccination period (V2–V4).

2.16. Statistical Analysis

No a priori sample size calculation has been performed since the current study was
designed as a pilot study. An initial group size of 40 subjects (total 240 subjects) was chosen.
This group size is comparable to the actual sample size used in a pilot trial (n = 86, two
parallel groups) with a probiotic (Lactobacillus spp.) using similar methods as used in this
study [50]. Even though the trial was designed as a pilot trial, the geometric mean titre of
antibodies against one of the three influenza strains in the HI test was defined a priori as
the primary outcome measure. All other parameters were regarded as exploratory.

Normality of the data was evaluated using the Shapiro–Wilk test and the appropriate
statistical tests were applied accordingly: one-way ANOVA (parametric) or Kruskal–
Wallis one-way ANOVA on ranks followed by Mann–Whitney U pairwise comparisons for
differences between groups (non-parametric). Differences in dietary intake over time within
the complete study population were tested by Wilcoxon signed rank test. Occurrences were
tested using a Chi-square test with post-hoc Fisher exact test. For all outcomes, available
case analyses were performed. No data were imputed.

All statistical analyses were performed using IBM SPSS Statistics for Windows (version
25.0, Armonk, NY, USA) and microbiota results were visualised with Graphpad Prism
(version 5.03, San Diego, CA, USA). Normally distributed data are presented as mean
± standard deviation (SD) and medians with interquartile ranges (IQR) for data that
were not normally distributed. Two-sided p-values ≤ 0.05 are considered significant. If
significant, uncorrected p-values for post-hoc tests were corrected for multiple testing by
the false-discovery rate (FDR) of Benjamini–Hochberg.

3. Results
3.1. Study Subjects

In this study, a total of 239 subjects aged 50–79 years were included, of which 231
completed the entire study protocol. Five subjects dropped out due to an infection prior to
vaccination (common cold, bronchitis, influenza-like illness, urinary tract infection), one
subject due to gastrointestinal complaints, and two subjects withdrew consent (Figure 2).
Baseline characteristics of the study population are presented in Table 1. The six interven-
tion groups did not differ in sex, age, or BMI. Overall, adherence to the study product
consumption was high. The mean compliance by product counting was 98.9%, with 94.6%
of the study subjects having a compliance exceeding 95%, which did not differ between
intervention groups (p = 0.888; data not shown). According to the Morisky score [39], 95.7%
of subjects had a high compliance, whereas 4.3% had a medium compliance. No differences
in compliance between intervention groups were observed (p = 0.222; data not shown).
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Figure 2. CONSORT flow diagram of the pilot study. YBG: yeast β-glucan, SBG: shiitake β-glucan, OBG: oat β-glucan, AX:
arabinoxylan, EPS: exopolysaccharide, CTRL: control.

Table 1. Baseline characteristics of the study population.

Total
(n = 239)

YBG
(n = 40)

SBG
(n = 40)

OBG
(n = 40)

AX
(n = 40)

EPS
(n = 39)

CTRL
(n = 40) p-Value

Female/male (n) 118/121 17/23 19/21 23/17 22/18 23/16 14/26 0.212

Age (years) 67.9 [63.1;
71.4]

68.2 [62.1;
71.2]

67.3 [60.2;
70.0]

68.0 [63.0;
71.3]

67.5 [63.7;
71.3]

66.2 [62.2;
72.3]

69.5 [65.0;
73.3] 0.271

BMI (kg/m2) 27.0 ± 3.6 27.2 ± 3.9 27.0 ± 3.1 26.9 ± 3.5 26.7 ± 4.0 27.3 ± 3.7 27.3 ± 3.5 0.969

Values are presented as numbers, medians [Q1; Q3], or mean ± SD. Differences in sex between intervention groups were tested with
a Chi-square test. Differences in age were tested with a Kruskal–Wallis test and differences in BMI were tested with one-way ANOVA.
BMI: body mass index, YBG: yeast β-glucan, SBG: shiitake β-glucan, OBG: oat β-glucan, AX: arabinoxylan, EPS: exopolysaccharide,
CTRL: control.

3.2. Antibody Titres
3.2.1. HI Antibodies

As shown in Table 2, the MLFI for influenza A H1N1 antibody titres was lower in the
SBG group compared to CTRL (uncorrected p = 0.044), while a trend towards a higher MLFI
was observed in the AX group (uncorrected p = 0.074) after NPS supplementation. However,
these effects were not significant after correction for multiple testing. Furthermore, the
increase in the seroprotection rate during the intervention tended to be higher in the AX
group (48.7%) compared to the CTRL (25.6%) for the influenza A H1N1 strain (uncorrected
p = 0.057) (Table 3).



Nutrients 2021, 13, 2683 10 of 20

Table 2. Haemagglutination inhibition (HI) titres at baseline (V1) and three weeks after vaccination (V4) in the different
NPS intervention groups.

YBG SBG OBG AX EPS CTRL p

GMT (Log2(HI Titre/10))

H1N1
V1 1.00 [0.00; 3.00] 1.75 [0.00; 3.00] 0.50 [0.00; 2.50] 0.88 [−0.44; 2.00] 1.50 [0.00; 2.50] 1.38 [0.13; 2.94] 0.557
V4 2.88 [1.00; 4.00] 2.50 [1.00; 3.50] 2.50 [0.50;3.50] 2.50 [1.88; 3.63] 2.00 [1.00; 3.00] 3.00 [1.50; 4.00] 0.548
MLFI 1.00 [0.00; 1.50] 0.75 [0.00; 1.50] * 1.00 [0.25; 2.25] 2.00 [1.00; 3.00] # 1.00 [0.50; 2.00] 1.25 [0.50; 2.00] 0.010

H3N2
V1 0.00 [−1.00; 0.69] 0.00 [−1.00; 0.50] 0.00 [−1.00; 0.50] −0.38 [−1.00; 0.50] −0.50 [−1.00; 0.00] −0.25 [−1.00; 0.44] 0.266
V4 1.00 [−1.00; 2.00] 1.00 [0.00; 1.50] 1.00 [0.25; 1.50] 1.00 [0.00; 2.00] 0.50 [0.00; 1.25] 1.00 [0.50; 1.75] 0.382
MLFI 0.50 [0.00; 1.50] 0.75 [0.00; 1.25] 1.00 [0.50; 2.00] 1.00 [0.38; 1.75] 1.00 [0.00; 1.75] 1.00 [0.50; 2.00] 0.198

Influenza B
V1 −0.50 [−1.00; 2.00] −0.50 [−1.00; 0.50] 0.00 [−1.00; 0.44] −0.25 [−1.00; 1.00] 0.00 [−1.00; 1.00] 0.13 [−1.00; 1.88] 0.741
V4 1.00 [1.19; 2.06] 1.00 [0.00; 2.00] 1.00 [0.00; 1.50] 1.00 [0.00; 2.13] 1.00 [−0.25; 2.00] 1.00 [0.00; 2.00] 0.786
MLFI 1.00 [0.00; 2.06] 1.00 [0.00; 2.00] 0.75 [0.00; 1.75] 1.00 [0.00; 2.00] 0.75 [0.00; 2.00] 1.00 [0.00; 1.50] 0.683

Values are presented as medians [Q1; Q3]. p represents the p-values for the differences at each visit (V1 and V4) and over time (V1 to V4)
between the six intervention groups tested with a Kruskal–Wallis test. * represents p < 0.05 for the pairwise comparisons for differences
between V1 and V4 compared to CTRL, tested by uncorrected Mann–Whitney U test. # represents a p < 0.1 for the pairwise comparisons for
differences between V1 and V4 compared to CTRL, tested by uncorrected Mann–Whitney U test. NPS: non-digestible polysaccharide, GMT:
geometric mean titre, MLFI: mean log2 fold increase between V1 and V4, YBG: yeast β-glucan, SBG: shiitake β-glucan, OBG: oat β-glucan,
AX: arabinoxylan, EPS: exopolysaccharide, CTRL: control.

Table 3. Changes in seroprotection and seroconversion rate in the haemagglutination inhibition (HI) assay between baseline
(V1) and three weeks after vaccination (V4) in the different NPS intervention groups.

YBG SBG OBG AX EPS CTRL p

Seroprotection rate (%)

H1N1
V1 42.5 50.0 27.5 27.5 38.5 42.5 0.230
V4 60.5 59.0 59.0 75.7 61.5 66.7 0.633

V4-V1 18.4 10.3 30.8 48.7 # 23.1 25.6 0.005

H3N2
V1 5.0 7.5 2.5 7.5 0.0 2.5 0.476
V4 26.3 17.9 19.7 32.4 15.4 20.5 0.468

V4-V1 21.0 12.8 15.4 24.3 15.4 17.9 0.802

Influenza B
V1 15.0 7.5 7.5 10.0 10.3 25.0 0.148
V4 36.8 28.2 17.9 37.8 25.6 35.9 0.343

V4-V1 26.3 23.1 10.3 27.0 15.4 10.3 0.180

Seroconversion rate (%)
H1N1 V1 to V4 15.8 17.9 28.2 43.2 17.9 23.1 0.056
H3N2 V1 to V4 13.2 7.7 10.3 10.8 10.3 17.9 0.799

Influenza B V1 to V4 21.1 17.9 7.7 21.6 17.9 15.4 0.618

Values are presented as proportions (%). p represents the p-values for the differences at each visit (V1 and V4) and over time (V1 to V4)
between the six intervention groups tested with a Chi-square test. # represents a p < 0.1 for the pairwise comparisons for differences
between V1 and V4 compared to CTRL, tested by uncorrected Fisher exact test. NPS: non-digestible polysaccharide, YBG: yeast β-glucan,
SBG: shiitake β-glucan, OBG: oat β-glucan, AX: arabinoxylan, EPS: exopolysaccharide, CTRL: control.

3.2.2. Micro-Neutralization Antibodies

The same analyses as for the HI titres were performed with micro-neutralization titres
and showed significant effects on influenza A H1N1 outcomes. In the YBG and SBG groups,
the MLFI was lower compared to CTRL (uncorrected p = 0.090 and p = 0.014, respectively),
although this effect did not reach significance for the YBG group (Table 4). The increase in
seroprotection rate and seroconversion rate during the intervention period were also lower
in the SBG group (30.8% and 39.5%) compared to CTRL (61.5% and 61.5%) for this influenza
strain (uncorrected p = 0.012 and p = 0.069, respectively) (Table 5). After correction for
multiple testing, these effects were no longer significant.
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Table 4. Micro-neutralization titres at baseline (V1) and three weeks after vaccination (V4) in the different NPS interven-
tion groups.

YBG SBG OBG AX EPS CTRL p

GMT (Log2(Titre/10))

H1N1
V1 0.49 [−0.46; 3.88] 2.51 [−0.51; 4.50] 0.75 [−0.51; 2.18] 0.49 [−0.51; 2.38] 1.00 [−0.51; 2.51] 0.49 [−0.51; 2.00] 0.408
V4 4.50 [2.88; 6.00] 4.50 [3.00; 6.13] 4.50 [2.74; 6.00] 5.50 [3.75; 6.00] 4.50 [2.00; 5.50] 5.00 [3.00; 6.50] 0.437

MLFI 2.00 [0.93; 4.26] # 1.50 [0.51; 3.63] * 3.51 [1.74; 5.01] 3.77 [2.50; 5.51] 2.09 [1.00; 4.50] 3.50 [1.50; 5.51] 0.013

H3N2
V1 1.25 [0.49; 3.88] 1.49 [0.00; 2.51] 0.49 [−0.51; 1.49] 0.49 [−0.51; 2.00] 0.49 [−0.51; 1.49] 0.49 [0.00; 2.00] 0.031
V4 4.25 [1.87; 5.63] 4.50 [2.51; 5.50] 4.00 [1.49; 6.00] 4.50 [2.76; 6.00] 3.50 [2.51; 5.00] 4.00 [3.00; 5.50] 0.586

MLFI 1.88 [0.51; 3.50] 2.02 [0.88; 4.01] 3.01 [1.49; 5.50] 3.00 [1.00; 4.76] 3.03 [1.51; 4.50] 3.03 [1.51; 5.02] 0.112

Influenza B
V1 1.00 [0.13; 1.50] 1.00 [0.50; 2.00] 0.50 [0.00; 1.50] 1.00 [0.50; 2.00] 0.50 [0.00; 2.00] 1.00 [0.50; 2.00] 0.486
V4 3.00 [2.50; 4.50] 3.25 [2.00; 4.55] 3.00 [1.50; 4.00] 3.50 [1.90; 5.15] 3.50 [2.00; 5.30] 3.80 [2.00; 4.50] 0.609

MLFI 2.03 [0.95; 3.51] 1.52 [0.87; 3.01] 1.81 [1.00; 3.01] 2.03 [1.49; 3.37] 2.26 [1.10; 3.52] 2.00 [0.51; 3.01] 0.745

Values are presented as medians [Q1; Q3]. p represents the p-values for the differences at each visit (V1 and V4) and over time (V1 to V4)
between the six intervention groups tested with a Kruskal–Wallis test. * represents p < 0.05 for the pairwise comparisons for differences
between V1 and V4 compared to CTRL, tested by uncorrected Mann–Whitney U test. # represents a p < 0.1 for the pairwise comparisons for
differences between V1 and V4 compared to CTRL, tested by uncorrected Mann–Whitney U test. NPS: non-digestible polysaccharide, GMT:
geometric mean titre, MLFI: mean log2 fold increase, YBG: yeast β-glucan, SBG: shiitake β-glucan, OBG: oat β-glucan, AX: arabinoxylan,
EPS: exopolysaccharide, CTRL: control.

Table 5. Changes in seroprotection and seroconversion rate in the micro-neutralization assay between baseline (V1) and
three weeks after vaccination (V4) in the different NPS intervention groups.

YBG SBG OBG AX EPS CTRL p

Seroprotection rate (%)

H1N1
V1 40.0 53.8 25.0 35.0 33.3 30.0 0.130
V4 86.8 84.2 84.6 89.2 79.5 89.7 0.813

V4-V1 44.7 30.8 * 59.0 59.5 46.2 61.5 0.050

H3N2
V1 37.5 38.5 15.0 32.5 20.5 27.5 0.126
V4 76.3 86.8 74.4 81.1 84.6 97.4 0.082

V4-V1 39.5 48.7 59.0 48.6 64.1 71.8 0.053

Influenza B
V1 22.5 30.8 20.0 32.5 30.8 30.0 0.753
V4 84.2 78.9 74.4 75.7 79.5 76.9 0.927

V4-V1 60.5 50.0 53.8 43.2 48.7 46.1 0.726

Seroconversion rate (%)
H1N1 V1 to V4 52.6 39.5 # 69.2 75.7 51.3 61.5 0.019
H3N2 V1 to V4 42.1 52.6 64.1 56.8 69.2 71.8 0.076

Influenza B V1 to V4 60.5 47.4 48.7 56.8 53.8 51.3 0.863

Values are presented as proportions (%). p represents the p-values for the differences at each visit (V1 and V4) and over time (V1 to V4)
between the six intervention groups tested with a Chi-square test. * represents p < 0.05 for the pairwise comparisons for differences between
V1 and V4 compared to CTRL, tested by uncorrected Fisher exact test. # represents a p < 0.1 for the pairwise comparisons for differences
between V1 and V4 compared to CTRL, tested by uncorrected Fisher exact test. NPS: non-digestible polysaccharide, YBG: yeast β-glucan,
SBG: shiitake β-glucan, OBG: oat β-glucan, AX: arabinoxylan, EPS: exopolysaccharide, CTRL: control.

3.3. Common Cold Incidence

Overall, no significant differences in the occurrence of colds were observed between
groups during the intervention period (Table 6). However, in all groups, fewer subjects
were affected by colds than in the CTRL group, which was most pronounced in the AX
group (one vs. eight colds according to Jackson criteria; uncorrected p = 0.029 for Fisher
exact test).
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Table 6. Number of subjects with common cold episodes during the intervention period (V1–V4).

n YBG SBG OBG AX EPS CTRL p
Chi-Square Test

p
Fisher Exact Test

AX vs. CTRL

Cold acc. to Predy et al. [43] 3 1 3 1 5 5 0.317 0.113

Cold acc. to Jackson et al. [44] 7 3 5 1 7 8 0.141 0.029

Values represent the number of subjects with colds diagnosed based on Predy criteria or Jackson criteria, respectively. p Chi-square test
represents the p-values for the comparison between the six intervention groups tested with a Chi-square test. Pairwise comparisons were
performed using Fisher exact test to calculate p-values comparing each intervention group with CTRL. With the exception of AX, all
pairwise comparisons were not significant (p > 0.05). p Fisher exact test represents p-values for the pairwise comparisons comparing AX and
CTRL, tested by uncorrected Fisher exact test. YBG: yeast β-glucan, SBG: shiitake β-glucan, OBG: oat β-glucan, AX: arabinoxylan, EPS:
exopolysaccharide, CTRL: control.

3.4. Cytokine Production

Cytokine production was measured after incubation of whole blood with culture
medium, ConA, or LPS. In the YBG, OBG, AX, and EPS groups, secreted IFN-γ levels in
blood incubated with medium changed significantly between baseline and one week after
vaccination compared to CTRL (Table S2; all uncorrected and corrected p ≤ 0.05). For the
other cytokines or treatment conditions, no significant effects were observed over time
between groups.

3.5. Microbiota Composition

At the end of the five-week consumption period with either AX or OBG, no differences
were observed in microbiota α-diversity compared to CTRL (Figure 3A). However, signifi-
cant differences in the abundance of several bacterial genera were noted. AX-intervened
subjects showed a significantly higher relative abundance of Bifidobacterium (uncorrected
p = 0.010), whereas a significantly lower Clostridium relative abundance was observed in
this group compared to CTRL (uncorrected p = 0.001; Figure 3B). A non-significant trend
towards a lower Clostridium relative abundance was seen for OBG (uncorrected p = 0.063).
The relative abundance of Parasutterella was significantly higher in the AX group and the
OBG group compared to CTRL (uncorrected p = 0.005 and p = 0.049, respectively). These
significant differences were still significant after correction for multiple testing. At phylum
level, the Bacteroidetes:Firmicutes ratio was not significantly different between the groups.

Figure 3. (A) α-diversity plots and (B) relative abundances (RA) of Bifidobacterium, Clostridium, Parasutterella and Bac-
teroidetes:Firmicutes ratio in faecal microbiota after five weeks of oat β-glucan (OBG), arabinoxylan (AX) or control (CTRL)
consumption. Values are presented as mean ± SD or median ± IQR and differences between intervention groups were
tested with one-way ANOVA (A) or a Kruskal–Wallis test (B), respectively. p-values represent significant differences for the
pairwise comparisons between OBG or AX compared to CTRL, tested by uncorrected Mann–Whitney U test.
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3.6. Short-Chain Fatty Acids and Faecal pH

No significant changes in any of the faecal SCFA levels were observed throughout the
intervention period between the OBG, AX and CTRL groups (Table S3; all p ≥ 0.129), while
a significantly lower increase in faecal pH was measured in the AX group compared to
CTRL (uncorrected p = 0.005) that was still significant after correction for multiple testing.

3.7. Dietary Intake

During the study period, no significant changes in dietary intake were observed
between the NPS intervention groups over time (Table S4; all p ≥ 0.386). From two weeks
prior to starting the intervention, subjects were asked to reduce their dietary fibre intake.
Based on the dietary intake data, the fibre intake within the complete study population
was indeed significantly decreased during the intervention compared to the period before
wash-out (18.26 [14.16; 22.38] vs. 20.60 [16.56; 20.09]; p < 0.001).

3.8. Gastrointestinal Symptom Scores, Stool Frequency and Stool Consistency

The gastrointestinal symptom scores and stool frequency did not significantly change
over time between groups, indicating that the NPS products were well tolerated (Table S5).
Compared to the CTRL group, Bristol stool consistency scores decreased after supplemen-
tation with YBG, SBG, and AX (all uncorrected and corrected p ≤ 0.025) and tended to
decrease in the OBG group (uncorrected p = 0.087), indicating softer stools.

3.9. Laboratory Safety Parameters and Adverse Events

During the complete study period, no statistically significant changes in laboratory
safety parameters occurred over time between the intervention groups (Table S6). Further-
more, NPS supplementation did not significantly affect the total number of adverse events,
the total number of RTI, the total number of vaccination side effects or the total number of
constipation-related, diarrhoea-related, or other adverse events (data not shown).

4. Discussion

The trend in increase of HI antibody titres and seroprotection rate against the influenza
A H1N1 strain in response to vaccination in subjects consuming AX compared to CTRL
might suggest an adjuvant effect of AX on the immune response to vaccination against
this influenza strain in seniors. An effect of orally administered AX on the antibody-
mediated immune response has been reported previously in chickens [31]. Although the
underlying mechanism has not been clarified yet, several immunomodulatory activities
of AX could explain this effect. Sun et al. [51] demonstrated that oral treatment with
carrot pomace-derived polysaccharides could enhance vaccine-specific antibody titres
in immunosuppressed mice and hypothesised that food-derived polysaccharides could
enhance the antigen presentation capacity of innate immune cells (e.g., macrophages and
dendritic cells) and increase dendritic cell maturation. Indeed, AX has been reported to
activate dendritic cell maturation [16] and stimulate the expression of the C-type lectin
receptor DEC-205, which facilitates antigen presentation by dendritic cells in vitro [52].
Moreover, AX has been found to enhance macrophage phagocytic activity in vitro [15,53].
Tang et al. [54] and Govers et al. [55] studied the same NPS as utilised in the present
trial through in vitro models. These studies showed that AX was the most potent NPS
in supporting macrophage differentiation into a specific subtype [54]. Among the NPS
tested, AX also showed the strongest induction of transcription and secretion of a unique
set of cytokines and chemokines and an increase in monocyte recruitment capacity of
macrophages, suggesting enhanced immune cell vigilance [55]. Given that vaccine efficacy
is dependent on the host’s ability to rapidly recruit competent innate immune cells [51],
this could explain why AX may effectively boost vaccine-mediated antibody responses in
an older population.

The observed effects of AX on HI antibody titres seemed to be “strain-dependent”:
the enhancement was most pronounced for the influenza A H1N1 strain. A recent meta-
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analysis by Yeh et al. [56] supports these results by showing that prebiotic supplementation
(mainly galacto- and fructo-oligosaccharides) for eight or more weeks could significantly
increase HI antibody titres against the H1N1 strain after influenza vaccination, while
a similar but non-significant overall effect was observed for HI antibody titres against
the H3N2 and B strains. Despite the similarity with the NPS tested herein, and AX in
particular, it is difficult to explain this strain-specific difference in vaccine-enhancing effects.
However, it is known that prior vaccinations and natural infections with closely related
influenza strains could affect pre-vaccination antibody titres and antibody response to
vaccination [57]. We observed higher pre-vaccination antibody titres for the H1N1 strain
compared to the other influenza strains, which is most likely the result of cross-reactive
antibodies from prior vaccination of the subjects during previous influenza seasons. Indeed,
a recent study investigating the impact of repeated annual vaccination against the same
influenza A (H1N1)pdm09 strain also reported elevated pre-vaccination antibody titres
and augmentation of HI antibody responses three weeks after repeated vaccination [57]. In
contrast, repeated annual vaccination could blunt the HI antibody response to influenza
vaccine strains that undergo frequent antigenic changes, particularly H3N2 [58]. While the
H1N1 strain in the 2012–2013 influenza vaccine administered in this study was antigenically
homogeneous to the H1N1 strain used in the 2010–2011 and 2011–2012 influenza vaccines,
the H3N2 and influenza B strains were antigenically different [40,59,60], explaining the
lower antibody cross-reactivity and pre-vaccination antibody titres for these latter strains
compared to H1N1 in the current study. Although the micro-neutralization assay is
considered to be more sensitive than the HI assay for detection of antibody titres, cross-
reactive antibodies can limit the interpretation of this assay similarly [61].

In the HI as well as the micro-neutralization assay, a lower fold increase in H1N1
antibody response to vaccination was observed in subjects consuming SBG compared to
CTRL, which might be explained by the high pre-vaccination antibodies against H1N1
in the SBG group at V1. Hence, the vaccine-mediated antibody response might have
appeared less pronounced in this group. The variable pre-vaccination antibody titres across
intervention groups most probably is due to the small sample size of this study, which
exposes the results to the risk of random effects. As reported by multiple animal studies
investigating the adjuvant effects of SBG in a vaccination model, SBG could significantly
increase vaccine-specific antibody responses [28,29]. Moreover, a human crossover trial
showed that ingestion of SBG at a daily dosage of 2.5 mg for six weeks could increase
the number of circulating B-cells in an older population aged 50 years and older [62] and
recent in vitro analyses based on macrophages indicated that SBG shows similar, albeit
less potent, immunomodulatory activities to AX [15,55]. In line with these findings, we
found a clear but non-significant trend towards less common cold episodes during SBG
consumption in the current study, suggesting a protective effect of SBG against viral
infections. Due to the conflicting results, it remains to be established whether SBG indeed
has immunomodulatory effects in humans and additional studies with higher dosages and,
particularly, larger sample sizes are required.

On the contrary, the observed beneficial effects of AX on the immune response are
further supported by exploratory data of our study indicating a lower incidence of common
colds during the five-week AX consumption period, although statistical significance was
not achieved with the pilot-powered trial. Similarly, Maeda et al. [63] reported a reduced
duration and severity of common cold symptoms in elderly participants during a six-week
treatment with AX derivatives, accompanied by an increase in natural killer (NK) cell
activity. Enhancing NK cell activity might increase the resistance to viral infections in the
elderly population, since NK cells constitute the first line of defence against virally infected
cells and an age-dependent decrease in NK cell immunity has been reported [64]. Recently,
AX consumption (500 mg/day) for one month has been shown to induce a significant
increase in NK cell activity in elderly subjects [65]. Although NK cell activity was not
studied in our pilot trial, we observed an effect of AX on IFN-γ, a key cytokine produced
by NK cells [66]. The results of cytokine analyses during the intervention indicated that
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AX, as well as other NPS such as OBG, YBG, and EPS could counteract a decrease in serum
IFN-γ levels, which was observed in the CTRL group. These results are in agreement
with previous studies reporting that supplementation with an AX-rich substance for eight
weeks and YBG for 10 days could increase serum IFN-γ levels in healthy subjects [18,67],
although others did not show this effect for YBG [68].

Emerging evidence reveals that probiotics, prebiotics, and the intestinal microbiota can
significantly influence the immune response to vaccination and the incidence of infectious
diseases in the host, particularly respiratory virus infections [4,12,69,70]. In our study, we
showed that subjects consuming AX for five weeks had a higher relative abundance of
Bifidobacterium compared to subjects in the CTRL group. Therefore, AX appeared to have a
bifidogenic effect, which is supported by previous studies reporting a prebiotic effect of AX
on Bifidobacterium species [11,71,72]. Several Bifidobacterium species (e.g., B. longum, B. breve
and B. bifidum) have been identified to reduce the incidence of influenza infections and
reduce the severity and duration of common cold episodes in humans [70,73–75]. Thus,
we speculate that the lower incidence of common colds during AX consumption in our
study might be attributed, at least in part, to a relative increase in intestinal Bifidobacterium
species. The higher faecal Bifidobacterium abundance after AX consumption could be
expected to be associated with a change in SCFA levels and faecal pH, as found in previous
piglet trials [71,76]. However, despite a significantly lower increase in faecal pH in the
AX group compared to the CTRL, which is potentially related to the subjects’ low dietary
fibre consumption and abstinence from pro- and prebiotic foods during intervention, no
changes in SCFA levels were observed in our study. Whereas the role of Bifidobacterium
species is well established in the context of mediating immunomodulatory effects, the
role of Parasutterella is still to be clarified. Some recent studies, however, indicated that
Parasutterella is also associated with immunity [77–79]. Thus, since AX at a daily dosage of
10 g had an impact on intestinal microbiota and showed some immunomodulatory effects,
the involvement of microbiota and a prebiotic role was likely contributory to or mediating
its immunomodulatory actions. The wheat endosperm AX used in this clinical trial was
characterised by less complex side chains compared to AX isolated from other parts of the
grain [30]. Although it is not clear yet whether structural characteristics of AX influence
their prebiotic properties, one could speculate that AX with less complex side chains might
be more efficiently metabolized by beneficial intestinal bacteria. However, the impact of
the specific structural features of AX on its prebiotic effects warrants further research.

No adverse effects or gastrointestinal side effects of NPS consumption were reported
by subjects in this study, indicating that the NPS products were well-tolerated and oral
NPS supplementation is a safe and feasible intervention. Moreover, consumption of most
of the NPS could soften stools, which is generally considered a beneficial physiological
effect associated with the water binding capacity of NPS [6,80]. However, for YBG and SBG,
the dosage of 500 mg may be considered as too low to exert a relevant water binding effect.
Based on the improvement of stool consistency, NPS could, besides immune support, also
provide gut health and bowel support with no adverse side effects.

Some potential limitations of this study should be mentioned. First of all, this study
was designed as a pilot study, as no data on the primary outcome (i.e., HI titres after
influenza vaccination) from previous studies with these NPS were available to estimate an
adequate sample size. Due to the inclusion of multiple intervention groups (i.e., multiple
comparisons) and relatively small group sizes, the study was underpowered, and the
results must be interpreted with caution. Instead, positive trends and close-to-significant
findings of this study should be regarded indicative of effects that should be verified
in a confirmatory, large-scale randomised trial, for which it was calculated that over
110 subjects per intervention arm would be required to detect stimulatory effects of AX on
vaccine-mediated increases in HI seroprotection rate against influenza A H1N1. Secondly,
administered dosages of NPS differed between the intervention groups, as the chosen
dosages used in this trial were based on recommended dosages by the respective producers
of the NPS.
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Therefore, we cannot directly compare the immunomodulatory effects of the different
NPS, as the observed outcome differences may result from dosage inequalities. In case of
those NPS, which were administered in dosages below 10 g daily, prebiotic effects could not
be expected [81] and merely direct interactions with host cells might have been assumed
as the basis for immunomodulatory effects. Further studies with higher and/or equal
NPS dosages should be conducted to compare immunomodulatory effects and enable
comparison of effect sizes between NPS. Thirdly, we observed a large interindividual
variation for all outcomes in this study, which may have clouded possible small beneficial
effects of the NPS interventions. This interindividual variation could be a consequence
of the older population and the variation in previous history of influenza vaccinations
or natural infections. As antigenic similarity between previous influenza vaccine strains
or circulating strains and current influenza vaccine strains is known to affect antibody
titres and vaccine efficacy, adjusting for these factors might be required to evaluate the
effectiveness of NPS to enhance the immune response. The existence of this memory factor
raises the question of whether the best strategy to investigate the adjuvant effects of NPS in
the elderly would be to use vaccines to which the study subjects and their immune systems
are naïve. Finally, although the primary focus of this trial was to target immunosenescence
in the older population, the immunocompetence within the population studied might differ
largely as a consequence of the relatively wide age range of included subjects. This may
have played a role in the interindividual variation that was observed, as immunocompetent
subjects may have had less pronounced responses to the interventions than subjects with
an impaired immune function.

Although the explorative data of this pilot study were subject to a large interindividual
variation and should be interpreted with caution, the results suggest that AX supplemen-
tation at a daily dosage of 10 g can be feasible, tolerable, and safe as an oral adjuvant to
support vaccine efficacy and protection against viral infections in elderly individuals. However,
additional large-scale clinical trials should be conducted in the future to confirm this.
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