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Abstract

During outbreaks, the lack of diagnostic “gold standard” can mask the true burden of infec-

tion in the population and hamper the allocation of resources required for control. Here, we

present an analytical framework to evaluate and optimize the use of diagnostics when multi-

ple yet imperfect diagnostic tests are available. We apply it to laboratory results of 2,136

samples, analyzed with 3 diagnostic tests (based on up to 7 diagnostic outcomes), collected

during the 2017 pneumonic (PP) and bubonic plague (BP) outbreak in Madagascar, which

was unprecedented both in the number of notified cases, clinical presentation, and spatial

distribution. The extent of these outbreaks has however remained unclear due to nonoptimal

assays. Using latent class methods, we estimate that 7% to 15% of notified cases were Yer-

sinia pestis-infected. Overreporting was highest during the peak of the outbreak and lowest

in the rural settings endemic to Y. pestis. Molecular biology methods offered the best com-

promise between sensitivity and specificity. The specificity of the rapid diagnostic test was

relatively low (PP: 82%, BP: 85%), particularly for use in contexts with large quantities of

misclassified cases. Comparison with data from a subsequent seasonal Y. pestis outbreak

in 2018 reveal better test performance (BP: specificity 99%, sensitivity: 91%), indicating that
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factors related to the response to a large, explosive outbreak may well have affected test

performance. We used our framework to optimize the case classification and derive consoli-

dated epidemic trends. Our approach may help reduce uncertainties in other outbreaks

where diagnostics are imperfect.

Introduction

The availability of accurate diagnostics is essential for an effective response to infectious dis-

ease outbreaks. In the relatively common situation where no gold standard diagnostic is avail-

able (i.e., absence of a diagnostic test with perfect sensitivity and specificity), interpretation of

diagnostic results becomes challenging [1,2]. This may hamper case identification and man-

agement; jeopardize the evaluation of the burden, scope, timing, and spatial expansion of the

outbreak; and ultimately impede control. Here, taking a large plague outbreak in Madagascar

as a case study, we present an integrative analytical framework to assess the performance of

diagnostics and reconstruct spatiotemporal epidemic patterns in situations where multiple yet

imperfect diagnostics are available.

Plague is a highly fatal disease caused by a gram-negative bacillus Yersinia pestis [3].

Rodents constitute its natural reservoir and the bacillus can be transmitted to humans by fleas.

When bitten by an infected flea, a person typically develops bubonic plague (BP), which is

characterized by fever and painful lymphadenitis in the area of the fleabite [3]. Septicemic

spread can occasionally lead to pneumonic plague (PP) that typically consists of sudden fever,

cough, and symptoms of lower respiratory tract infections. Interhuman transmission of PP is

possible through droplet spread [4]. Plague case fatality ratio (CFR) has been estimated

between 10% to 40% [5–7]. Diagnosis, particularly of PP, is challenging due to (i) nonspecific

early symptoms [8,9]; (ii) the difficulty to collect high-quality sputum samples, especially from

severely ill and young patients [10]; and (iii) the scarcity of PP cases hampering evaluation of

diagnostics; most assays have been evaluated on BP samples [11].

Between August and November 2017, Madagascar experienced a large number (2,414) of

notifications of clinically suspected plague cases that were predominantly in 2 major urban

areas (79%) with unusually high proportions of PP (78%) (Fig 1A and 1B) [12]. Important dis-

crepancies between tests (the proportion of positive PP results ranged from 1% to 18%

depending on the test; Fig 1C and 1D) mean that the true extent of the PP outbreak remains

unclear. Besides, without a good understanding of the performances of the diagnostics avail-

able, it is difficult to optimize diagnostic and case classification algorithms for future out-

breaks. Here, we analyze data describing this large plague epidemic to obtain a comprehensive

view of the burden of infection among notified cases. We evaluate the performance of test

diagnostics and propose updated case classification algorithms to better allocate sparse

resources during future outbreaks. Using the combined test results and diagnostic perfor-

mance estimates, we reconstruct epidemiological trends over space and time.

Results

Of 2,414 notifications, we consider those with sputum or bubo aspirates and known clinical

form (PP: 1,779, BP: 357) [12]. Of PP sputum samples, 22% have at least 1 positive culture

(N = 4), rapid diagnostic test (RDT) (N = 327), or molecular biology (MB) (N = 84) (Fig 1D)

and are classified, based on their diagnostic outcomes (Fig 2), as either confirmed (2%) or

probable (20%) (Fig 1C), versus 34% of BP (37 culture, 99 RDT, 79 MB) (Fig 1D) with 16%

confirmed and 18% probable (Fig 1C) [12].
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We develop a latent-class statistical model [13] to estimate the performance of diagnostic

tests and the scale of the outbreak from contingency tables describing 3 tests with up to 7 sepa-

rate diagnostics outcomes (i.e., 2 single-outcome tests: RDT, culture; plus up to 5 genes for

MB) for 2,136 samples received at the central laboratory for plague (CLP) between August 1

and November 26, 2017. The model describes the joint expected distribution of diagnostic out-

comes as a function of the prevalence (proportion of Y. pestis infections among notified, clini-

cally suspected cases), the sensitivity (probability of positive result if the sample is from a Y.

pestis-infected person), and specificity (probability of negative result if the sample is from a

person that was not infected with Y. pestis) of each test. Estimation of model parameters is per-

formed in a Bayesian framework via Markov chain Monte Carlo (MCMC) sampling [14]

under the assumption that culture specificity is 100%. Technical details are provided in Materi-

als and methods.

We estimate that test specificity was similar between sample types. MB was highly specific

(PP: 100%, 95% credible interval 99% to 100%, BP: 100%, 98% to 100%), whereas RDT

Fig 1. Diagnostics and case classification during the plague outbreak in Madagascar in 2017. (A, B) Weekly number of notified cases for PP (A) and BP (B)

by case classification. (C–E) Proportion of notified cases classified as confirmed (conf) or probable (prob) (C), with a positive test result for RDT, culture, or

MB (NB, only cases on whom the respective test was performed are considered in the denominator. No restrictions were put on the use of MB and RDT.

Culture was only performed if RDT was positive, apart from PP samples from nonendemic regions. On those samples, culture was performed irrespective of

RDT result) (D) and with a certain combination of diagnostic outcomes (E), presenting outcomes that were performed on all samples (RDT, qPCR on pla and

caf1 genes). Model fits to these proportions are provided with black dots and lines indicating model predictions and 95% credible intervals, respectively. The

underlying data and code to reproduce this figure are available on Open Science Framework (https://osf.io/nbc4t/). BP, bubonic plague; MB, molecular

biology; PP, pneumonic plague; qPCR, quantitative polymerase chain reaction; RDT, rapid diagnostic test.

https://doi.org/10.1371/journal.pbio.3001736.g001
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specificity was around 80% for both PP (82%, 80% to 84%) and BP (85%, 81% to 89%) (Fig 3A

and Table A in S1 Text). Additional analyses including an initially implemented classical poly-

merase chain reaction (cPCR) protocol confirm that these lacked specificity (PP: 55%, 52% to

58%, BP: 62%, 56% to 69%) (Table B in S1 Text) and justifies its timely replacement by MB.

The latter was the most sensitive test (PP: 80%, 61% to 97%; BP: 95%, 86% to 100%), markedly

higher than that of culture (PP: 7%, 0% to 23%; BP: 64%, 46% to 85%) and RDT (PP: 28%, 18%

to 41%, BP: 72%, 61% to 83%) (Fig 3B and Table A in S1 Text). The statistical analysis also pro-

vides estimates of the performance of diagnostic tests that would be based on single gene diag-

nostic outcomes obtained from the quantitative PCR (qPCR) (Table A in S1 Text). Estimates

were robust for deviations from model assumptions including the inclusion of the initial cPCR

(Table B in S1 Text) and the use of a uniform prior on prevalence (Table D in S1 Text).

Under the assumption that samples were of good quality, we estimate that prevalence of

infection among notified cases was 4% (3 to 7) for PP and 25% (18% to 28%) for BP (Fig 3C).

This corresponds to 78 (50 to 119) and 81 (64 to 98) Y. pestis infections among notified PP

(N = 1,779) and BP cases (N = 357), respectively. However, a challenge in diagnosing PP is the

risk for samples to be of poor quality, i.e., that samples from a Y. pestis-infected individual do

not contain detectable bacterial material. If a proportion of samples were of poor quality, esti-

mates for the prevalence of infection would increase (Fig 3D). For example, in the extreme sce-

nario where only 50% of samples were of good quality, estimates of the prevalence of infection

would rise to 9% (6% to 13%) for PP and 45% (36% to 55%) for BP. For this analysis, we

assumed sample quality to affect all tests equally. We also assessed a scenario in which test sen-

sitivities were not fully independent and only the 2 qPCR gene results were affected by sample

quality. This did not improve model fit (Fig B in S1 Text) and most parameter estimates were

robust to departures from the assumption of test independence (Fig C in S1 Text).

We find that these estimates present good adequacy with the observed data [12] and can

accurately reproduce (i) the number of notified cases classified as confirmed (PP: 19, 8 to 47

Fig 2. Case classification algorithm. Confirmed cases include cases with positive results for both RDT and MB and/or

positive culture, probable have either RDT or MB positive, and suspected have no confirmatory laboratory results. MB,

molecular biology; RDT, rapid diagnostic test.

https://doi.org/10.1371/journal.pbio.3001736.g002
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expected versus 27 observed; BP: 58, 37 to 81 versus 57) and probable (PP: 356, 338 to 377 ver-

sus 364; BP: 66, 45 to 87 versus 66) (Fig 1C); (ii) the number of notified cases testing positive

for RDT, culture, or MB (Fig 1D); and (iii) the more detailed contingency table of the different

diagnostic outcomes used for inference (Fig 1E).

Our analytical framework can be used to assess the performance of the case classification.

For example, it can explain why the prevalence of Y. pestis among PP notified cases is esti-

mated to be lower than the proportion of confirmed or probable cases (Fig 4A). In a scenario

of low prevalence, the suboptimal specificity of RDT means that classification for PP based on

confirmed or probable cases is characterized by a proportion of false positives (approx. 1-spec-

ificity) that is large relative to the prevalence. In contrast, a classification that solely relies on

confirmed cases consistently underrepresents the prevalence due to low sensitivity of RDT and

culture. For BP, the case classification performs well at any prevalence level, with the true prev-

alence always falling between the proportion of confirmed and confirmed/probable cases (Fig

4B and B panel of Fig D in S1 Text).

The positive predictive value (PPV) for a category of cases is the proportion of cases of that

category that are Y. pestis infected. As expected, we find that the PPV of the confirmed or prob-

able category is strongly impacted by prevalence among notified cases (Fig 4C and 4D). For

example, if the prevalence of PP was 20%, over half of confirmed or probable cases would be

expected to be Y. pestis infected. This proportion drops to as little as 22% (21% to 24%) for a

prevalence of 5%. This shows that it is critical to avoid overreporting and ensure notified cases

meet the clinical case definition. Cases classified as confirmed were, for both clinical forms,

Fig 3. Model estimates of test performance and prevalence. (A) Specificity of each test, with RDT denoting rapid diagnostic test and MB denoting molecular

biology. (B) Sensitivity of each test. (C) Prevalence of Y. pestis infection among notified cases, under the assumption of perfect sample quality. (D) Relationship

between sample quality (i.e., the proportion of samples from infected individuals that contain detectable bacterial material) and estimated prevalence of

infection among notified cases. Results are presented by clinical form: pneumonic (PP: blue) and bubonic (BP: orange). The circle/triangle shows the posterior

median of the parameter while the lines show the 95% credible interval. The underlying data and code to reproduce this figure are available on Open Science

Framework (https://osf.io/nbc4t/). BP, bubonic plague; MB, molecular biology; PP, pneumonic plague; RDT, rapid diagnostic test.

https://doi.org/10.1371/journal.pbio.3001736.g003

PLOS BIOLOGY Optimizing the use of diagnostics during epidemics

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001736 August 15, 2022 5 / 17

https://osf.io/nbc4t/
https://doi.org/10.1371/journal.pbio.3001736.g003
https://doi.org/10.1371/journal.pbio.3001736


Fig 4. Performance of the case classification system. (A, B) Expected proportion of notified cases classified as confirmed (dark blue or orange), probable

(light blue or orange), and suspected (white), as a function of prevalence of infection for PP (A) and BP (B). The dashed vertical line indicates the prevalence

among notified cases estimated during the 2017 Madagascar outbreak. The dashed diagonal line corresponds to perfect classification (C, D). Expected

proportion of Y. pestis infections among cases in the category confirmed, confirmed or probable, and suspected as a function of prevalence of infection for PP

(C) and BP (D). (E, F) ROC plots presenting sensitivity versus (1-specificity) for a range of possible classification criteria for PP (E) and BP (F) and for

simplifications of the MB algorithm for PP (inset of E) and BP (inset of F). MB is considered here due to its potential for being considered as a classifier by

itself. Here, conf denotes confirmed and prob denotes probable. Classifications�1 qpcr and 2 qpcr represent results based on qPCR solely, i.e., in the absence

of confirmatory cPCR, with�1 qpcr denoting “at least 1 gene positive” and 2 qpcr “both genes positive.” The underlying data and code to reproduce this figure

are available on Open Science Framework (https://osf.io/nbc4t/). BP, bubonic plague; cPCR, classical polymerase chain reaction; MB, molecular biology; PP,

pneumonic plague; qPCR, quantitative polymerase chain reaction; ROC, Receiver operating characteristic.

https://doi.org/10.1371/journal.pbio.3001736.g004
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almost all Y. pestis infected (PP: 98%, 91% to 100%; BP: 100%, 99% to 100%), deriving from

perfect specificity of culture and the strict criterium requiring both RDT and MB to be posi-

tive. We further assess the risk of missing Y. pestis-infected cases and predict that 29% (16% to

42%) of Y. pestis-infected PP cases were classified as confirmed and 87% (73% to 98%) as con-

firmed or probable. This classification sensitivity is better for BP with 89% (81% to 96%) of

infected cases being confirmed and 100% (99% to 100%) being confirmed or probable. The

performance of case classification would be hampered if a substantial proportion of samples

were of poor quality (Fig D in S1 Text).

We can also determine how to revise the classification system to minimize the proportions

of false positive (1-specificity) and false negative cases (1-sensitivity) (Fig 4E and 4F). Best clas-

sification for both forms is based on MB, with a proportion of false positive and false negative

cases, respectively, reduced from 2% to 0% (0% to 0%) and from 71% to 20% (3% to 40%) for

PP (BP: 0% to 0%, 0% to 2% and 11% to 5%, 0% to 14%) (Fig 4E and 4F), providing a robust

representation of the prevalence.

We then compare the MB algorithm (Fig A in S1 Text) to simpler alternatives that would

not require confirmatory cPCR. We show that the MB algorithm is more sensitive than classi-

fication based on qPCR alone using “both genes positive” as a criterium and more specific

than the one using “at least 1 gene positive” (Fig 4E and 4F).

Concordance between RDT and MB improved over time among negative MB samples (B

and D panels of Fig E in S1 Text) but decreased among positive MB samples for PP (S5A Fig in

S1 Text). We investigate possible changes in RDT performance during the epidemic. We find

that RDT specificity increased significantly from 72% (69% to 76%) before week 41 to 95%

(93% to 97%) afterward for PP (BP: 71%, 63% to 78% to 98%, 95% to 100%). Sensitivity of

RDT was unchanged for BP (73%, 59% to 87% to 72%, 55% to 88%) but decreased for PP

(34%, 16% to 53% to 14%, 3% to 30%) (Table C in S1 Text). Earlier and later cutoff times result

in a lesser fit (Fig F in S1 Text). Estimates of RDT specificity for the second part of the outbreak

are consistent with those obtained for the subsequent endemic BP season, during which the

same batch was used (specificity: 99%, 96% to 100%), and are quite consistent with estimates

from earlier evaluations of this test (64% sensitivity and 93% specificity based on latent class

analysis) [11]. The 19% increase sensitivity estimated in the subsequent BP season (91%, 84%

to 96%) suggests that outbreak-specific factors may have indeed hampered RDT and case clas-

sification performance in 2017 (Fig G in S1 Text).

Lastly, we can use our framework to derive, for each notified case, the probability of Y. pestis
infection given their test results (i.e., the PPV). The probability is highest among cases with

positive MB (100%) (Fig H in S1 Text) or culture (100%). We then use these estimates,

together with the location and timing of cases, to reconstruct the dynamics of spread corrected

for spatiotemporal variations in prevalence. Prevalence of Y. pestis infections among notified

PP cases was 3-fold (BP: 2-fold) lower during the outbreak phase (weeks 39 to 43; when 75% of

notifications occurred) than during the initial phase (Fig 5A and 5B). Such phenomenon is

common when an outbreak receives a lot of attention from authorities, media, and communi-

ties, as was the case in 2017. Prevalence of Y. pestis infection among notified cases was highest

in plague-endemic regions (BP: 3-fold higher than Antananarivo), where health personnel is

accustomed to responding to BP (Fig 5C and 5D). Prevalence was lower among children (<5

year old) among notified BP cases, but not for PP (Fig 4E and 4F). Correcting for temporal var-

iations in the prevalence, we find that the transmission of Y. pestis during this outbreak was

less efficient than what was suggested by the analysis of notified cases, particularly for PP: The

doubling time in the first 6 weeks was estimated to be 18 rather than 6 days (or 8 based on con-

firmed/probable) (BP: 24 versus 13 (17)) (Fig 5G and 5H).
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Discussion

Assessing the true burden of an outbreak can be difficult in the absence of “gold standard”

diagnostic. This can be especially problematic when scarce resources need to be allocated for

Fig 5. Reconstruction of the outbreak by place and time. (A, B) Estimated prevalence of infection among notified cases by time period for PP (A) and BP (B).

Here, the initial phase spans weeks 34–38, outbreak phase 39–43, and the end phase 44–48. (C, D) Prevalence estimates by zone for PP (C) and BP (D). No BP

cases were notified from Toamasina. (E, F) Prevalence estimates by age for PP (E) and BP (F). (G, H) Observed notifications (bars) vs. estimated infections

(solid lines with shading denoting 95% credible intervals) among notified cases for PP (G) and BP (H). The stacked bar plots denote the percentage (A–F) and

absolute numbers (G–H) by case classification. The underlying data and code to reproduce this figure are available on Open Science Framework (https://osf.io/

nbc4t/). BP, bubonic plague; PP, pneumonic plague.

https://doi.org/10.1371/journal.pbio.3001736.g005
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outbreak control. Here, using plague as a case study, we presented a statistical framework

based on latent-class models to parse the results from multiple imperfect diagnostics and assess

the true burden of the outbreak. We showed that around one tenth of notified cases were likely

to be infected with Y. pestis. We showed that, particularly in scenarios with substantial misclas-

sification of cases, poor specificity of some diagnostics can greatly skew case classification,

even if a combination of diagnostic tests is used, and contribute to an overestimation of the

true burden of infection. We used estimates of diagnostic test performance together with indi-

vidual test results to reconstruct epidemiological trends in the proportion of true infections

among notified cases and showed that misclassification of cases was highest during the peak of

the epidemic and in regions nonendemic to plague. We illustrated the importance of opti-

mized case classification algorithms, highlighting an overestimation of the transmission poten-

tial of the bacteria if based on the, typically used, tally of confirmed and probable cases.

This study highlights challenges inherent to plague diagnostics, particularly those of pneu-

monic cases. While specificity of test results was similar between bubon and sputum samples,

the sensitivity of all diagnostics was substantially lower for sputum samples. This is in line with

other respiratory illnesses such as pneumonia [10]. Poor-quality samples may well result in an

underestimation of the true prevalence of infection among notified cases. We assessed how

limited sample quality would affect our findings and showed that our general conclusion that

the majority of notified cases were not infected with Y. pestis is robust to substantial amounts

of poor-quality samples. We came to the same conclusion if sample quality issues affected

some diagnostics more than others.

Classifying cases into confirmed, probable, and suspected is a routine public health effort

that gives insight into the extent of the outbreak and an indication of the levels of uncertainty

surrounding this. We highlight the importance of accurate classification algorithms and show

that, particularly for diseases with nonspecific symptoms and high risks of misclassification

(e.g., due to raised awareness or nonfamiliarity with the disease among public health respond-

ers), classification based on tests with poor specificity can result in vast overestimations of the

outbreak extent. In the case of the plague outbreak in Madagascar, limited RDT specificity

contributed to the majority of probable PP cases not to be infected with Y. pestis. We showed

that the performance of the RDT improved toward the end of the outbreak. Such evolving

RDT performance might be explained by the extreme circumstances surrounding this out-

break which may have resulted in changes within laboratories, e.g., due to overworked person-

nel or, conversely, changes in workflow to increase efficiency and proficiency of sample

processing. It might also be due to a change of RDT batch that occurred in week 43. Assessing

historical data [11] as well as data from a subsequent outbreak year indeed revealed better

RDT test performance than was observed during the first half of the outbreak. The perfor-

mance of case classification algorithms may therefore be better during nonoutbreak years and

care should be taken to uphold this in crisis situations. Apart from upholding test perfor-

mances, this may also include robust clinical case definitions to prevent large overreporting.

Even under better conditions, however, the RDT is likely of limited value for case classification

when other tools are available. Yet, RDTs are vital for point-of-care diagnostics in peripheral

health settings, in particular for BP. Improving RDT performance should therefore be priori-

tized. Similarly, the inclusion of culture did not improve case classification, owing to its limited

sensitivity. While the proportion of confirmed cases gave the best indication of the true pro-

portion of infections, a large underestimation of the true burden of infections is expected in

scenarios with less overreporting and a higher prevalence among notified cases. The inclusion

of culture nevertheless remains fundamental for assessing circulating strains and the antibiotic

resistance thereof. In this outbreak, this was particularly relevant as widespread use of prophy-

lactic treatment was observed in response to the large volume of notified cases. The real risks
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of resistance emergence associated with widespread use are another reason why accurate case

classification is important.

MB had the best specificity and sensitivity. Especially for BP, adding other diagnostic tests to

classify cases does not improve our ability to accurately classify cases. For PP, MB by itself

would result in somewhat lower sensitivity than if used in combination with culture and RDT,

but the reduced specificity outweighs this benefit. We also assessed whether the MB algorithm

(Fig A in S1 Text) itself could be further improved. While the MB algorithm, particularly for

PP, is somewhat less sensitive than the one using “at least 1 gene positive,” we pose that

increased specificity should be prioritized in low prevalence scenarios such as the one described

here, confirming the relevance of the confirmatory cPCR performed in the MB algorithm.

The integrative framework presented here makes it possible to assess the performance of

diagnostics, optimize their use for case classification, and reconstruct the whereabouts of

infected cases during outbreaks in situations where no diagnostic gold standard is available.

Improved case classification is particularly important for the allocation of scarce resources, for

example, by accurately targeting contact tracing efforts and optimizing the impact of mobile

test facilities. Beyond plague, such analytical framework could be a valuable tool to reduce

uncertainties in other infectious disease outbreaks affected by nonoptimal diagnostics. This is

particularly important when overreporting is likely due to nonspecific symptoms or if mass test-

ing is applied. Above all, the development and availability of high-quality diagnostics remains a

priority, particularly for pathogens prone to causing explosive outbreaks such as Y. pestis.

Materials and methods

Background information about plague in Madagascar

Madagascar accounts for 75% of plague cases worldwide [5]. Health professionals are required to

notify all cases clinically suspected of Y. pestis infection to the CLP (WHO Collaborating Center) at

the Institut Pasteur de Madagascar (IPM), where case notification forms are recorded and biological

samples analyzed for laboratory confirmation. Treatment of cases is not contingent on biological

confirmation of CLP. Annually, between 200 to 700, mostly bubonic (BP) (75%) cases are notified.

The majority of these cases occur in the rural central highlands during the country’s plague season

(October to April). Occasional small outbreaks of PP were recorded in 1997, 2011, and 2015 in rural

areas [15–18] and in 2004 in 1 commune of the county’s capital city, Antananarivo.

Between August and November of 2017, the country experienced an outbreak that, with

2,414 notified cases, was much larger than regular plague seasons and presented with an

unusual proportion of cases with clinically suspected PP.

Data

Samples from clinically suspected cases (2,414) were sent to the CLP at the IPM for diagnostic

testing. Treatment of suspected cases was not contingent on biological results. Biological sam-

ples were taken from cases presenting at health care settings with symptoms consistent with

plague (i.e., for BP: presence of an isolated, painful adenopathy; for PP: cough (<5 days),

bloody sputum, chest pain with fever) [3]. There was no formal clinical case definition that

needed to be satisfied for patients to be tested. Samples included bubo aspirates from BP and

secondary PP, sputum samples for PP, and liver and/or lung aspirates from deceased cases. All

samples were tested for fraction 1 (F1) capsular antigen using an RDT [11]. Initially, MB was

performed using cPCR targeting the pla gene on all samples. Due to low specificity of the

cPCR, this test was abandoned on November 3 and replaced by real time qPCR targeting pla
and caf1 genes. If both genes tested positive, a sample was considered positive for MB. Samples

with discordant or inconclusive qPCR results were verified using confirmatory cPCR on pla,
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caf1, and inv1100 genes, with protocols improved to reach better specificity. They were consid-

ered positive upon positive results for the inv1100 gene and/or for both pla and caf1 genes (see

Fig A in S1 Text for decision tree) [19]. All samples received before November 3 were retested

using the MB protocols (November to December 2017). In addition, culture was performed on

all samples with positive RDT [20]. PP samples from nonendemic regions received between

September 11 and October 3 were cultured irrespective of RDT result. No serological testing

was performed during the outbreak.

As per WHO guidelines, cases were classified based on their diagnostic test results as con-
firmed if culture and/or both RDT and MB were positive, probable upon positive results for

either MB or RDT, and suspected otherwise (Fig 2). Initial cPCR results were not considered

for case classification. Culture is often regarded as a gold standard given its perfect specificity

yet lacks sensitivity. Culture sensitivity may have been particularly challenged during this out-

break as a result of widespread prophylactic antibiotic use [9].

Estimating diagnostic test performances and burden of infection

We develop a statistical model based on latent class methods to estimate test performances and

burden of infection among the population of notified cases (N). Here, we distinguish diagnos-

tic outcomes as the raw outcomes of performed qPCRs (i.e., gene-specific outcomes) and the

composite result of the confirmatory cPCR (Fig A in S1 Text). The composite of these makes

up the result of a diagnostic test. For each notified case (i) dichotomous results (yij) are avail-

able for up to J diagnostic outcomes (j) (i.e., 1 for each of RDT and culture and up to 3 for MB:

2 for qPCR (pla, caf1) and 1 for confirmatory cPCR (pla, caf1, inv1100), with yij = 1 denoting a

positive and yij = 0, a negative result. The infection status of case i is denoted di (= 1 if infected

and 0 otherwise). The sensitivity and specificity of diagnostic outcome j are denoted Sj = P(Yj
= 1|D = 1) and Cj = P(Yj = 0|D = 0), respectively.

Here, we calculate the contribution to the likelihood of the different diagnostic outcomes.

Test-specific sensitivities and specificities are then calculated from the characteristics of the

diagnostic outcomes that make up a specific test (MB in particular). We first discuss the likeli-

hood for those diagnostic outcomes that are performed irrespective of other diagnostic out-

comes (RDT, qPCR), followed by those that are performed conditional on other diagnostic

outcomes (culture and confirmatory cPCR).

Contribution to the likelihood of RDT, qPCR (pla, caf1). We first calculate the contri-

bution to the likelihood of diagnostic outcomes that are performed irrespective of other diag-

nostic outcomes, namely RDT, qPCR (pla and caf1) (indexed in Eq 1 as 1. . .U). If the infection

status of a case was known, 2 conditional probabilities would have to be considered:

• Conditional on being infected by plague and given model parameters θ, the joint probability

of test results for case i is

Pðfyijgj¼1...U
jy; di ¼ 1Þ ¼

YU

j¼1
Syijj ð1 � SjÞ

1� yij : ð1Þ

• Conditional on not being infected by plague and given model parameters θ, this probability

becomes:

Pðfyijgj¼1...U
jy; di ¼ 0Þ ¼

YU

j¼1
C1� yij
j ð1 � CjÞ

yij : ð2Þ

In practice, the infection status of a case is unknown, and we therefore work on the
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unconditional joint probability of diagnostic outcomes for case i that integrates over the differ-

ent possibilities:

Pðfyijgj¼1...U
jyÞ ¼ Pðdi ¼ 1ÞPðfyijgj¼1...U

jy; di ¼ 1Þ þ Pðdi ¼ 0ÞPðfyijgj¼1...U
jy; di ¼ 0Þ

Pðfyijgj¼1...U
jyÞ ¼ p

YU

j¼1
Syijj ð1 � SjÞ

1� yij þ ð1 � pÞ
YU

j¼1
C1� yij
j ð1 � CjÞ

yij ð3Þ

where π is the prevalence of plague infection among notified cases.

While RDT and qPCR (pla and caf1) were performed independent of other results, culture

was done based on RDT outcome, period, and zone, and confirmatory cPCR (pla, caf1,

inv1100) was performed only if qPCR was inconclusive. We need to integrate such conditioning

in our analysis to avoid biases.

Contribution to the likelihood of culture. For PP samples received from a nonendemic

region between September 11 and October 3, culture was performed irrespective of RDT

results and we therefore use the formulation described above. For all other samples, culture

was performed only if RDT was positive. Hence, the conditional probability for these individu-

als to obtain a culture result (yi cult) is

P yi cultjyi RDT ¼ 1; y
� �

¼ p
Sycultcult ð1 � ScultÞ

1� ycult SRDT
PðyiRDT ¼ 1Þ

þ 1 � pð Þ
C1� ycult
cult ð1 � CcultÞ

ycultð1 � CRDTÞ

PðyiRDT ¼ 1Þ
; ð4Þ

which can also be expressed in terms of the PPV (the proportion infected among individuals

with a positive test result) of RDT

PPVRDTS
ycult
cult ð1 � ScultÞ

1� ycult þ ð1 � PPVRDTÞC
1� ycult
cult ð1 � CcultÞ

ycult ; ð5Þ

where PPV is

PPVRDT ¼
pSRDT

pSRDT þ ð1 � pÞð1 � CRDTÞ
: ð6Þ

Results from culture that did not adhere to this conditioning (PP: 283, BP: 60) were not

included in the analysis as the reason for this additional testing cannot be traced back but was

likely nonrandom and affected by other test results.

Contribution to the likelihood of cPCR (pla, caf1, and inv1100). Test results for MB

were a composite of up to 5 diagnostic outcomes (Fig 2). Confirmatory cPCR for genes 1 to k
were performed conditional on discordant qPCR results. The composite result of this test was

included in the model.

PðyiconfPCR;jYi qPCRpla
6¼ Yi qPCRcaf1

; yÞ ¼

p
SyconfPCRconfPCRð1 � SconfPCRÞ

1� yconfPCR � ðSpla � ð1 � Scaf1Þ þ ð1 � SplaÞ � Scaf1Þ
PðYi qPCRpla

6¼ Yi qPCRcaf1
Þ

þ

1 � pð Þ
C1� yconfPCR
confPRC ð1 � CconfPCRÞ

yconfPCR � ðCpla � ð1 � Ccaf1Þ þ ð1 � CplaÞ � Ccaf1Þ

PðYi qPCRpla
6¼ Yi qPCRcaf1

Þ
: ð7Þ
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Joint likelihood. The likelihood per case is the product of terms described in Eqs 3, 4, and

7:

Li ¼
Y

i

Pðfyijgj¼1...U
jyÞ �

Y

i:yi RDT¼1

Pðyi cultyi RDT ¼ 1Þ�

Y

i:Yi qPCRpla 6¼Yi qPCRcaf1
PðyiconfPCRpla ;Yi qPCRpla

6¼ Yi qPCRcaf1
Þ: ð8Þ

Inference. Parameter estimation was done in a Bayesian setting using a Bayesian Metrop-

olis–Hastings MCMC approach [14]. We utilized a weakly informative beta-distributed prior

for prevalence (shape = 1, scale = 2) (i.e., chance of prevalence being below 50% is twice as

high as above) based on estimates of prevalence from previous BP outbreaks [21]. To confirm

the robustness of the results to the choice of priors on prevalence, the MCMC was also per-

formed with a uniform prior between 0 and 1 (Table D in S1 Text). For specificities of tests

associated with MB, beta-distributed priors were used with means of 95% (shape = 12.7,

scale = 0.67) based on verifications done in the IPM laboratories prior to implementation. The

specificity of culture was fixed at 100%. For all other parameters, we used uniform priors

between 0 and 1 (i.e., for all sensitivities as well as the specificity of RDT). Metropolis–Hastings

updates were performed on a natural scale with step sizes adjusted such to obtain an accep-

tance probability between 10% and 50% [14]. Traces of the MCMC were plotted per parameter

and convergence was assessed visually (Figs I and J in S1 Text).

Assuming imperfect sample quality. Collection of good-quality samples is challenging

and might be affected by prophylactic treatment, preservation techniques, and the delays

between symptom onset and sample testing at CLP. The prevalence of infection is related to

the prevalence of detectable bacterial material in the collected samples (τ) such that τ = ρπ,

where ρ is the probability of good sample quality given a truly infected individual. Accounting

for ρ in Eq 3 gives

Pðfyijgj¼1...J
Þ ¼

p
YJ

j¼1
ðrðSyjj ð1 � SjÞ

1� yjÞ þ ð1 � rÞC1� yj
j ð1 � CjÞ

yjÞþ

ð1 � pÞ
YJ

j¼1
C1� yj
j ð1 � CjÞ

yj : ð9Þ

Here, Sj and Cj denote the absolute sensitivity and specificity, i.e., assuming the sample is of

good quality. The definition of ρ implies that all tests are equally affected by factors reducing

sample quality.

Assuming dependence between qPCR results. While in the above calculations, test

results are assumed independent of each other, in practice this may not always be true. Nota-

bly, as results from both genes assessed by qPCR are performed in the same assay, possible

contaminations or technical problems might affect both test outcomes concurrently. To assess

the sensitivity of our results to departures from the assumption of independence, we adjusted

the contribution of the outcomes qPCRpla and qPCRcaf to the likelihood (Eq 8) to reflect a

larger likelihood of concordance between both diagnostic outcomes

Pðfy1;y2;gjy; di ¼ 1Þ ¼ Sy1
1 � S

y2
2 ð1 � S1Þ

1� y1ð1 � S2Þ
1� y2 þ ð� 1Þ

y1 � y2ðcov12jd ¼ 1Þ: ð10Þ
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Here, indices 1 and 2 refer to qPCR pla and caf, respectively, and cov denotes the pairwise

covariance between diagnostic outcomes [22]. We assess whether the inclusion of a covariance

factor affected the fit to the data, using DIC as an indicator of fit [23], and whether estimated

test characteristics were robust to departures from assumptions of independence.

Model fit did not improve upon the inclusion of a covariance factor (Fig B in S1 Text) and

parameter estimates were relatively robust: Prevalence of PP was insensitive to the existence of

correlations between these tests (4% versus 6%) (Fig C in S1 Text). Prevalence estimates of BP

increased for high levels of correlation (35% versus 23%), which came with increased RDT

specificity (97% versus 85%) and reduced sensitivity of culture (41% versus 64%).

Detecting heterogeneity in test performance

Over the course of the outbreak. Changes in concordance between RDT and MB were

observed toward the end of the outbreak (Fig E in S1 Text). To test whether a change in RDT-

test performance could explain this observation, we reran the inference routine allowing RDT

to have different test characteristics before and after a predetermined cutoff week (i.e., essen-

tially treating RDT before and after the cutoff point as distinct tests). We used different cutoff

weeks (38 to 43), where the week denotes, as elsewhere in the manuscript, the date of symptom

onset of the cases. The model with the cutoff week that yielded the highest likelihood was then

compared to the baseline model (i.e., assuming no change in RDT performance) using DIC to

test whether the change in RDT performance resulted in an improved model fit. We did not

examine changes in other tests because (i) cPCR was terminated halfway through the outbreak;

(ii) culture only yielded few positive samples; and (iii) MB was performed (in retrospect) at the

end of the outbreak.

Between outbreaks. We compared results from the outbreak year (2017 to 2018) with

those from the subsequent plague season (2018 to 2019). Between August 17, 2018 and April 7,

2019, 261 (46 PP, 211 BP, 4 unknown form) cases were reported to the CLP. All samples were

analyzed using MB, RDT, and culture, with the same protocols as were used during the 2017

outbreak year. Among sputum samples for PP (n = 25), 22 were negative for both MB and

RDT. Others were positive for either or both tests (1 MB+ and RDT+, 1 MB− and RDT+, 1

MB+ and RDT−), with those positive for MB confirmed by culture. Among bubon aspirates

for BP (n = 194), 174 were concordant between MB and RDT (94 positive, 80 negative). Given

the low number of positive sputum samples for PP (1 confirmed, 2 probable, 22 suspected), we

only analyzed BP samples from this season. Inference was similar to that on samples from

2017, but since culture was performed on all samples, no conditioning was needed when

assessing the contribution of culture on the joint likelihood. In addition, due to high concor-

dance between both genes used for qPCR, few conditional PCRs were performed. We thus did

not estimate the performance of conditional PCRs during this season.

Outbreak reconstruction

We derived the probability of Y. pestis infection for each notified case based on the PPV associ-

ated with their results and assuming the medians of the estimated prevalence, sensitivity, and

specificity (see Eq 6). The sum of all PPVs denotes the expected number of true infections

among notified cases. We used this relationship to reconstruct the number of expected infec-

tions by subgroup. We divided the notified cases according to the following categories: (i) by

period, distinguishing the initial phase (weeks 34 to 38), the outbreak phase (weeks 39 to 43),

and the end phase (weeks 44 to 48); (ii) by week; (iii) by zone, distinguishing endemic zones

(plague-endemic districts [24] apart from greater Antananarivo), greater Antananarivo (urban

community of Antananarivo and the 3 neighboring districts), and Toamasina district; and (iv)
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by age group (below and above 5 years of age). Using these, we estimated the prevalence and

exact binomial 95% confidence interval of infection among notified cases by subgroup.

Software

All analyses have been performed in R [25]. MCMC results have been processed using the

coda [26] and BayesianTools packages [27].

Supporting information

S1 Text. Supplementary information appendix. Fig A. Molecular biology (MB) algorithm.

Fig B. Model fit as a function of covariance between qPCRpla and qPCRcaf1 sensitivities for

pneumonic forms (A) and bubonic forms (B). Fig C. Sensitivity of parameter estimates to dif-

ferent levels of correlation between the sensitivity of qPCRpla and qPCRcaf1. Fig D. Perfor-

mance of case classification system assuming sample quality of 75%. Fig E. RDT vs. MB

concordance over time. Fig F. Model fit as a function of the timing of changed RDT perfor-

mance for pneumonic (PP) (A) and bubonic plague (BP) (B). Fig G. ROC plots presenting for

a range of possible classification criteria for pneumonic (PP) (A, C) and bubonic plague (BP)

(B, D, E) before (A, B) and after week 41 (C, D) and during the 2018 endemic season (E). Fig

H. Distribution of positive predictive values (PPVs) by test result and clinical form. Fig I. Tra-

ceplots for MCMC of default model for pneumonic forms. Fig J. Traceplots for MCMC of

default model for bubonic forms. Table A. Model estimates of the performance of RDT, cul-

ture, MB, and of tests that would be based on single diagnostic outcomes. Table B. Model esti-

mates of test performance of RDT, culture, MB, and of tests that would be based on single

diagnostic outcomes. In addition to the default analysis presented in Table A in S1 Text, here,

the initial cPCR was included in the analysis. Results of this test were removed from the final

analysis because performances of that test were too low. The results of the initial cPCR were

not considered in the case classification. Table C. Model estimates of the performance of RDT,

culture, MB, and of tests that would be based on single diagnostic outcomes, in a scenario

change in RDT performance at week 41 of the outbreak. Table D. Model estimates of the per-

formance of RDT, culture, MB, and of tests that would be based on single diagnostic outcomes,

with a noninformative uniform prior on the prevalence of infection among notified cases.

(DOCX)

Acknowledgments

The authors would like to thank for their continuous support during the epidemic the other

team members of the IPM laboratories (from the Virology, Experimental Bacteriology, Infec-

tious Diseases Immunology, Malaria Research Units, the Clinical Biology Laboratory, and the

Hygiene Food and Environment Laboratory), members of supporting research units at IP

Paris (CIBU, Epidemiology of Emerging Infectious Diseases Unit, Molecular Genetics of RNA

Viruses Unit), experts deployed through the Global Outbreak Alert Response Network

(GOARN), and all the colleagues who were instrumental in improving and implementing epi-

demiological and laboratory surveillance and supported the epidemic response efforts.

Author Contributions

Conceptualization: Quirine ten Bosch, Birgit Nikolay, Juliette Paireau, Laurence Baril,

Minoarisoa Rajerison, Simon Cauchemez.

PLOS BIOLOGY Optimizing the use of diagnostics during epidemics

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001736 August 15, 2022 15 / 17

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001736.s001
https://doi.org/10.1371/journal.pbio.3001736


Data curation: Voahangy Andrianaivoarimanana, Soloandry Rahajandraibe,

Rindra Randremanana, Laurence Baril, Minoarisoa Rajerison.

Formal analysis: Quirine ten Bosch, Simon Cauchemez.

Investigation: Voahangy Andrianaivoarimanana, Beza Ramasindrazana, Guillain Mikaty,

Rado J. L. Rakotonanahary, Soloandry Rahajandraibe, Maxence Feher, Quentin Grassin,

Soanandrasana Rahelinirina, Feno Rakotoarimanana, Marie Melocco, Javier
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