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Synaptic basis of a sub-second representa-
tion of time in a neural circuit model

A. Barri 1 , M. T. Wiechert1, M. Jazayeri 2,3 & D. A. DiGregorio 1

Temporal sequences of neural activity are essential for driving well-timed
behaviors, but the underlying cellular and circuit mechanisms remain elusive.
We leveraged the well-defined architecture of the cerebellum, a brain region
known to support temporally precise actions, to explore theoretically whether
the experimentally observed diversity of short-term synaptic plasticity (STP) at
the input layer could generate neural dynamics sufficient for sub-second
temporal learning. A cerebellar circuitmodel equippedwith dynamic synapses
produced a diverse set of transient granule cell firing patterns that provided a
temporal basis set for learning precisely timed pauses in Purkinje cell activity
during simulated delay eyelid conditioning and Bayesian interval estimation.
The learning performance across time intervals was influenced by the tem-
poral bandwidth of the temporal basis, which was determined by the input
layer synaptic properties. Theubiquity of STP throughout the brain positions it
as a general, tunable cellular mechanism for sculpting neural dynamics and
fine-tuning behavior.

The neuronal representation of time on the sub-second timescale is a
fundamental requisite for the perception of time-varying sensory sti-
muli, generation of complexmotor plans, and cognitive anticipation of
action1–4. But how neural circuits acquire specific temporal con-
tingencies to drive precisely timed behaviors remains elusive. A pro-
gressive increase in firing rate (“ramping”) towards a threshold can
represent different elapsed times by altering the slope of the ramping
behavior. Elapsed timecan also be encodedby apopulationof neurons
that fire in a particular sequence (“time cells”)5–8. Sequential synaptic
connections between neurons (synfire chains) can explain the neural
sequences representing bird song9 and contribute to time delays
necessary to cancel self-generated sensory stimuli in the electro-
sensory lobe of mormyrid fish10. Temporal dynamics of neural popu-
lation activity can also be reproduced by training recurrent neural
network models11–13. Nevertheless, the search for a candidate
mechanism for generating a temporal reference (biological timer) for
neural dynamics is an ongoing challenge.

Short-term synaptic plasticity (STP) is the rapid change in synaptic
strength occurring over tens ofmilliseconds to seconds that is thought
to transform presynaptic activity into distinct postsynaptic spike

patterns14. Depression and facilitation of synaptic strength can act as
low-and high-pass filters, respectively15, and synaptic depression can
mediate gain modulation16,17. Network models of neocortical con-
nectivity exhibit improved temporal pattern discrimination when
augmented with STP18. Within recurrent neural networks, the long
timescales of cortical synaptic facilitation provide the substrate for
working memory19. Finally, low-gain recurrent network models that
include STP also show enriched neural dynamics and generate neural
representations of time20. However, experimental evidence of STP-
dependent circuit computations is rare and is associated mainly with
sensory adaptation21.

The cerebellar cortex is a prototypical microcircuit known to be
important for generating temporally precise motor22 and cognitive
behaviors23–26 on the sub-second timescale. It receives mossy fibers
(MFs) from various sensory, motor and cortical areas. MFs are thought
to convey contextual information and converge onto granule cells
(GCs), the most numerous neuron in the brain. The excitatory GCs
project onto the inhibitory molecular layer interneurons and Purkinje
cells (PCs). PCs, being the sole output neurons of the cerebellar cortex,
inhibit neurons in the deep cerebellar nuclei. According to the Marr-

Received: 31 March 2022

Accepted: 29 November 2022

Check for updates

1Institut Pasteur, Université Paris Cité, Synapse and Circuit Dynamics Laboratory, CNRS UMR 3571 Paris, France. 2McGovern Institute for Brain Research,
Massachusetts Institute of Technology, Cambridge, MA, USA. 3Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology,
Cambridge, MA, USA. e-mail: alessandrobarri@gmail.com; david.digregorio@pasteur.fr

Nature Communications |         (2022) 13:7902 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-1446-7448
http://orcid.org/0000-0003-1446-7448
http://orcid.org/0000-0003-1446-7448
http://orcid.org/0000-0003-1446-7448
http://orcid.org/0000-0003-1446-7448
http://orcid.org/0000-0002-9764-6961
http://orcid.org/0000-0002-9764-6961
http://orcid.org/0000-0002-9764-6961
http://orcid.org/0000-0002-9764-6961
http://orcid.org/0000-0002-9764-6961
http://orcid.org/0000-0002-6417-4566
http://orcid.org/0000-0002-6417-4566
http://orcid.org/0000-0002-6417-4566
http://orcid.org/0000-0002-6417-4566
http://orcid.org/0000-0002-6417-4566
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35395-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35395-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35395-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35395-y&domain=pdf
mailto:alessandrobarri@gmail.com
mailto:david.digregorio@pasteur.fr


Albus-Ito model of cerebellar cortical circuit computations, precisely
timed Purkinje cell activity can be learned by adjusting the synaptic
weights formed by GCs with differing activity patterns27,28. This largely
feed-forward circuitry has been proposed to learn the temporal con-
tingencies required for prediction from neural sequences across the
population of GCs within the input layer29. The synapses between MFs
and GCs are highly variable in their synaptic strength and STP time
course30. Therefore, we hypothesized that STP ofMF-GC synapses could
be used as internal timers for a population clock within the cerebellar
cortex to generate neural dynamics necessary for temporal learning.

To elaborate this hypothesis, wemodeled the cerebellar cortex as
a rate-based two-layer perceptron network that includes realistic MF-
GC connectivity and STP dynamics. Themodel reproduces learned PC
activity associated with a well-known temporal learning task: delay
eyelid conditioning31. The timescales of STP determined the temporal
characteristics of the GC population activity, which defined the tem-
poral window of PC temporal learning. The width of PC pauses scaled
proportionally with the learned time intervals, similar to experimen-
tally observed scalar variability of the eyelid conditioning behavior32.
Additionally, we found that STP-driven GC activity was well suited to
implement a Bayesian estimator of time intervals33. We propose that
within neural circuits, dynamic synapses serve as tunable clocks that
determine the bandwidth of neural circuit dynamics and enable
learning temporally precise behaviors.

Results
Cerebellar cortex model with STP
The cerebellar cortex can be modeled as a two-layer perceptron that
performs pattern separation of static inputs27,28,34,35. Cerebellar models of
temporal processing are generally supplemented with additional
mechanisms that generate temporally varying activity patterns in the GC
layer10,29,36,37. To test whether heterogeneous MF-GC STP is sufficient to
support temporal learning, we implemented STP of the MF-GC synapse
in a simplified cerebellar cortex model, hereafter referred to as CCMSTP.
This model deliberately omits all other potential sources of temporal
dynamics. In particular, inmost of the simulations presented here,wedid
not include recurrent connectivity (Fig. 1b). STP was simulated using a
parallel vesicle pool model of the MF-GC synapse, similar to ref. 38. It
comprises two readily releasable and depletable vesicle pools, synaptic
facilitation, and postsynaptic desensitization. To reproduce the observed
functional synaptic diversity, we set vesicle fusion probabilities (pv),
synaptic pool sizes (N), and synaptic facilitation to match the relative
strengths, paired-pulse ratios, and transient behaviors across five differ-
ent types of synapses that were previously characterized30 (Fig 1a2–a6).
Importantly, the longest timescale in CCMSTP is associated with a 2 s
vesicle refilling time constant of the slow vesicle pool (τref = 2s, Fig. 1a1).
To capture depression over long timescales38,39, we introduced a phe-
nomenological parameter (pref = 0.6) that effectively mimics a simplified
form of activity-dependent recovery from depression (see Methods).

TheCCMSTP consisted of firing rate units representingMFs, GCs, a
single PC, and a single molecular layer interneuron, i.e., each neuron’s
activitywas representedby a single continuous value corresponding to
an instantaneous firing rate. Each GC received 4 MF synapses, ran-
domly selected from the different synapse types according to their
experimentally characterized frequency of occurrence30. Importantly,
we associated different synapse types with different MF firing rates
(Fig. 1b, left panels, see Methods). High pv MF inputs were paired with
high average firing rates (primary sensory groups 1, 2) and low pv
synapses with MF inputs with comparatively low average firing rates
(secondary/processed sensory groups 3, 4, 5), according to experi-
mental observations40,41. We will reconsider this relationship below.

To examine CCMSTP network dynamics, input MF activity patterns
were sampled every second from respective firing rate distributions
shown in Fig. 1b. Each change inMF patterns evoked transient changes in
MF-GC synaptic weights, which in turn generated transient GC firing rate

responses that decayed at different rates to a steady-state (Fig. 1c). Similar
to experimentally recorded PC responses to sensory stimuli in vivo42,
switches between different MF activty patterns also generated hetero-
geneous transient changes in the PC firing rate, whose directions and
magnitudes were controlled by the ratio of the average excitatory to
inhibitory weight (Fig. 1c, bottom). In contrast, when MF-GC STP was
removed, the transient GC and PC responses disappeared (Fig. 1d). The
amplitude of the firing rate transients increased as the difference from
one MF pattern to the next increased, similar to previous theoretical
work16. Sequential delivery of uncorrelated MF firing patterns in CCMSTP

(Fig. 1e) generated GC and PC transients with broadly distributed
amplitudes (Fig. 1f1,2), which were progressively reduced as the relative
change in MF rate decreased (Fig. 1g). Thus, dynamic MF-GC synapses
allow both GCs and PCs to represent the relative changes in sensory
stimuli.

Simulating PC pauses during eyelid conditioning
We next explored whether MF-GC STP diversity permits learning of
precisely timed PC pauses associated with delay eyelid conditioning, a
prototypical example of a cerebellar cortex-dependent learning. In this
task, animals learn to use a conditioned stimulus (CS) to precisely time
eyelid closure in anticipation of an aversive unconditioned stimulus
(US). This eyeblink is driven by a preceding decrease in PC firing
rates31,43 (Fig. 2a). Since the CS is typically constant until the timeof the
US and a precisely timed eyelid response can be learned even if the CS
is replaced by direct and constant MF stimulation44,45, we modeled CS
delivery in the CCMSTP by an instantaneous switch to a novel MF input
pattern that persists over the duration of the CS (Fig. 2a). Most GC
activity transients exhibited a characteristic rapid increase or decrease
in firing rate, followed by an exponential-like decay in firing rate
(Fig. 2c). In contrast to other models of eyelid conditioning29, the
activity ofmostGCs in theCCMSTPpeakedonly once, occurring shortly
(<50ms) after the CS onset (Fig. 2c). However, the distribution of GC
firing rate decay times across the populationwas highly variable with a
fraction of GCs showing decay times to 10% of the transient peak as
long as 700 ms (Fig. 2c, d).

To test whether the GC population dynamics could act as a basis
set for learning the precisely timed PC firing rate pauses known to
drive the eyelid response, we subjected the GC-PC synaptic weights to
a gradient descent-based supervised learning rule46. The rule’s target
signal consisted of a square pulse (zerofiring rate at a specific timebin)
at the designated time of the PC firing rate pause (Fig. 2e, dotted line).
In the courseof learning, therewas a progressive acquisition of a pause
in the PC firing rate (Fig. 2e). However, without MF-GC STP, the PC
pause did not develop (Fig. 2e, pink). We tested learning of different
delay intervals ranging from25ms to 700ms and found that PCpauses
could be generated for all delays. The PC pause amplitude and tem-
poral precision (time and width) decreased with increasing CS-US
delays (Fig. 2f), reminiscent of the shape of PC simple-spike pauses
recorded during eyelid conditioning31.

Why might the learned PC pause amplitude and temporal preci-
sion be reduced for longer CS-US delays? The parameters associated
with the learning algorithm (e.g. the number of iterations) are identical
for each CS-US delay. The state of the GC population activity, in con-
trast, changes throughout the CS. Once all GC activity dynamics reach
steady-state, temporal discrimination by PCs is diminished, and
interval learning becomes impossible. In other words, for temporal
learning to be effective, changes in GC firing rates must be prominent
over the relevant timescale. Indeed, eyeblink conditioning simulations
where slow or fast GCs were removed, the efficiency of generating PC
pauses for short and long intervals were reduced (Fig. S2). CCMSTP

simulations thus demonstrate that a GC temporal basis generated by
MF-GC STP is sufficient to reproduce the cerebellar cortex computa-
tion underlying delay eyelid conditioning and suggests that the time-
scale of GC dynamics influences the timescale of behavioral learning.
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Analysis of the synaptic mechanism underlying GC transient
responses using a reduced model
PC temporal learning requires transientGCactivity responses,which in
our model only arise from STP at the MF-GC synapse30,39. How are the
dynamics of synapses and GCs determined by quantal and firing rate
parameters? The complexity of the full CCMSTP with many interacting

parameters makes it difficult to assess the effect of each synaptic
parameter. To overcome this challenge, we developed a reduced MF-
GC synapse model, which was analytically solvable for an instanta-
neous and persistent switch ofMF rates. This allowed us to identify the
key computational building blocks of CCMSTP and explore how they
control the overall behavior of the model. Specifically, we omitted

a1

b

0 0.2 0.4

W
 (C

)

0

5

10

15

0 0.02 0.04

ppr = 0.6

W
 (C

)

0

5

10

15

0 0.2 0.4

0 0.02 0.04

ppr = 0.74

W
 (C

)

0

5

10

15

0 0.2 0.4

0 0.02 0.04

ppr = 1.04

group 1

group 2

group 3

group 4

group 5

pre-synaptic
depletion + facilitation

post-synaptic
desensitization

W
 (C

)

0

5

10

15

0 0.2 0.4

0 0.02 0.04

ppr = 0.78

W
 (C

)

0

5

10

15

time (s)
0 0.2 0.4

0 0.02 0.04

ppr = 1.33

Purkinje cell

Granule cells
Mossy fibres

Molecular layer
interneuron

M=100
N=3000

W(t)

JE

JI

pd
f

pd
f

pd
f

pd
f

firing rate (Hz)
0 100 200 300

-

16%

16%

38%

24%

6%

pd
f

a2

a3

a5

a6

a4

e
g

100

50 

1  

M
F 

id
x

0

100

200

300

fir
in

g 
ra

te
 [H

z]

0 1 2 3
time (s)

100

50 

1  

G
C

 id
x

0

50

100

150

fir
in

g 
ra

te
 [H

z]

0 0.5 1
correlation

0

0.2

0.4

0.6

0.8

1

no
rm

. t
ra

ns
. S

D

0 0.3 0.6
-50

0

50

fir
in

g 
ra

te

0 0.3 0.6
-50

0
50

100
150

fir
in

g 
ra

te

0 0.3 0.6

0 0.3 0.6

time after CS onset (s)

GC transients

PC transients

f1

f2

corr = 0 corr = 0.85

corr = 0 corr = 0.85

time (s)

c without STP transientswith STP

JE/JI < 1

JE/JI ~ 1

JE/JI > 1

MFs

GCs

d
0

100
200
300

ra
te

s 
(H

z)

0.1
0.2
0.3

w
ei

gh
ts

 (C
)

0

50

100

ra
te

s 
(H

z)

0 1 2 3 4 5
time (s)

0

40

80

ra
te

s 
(H

z)

PC

time (s)
0 1 2 3 4 5

Article https://doi.org/10.1038/s41467-022-35395-y

Nature Communications |         (2022) 13:7902 3



short-term facilitation and postsynaptic desensitization and reduced
the synaptic model to a single population of high pv synapses
(“drivers”30) and a single population of low pv synapses
(“supporters”30), each with a fast and a slow refilling ready-releasable
pool (Fig. 3b), thus obtaining a model where STP results from vesicle
depletion only. Each GC received exactly two driver and two supporter
MF inputs with random and pairwise distinct identities (Fig. 3a).

In this reduced model, an instantaneous and persistent switch of
MF firing rates generates an average postsynaptic current (Isyn(t)) for
eachvesicle pool that is remarkably simple. It features a sharp transient
change, followed by a mono-exponential decay to a steady-state

synaptic current amplitude,As, (Fig. 3c) and canbegenerally expressed
as

IsynðtÞ=As +Ate
� t

τsyn ð1Þ

Here, As is a time-invariant component and Ate
� t

τsyn is a transient
component with synaptic relaxation time constant τsyn (Fig. 3c) and
amplitude At. This transient component determines the synapse’s
ability to encode the passage of time.

The solution of the synaptic dynamics model reveals the crucial
dependence of τsyn and At on the presynaptic and firing rate

Fig. 1 | Cerebellar cortex model with short-term synaptic plasticity within
the input layer (CCMSTP). a1 Synaptic model scheme showing the principal para-
meters. a2-6 Properties of the five model synapse types matching experimental
groups from ref. 30. Left: Schemes showdifferences in presynaptic parameters; the
postsynaptic side is identical for all groups. Right: average synaptic weights in
response to repetitive 100 Hz stimulation as in ref. 39. Insets: First five responses
with paired-pulse ratio (PPR) roughly mimic results from ref. 30. Color code for
synapse groups is the same as in ref. 30. b Scheme of CCMSTP. MFs are classified
according to the groups in (a). Percentages indicate relative frequency of MF
groups. Insets: firing rate distributions for different MF groups. c Simulation of
CCMSTP with randomly drawn JE weights. First panel: 5 sample MFs. Every second,
MF activity is re-drawn fromdistributions in (b). Second panel: Normalized weights

of 10 example MF-GC synapses. Third panel: activity of 10 sample GCs. Last panel:
PC activity with different shades of gray indicating different E/I ratios onto the PC.
d Same as c but without STP transient dynamics. Low amplitude GC and PC firing
rate transients result from 10 ms GC integration time constant. e Example simula-
tion in which correlated (black symbols) and uncorrelated (red symbols) MF pat-
terns were presented to the network in alternation. The correlation coefficient for
sequential patterns was ≈0:85. Firing rates are color-coded. f1 Steady-state sub-
tracted GC responses from simulation in (e) for uncorrelated (left) and correlated
MF pattern switches (right). f2 Same as (f1) but for PC. g Normalized standard
deviation of PC transient amplitudes for switches betweenMF patterns of differing
levels of correlation.
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Fig. 2 | Simulating Purkinje cell pauses during eyelid conditioning. a Scheme of
eyelid conditioning. CS: conditioned stimulus (red). US: unconditioned stimulus
(violet). After experiencing CS and US pairings at a fixed temporal interval over
many trials, the animal learns to close its eyelid just before the US is delivered
(green). A pause in PC activity (blue) precedes the eyelid closure (target time, gray
dashed line).bTheCS ismodeled as an instantaneous change inMFfiring rate. Top:
plot of firing rates of 100MFs, sorted according to synaptic types (MF groups). MF
firing rates are color-coded and drawn according to the distributions shown in
Fig. 1b. Bottom: two sampleMF rates per synaptic group. Colors as in Fig.1. cModel

GC responses to the CS. Top: 1000GCs sorted according to average firing rate after
CS onset. Firing rates are color-coded. Bottom: steady-state subtracted and indi-
vidually normalized GC transient responses. d Pdf of the distribution of GC activity
decay times to 10% of the transient peak. e Example of delay eyelid conditioning
over the course of 4000 learning steps for a 200ms delay. Dashed line represents
the target timeused in the supervised learning procedure.Without STP-inducedGC
transients, no PC pause could be learned (pink line). f Simulated PC responses
after 4000 learning trials for each target time (colored dashed lines).
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parameters (see “Methods”):

τsyn =
τref

1 +αpvm
ð2Þ

Here, α = τref ð1� pref Þ,m is theMFfiring rate persisting during the
CS, and the synaptic parameters pv, τref, and pref are defined as above.
Equation (2) shows that τsyn is inversely related to the MF firing rate
during the CS and the release probability, pv(Fig. 3d). Intuitively, this is
because higher pv and/or m lead to a higher rate of synaptic vesicle
fusion, and hence depletion, driving the synaptic response amplitude
to steady-state faster. Conversely, slow time constants arise from low

pv and/or low m with the maximum τsyn being equal to the vesicle
recovery time τref.

The transient amplitude At is given by

At =
Npvm

1 +αpvm

αpvðm�mpreÞ
1 +αpvmpre

ð3Þ

Here,N is the number of release sites. Importantly, and in contrast
to τsyn, At depends on the presynaptic MF firing rate before the CS,
mpre, and the difference between theMF firing rates before and during
the CS. In particular, for both rates sufficiently high, At becomes a
linear function of the normalized difference between m and mpre, i.e.
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Fig. 3 |MF-GC synaptic time constants and their relativeweights determine the
time course of GC responses. a Scheme of GC inputs in the simplified synaptic
model. Each GC receives exactly two distinct high release probability driver (red)
and low release probability supporter MFs (blue). b Schemes of the reduced
synapticmodel of high pv (red) and low pv synapses (blue). c Left: schemeof single
pool responsewith the timeconstant τsyn (blue line) toafiring rate switchduringCS
presentation (black solid line). The dashed black line separates the transient (At)
from the steady-state amplitude (As). Right: equations determining the synaptic
time constant and synaptic input. d Slow vesicle pool time constant (τsyn) versus
presynaptic MF firing rate. Different shades of gray indicate different release
probabilities. e Driver synapse transient amplitude (At) versus relative firing rate

change for a baseline firing rate of 80 Hz (m−mpre/mpre, mpre= 80Hz). A negative At

corresponds to a transient decrease in firing rate. Same color code as in (d).
f Sample fast GC. Left: driver and supporterMF firing rates drawn from thresholded
normal distributions (N thr(200Hz, 15 Hz) andN thr (25 Hz, 15 Hz), respectively) and
the corresponding synaptic responses. For clarity, only the τsyn of the respective
slow pool is indicated. Upper right panel: GC threshold (dashed line), total synaptic
input (black line), total driver input (red line), and total supporter input (blue line).
The transient response is dominated by the driver input (red). Lower right panel:
resulting GC firing rate response. g Like (f) but for a sample slow GC. The transient
response is dominated by the supporter input (blue).
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At / ðm�mpreÞ=mpre (Fig. 3e). At is sensitive to the relative and not the
absolute change in presynaptic rate, as observed previously16.

The transient GC activity results from the sum of eight synaptic
transient current components, (i.e. four inputs, each with two pools).
To illustrate the interplay between the At and τsyn, we compared the
behavior of each synaptic input for a selected fast and slowGC (Figs. 3f,
g). Generally, synaptic inputs from supporters display longer transient
currents than synaptic inputs from drivers (Figs. 3f, g, middle panels)
due to their lower firing rates (Figs. 3f, g, left panels) and low pv
(Fig. 3b). At is largely determined by the relative change in the
respective presynaptic MF firing rates, ðm�mpreÞ=mpre(Fig. 3f and g,
left panels). Thus, “fast” GCs are generated when the high pv driver
inputs exhibit large relative changes in firing rates (Fig.3f). “Slow” GCs
are generated from synapses with a small relative change in driver
firing rates, but large relative supporter (low pv) rate changes paired
with low supporter rates during the CS (Fig.3g). Taken together, in the
reducedmodel τsyn andAtdetermine the effective timescales of theGC
responses and are explicitly influenced by quantal parameters,
synaptic time constants, and the diversity of MF firing rates.

The explicit influence of synaptic parameters on temporal
learning
Our simulations suggest that delay eyelid conditioning acrossmultiple
delays necessitates GC population dynamics spanning multiple time-
scales (Fig. 2, Fig. S2). Since individual GC firing rate dynamics depend
on theAt and τsyn of their synaptic inputs (Fig. 3), this implies that 1) the
spectrum of τsyn available to the network should cover the relevant
timescales and 2) the At associated with different τsyn, which can be
understood as the relative weights of synaptic transient components,
should be of comparable magnitude across τsyn. To illustrate these
points, we used the reduced CCMSTP to simulate eyelid response
learning with different firing rate properties and examined the rela-
tionshipbetween τsyn,At, theGC temporalbasis, and learningoutcome.
Importantly, since At and τsyn are not independent, the quantity of
interest is their joint distribution. We initially set up a reference
simulation by choosing MF firing rate distributions such that the
diversity of GC transient responses and the temporal learning perfor-
mance (Fig. 4a) were comparable to the CCMSTP with native synapses
(Fig. 2f). For this case, the joint distribution shows that At decreased
with increasing τsyn. Note that At is maximal when the MF firing rates
increased from zero mpre to a finite m upon CS onset, maximizing m-
mpre (Eq. 3, see also Fig. S3b, c). We quantified learning accuracy by
calculating an error based on 1) the PC response amplitude, 2) its full
width at half maximum and 3) the temporal deviation of its minimum
from the target delay (Fig. 4a, fifth panel, Fig. S2a, see “Methods”").
Importantly, the degradation in temporal precision of the learned PC
pauses for longer CS-US intervals was concomitant with the reduction
of the At associated with longer τsyn (Fig. 4a). This suggests that
inspection of the joint distribution of τsyn and At can provide insight
into the temporal learning performance of the network.

When changing only the mean firing rate of supporter MFs (μS)
from 25 Hz to 70 Hz, the synaptic time constants were shortened due
to the inverse relationship between τsyn and the mossy-fiber firing rate
m (Fig. 4b, second panel). Consequently, and expectedly, the dis-
tribution of GC firing rate decay times was shifted to shorter values,
and learning performance was degraded for all CS-US intervals, except
the 25 ms delay (Fig. 4b). Lowering the mean firing rate of driver MFs
(μD) from 200 Hz to 100 Hz and increasing the standard deviation (σD)
from 15 Hz to 50 Hz, led to an overall increase of the time constants
contributed by driver synapses, as well as an increase in their relative
weight (At; Fig. 4c, second panel, marginals). As a result, the joint
probability distribution shows a shift towards faster weighted time
constants. It also follows that GC transients are accelerated, and
learning precision is decreased for long CS-US intervals. Removing
synaptic currents originating from driver synapses only disrupted

learning PC pauses for the shortest CS-US interval (Fig. 4d). Reduced
model simulations with systematic parameter scans across a wide
range of MF firing rate distributions for both synapse types suggested
that good synaptic regimes for temporal learning are achieved when
driver synaptic weights are comparable or smaller than those of the
slow supporting synapses (Fig. S4).

All the results taken together suggest that optimal learning occurs
when the spectrum of τsyn available to the network covers behaviorally
relevant timescales with balanced relative weights (At). Synaptic and
GC activity timescales can therefore be tuned by simultaneously
modulating pv and the absolute scale of m to provide the necessary
distribution of τsyn, whereas the relative change of MF firing can be
used to tune the weight (At) of τsyn.

Firing rate and synaptic parameters that improve temporal
learning performance
Thus far, we used the reduced model to explore how MF firing rates
and synaptic properties influenced the timescales of GC activity and
the temporal precision of learned PC pauses. Themodel, however, was
constrained by (1) the use of only two synapse types, (2) fixed release
probabilities (pv), (3) MF firing rates that were consistently higher for
high pv synapses than their low pv counterparts, and (4) an equal
number of driver and supporter synapses.Wenext considered how the
relaxation of these assumptions and specific parameter combinations
could influence the precision of learned PC pauses. In particular, we
simulated reducedmodels where, in addition toMF firing rates, pvwas
sampled from continuous distributions.

Equation (2) suggests that a positive correlation betweenpv andm
should broaden the distribution of τsyn and broaden the time window
of learning. Specifically, we expect learning performance to improve
when high(low) firing rate MFs are, on average, paired with high(low)
pv synapses. We chose uniformly distributed pv andMF firing rates and
split both of these equally into two contiguous groups (Fig. 5a). We
performed training simulations in which we paired high pv(driver)
synapses with high firing rates, or we paired low pv (supporter)
synapses and high MF firing rates, and vice versa (Fig. 5b). Formally,
this is equivalent to adjusting the rank correlation (crk) between the pv
category (supporter or driver) and the m category (high or low,
Fig. 5b). We found better learning performance when pv and m were
positively correlated (Fig. 5c, Fig. S5). Indeed, primary vestibular
afferents that form driver-like synapses have been shown to have high
firing rates30,40 while supporter-like secondary vestibular afferents
have low firing rates30,41.

Inspired by the number of synapse types observed
experimentally30, we augmented the number of synapse groups from2
to 5 without changing the pv and firing rate distributions (Fig. 5d). We
reasoned that the introduction of a larger number of MG-GC synapse
types would in principle permit a stronger linear correlation between
pv and m to occur (Fig. 5e), leading to a broader τsyn spectrum (not
shown) and an improved learningof PCpauses. Indeed, for high crk, the
learning performance of the five group CCMSTP was better than that of
the two-group CCMSTP (compare Fig. 5c and Fig. 5f, Fig. S5). These
simulation results suggest that good temporal learning performance
of CCMSTP can be achieved not simply by generating variability in
parameters, but by structuring, or tuning, the relationship between pv
and m.

Equipped with an understanding of how the synaptic and MF
rate parameters can generate different synaptic time constants,
we set out to further improve the temporal learning for longer
CS-US delays by adjusting the variance of the clustered MF rate
distributions. To increase the weighting of long τsyn, we inversely
scaled the variance of the MF firing rate distributions with respect
to the mean firing rate (Fig. 5g), thereby increasing At (Fig. 4c). As
expected, PC pause learning was better than when using equal-
width MF groups (Fig. 5g, Fig. S5). An additional enhancement of
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learning performance could be achieved by adding a small frac-
tion of zero-rate MFs to the lowest group (Figs. 5g, 6% zero MFs,
same fraction as in Fig. 4a), which provide maximal At(see Fig. 4).
Finally, taking into account the experimental finding that low pv
synapses are more frequent than high pv synapses30, we doubled
the fraction of MFs and release probabilities in the lowest group,
resulting in the best performance of all versions of CCMSTP tested
here (Fig. 5g). These simulations show that positive correlations
between vesicle release probability and presynaptic firing rate
broaden the temporal bandwidth of circuit dynamics and improve
temporal learning.

STP permits learning optimal estimates of time intervals
Humans and animals have an unreliable sense of time and their timing
behavior exhibits variability that scales linearly with the base interval47.
Previous work has found that humans seek to optimize their time
interval estimates by relying on their prior expectations. A canonical
example of this optimization is evident in the so-called ready-set-go-
task48 in which subjects have to measure and subsequently reproduce
different time intervals. It has been shown that when the intervals are
drawn from a previously learned probability distribution (i.e., prior),
subjects integrate their noisymeasurements with the prior to generate
optimalBayesian estimates. For example,when thepriordistribution is

Fig. 4 | Learning performance depends on MF firing rate distributions. a First
panel: Driver and supporterMF firing rate pdfs (μD = 200Hz,μS = 25Hz,σD =σS = 15
Hz). Second panel: Resulting joint At and τsyn distribution, featuring four partially
overlapping clusters, corresponding to the slow and fast pools for driver and
supporter synapses, and marginal distributions. The color code of the joint dis-
tribution scales logarithmically. Colors of marginal distributions indicate driver
(red) and supporter (blue) components. Third panel: Normalized GC transient
responses to CS. Inset: pdf of the distribution of decay times to 10%of the transient
peak. Fourth panel: learned PC pauses, averaged over n = 20 simulations with
different realizations of MF patterns and MF-GC connectivity. Dashed lines mark

CS-US intervals (color code is the same as in Fig. 2e). Fifth panel: Error for each CS-
US interval is calculated based on PC response amplitude, full-width at half-
maximum and temporal deviation (Fig. S2a) and averaged over n = 20 realizations
ofMFpatterns andMF-GC connectivity. Black lines indicate the distribution ranges;
gray boxes indicate the 25th to 75th percentile range and black-white circles the
medians. b Same as a, but with μS = 70Hz. Inset: black line is the pdf for simulation
withμS = 70Hz and gray line is the pdf from (a) for comparison. Fifth panel: change
in error relative to the average error in (a). c Same as (a), but with μD = 100 Hz and
σD = 50 Hz. d Same as (a), but without driver inputs.
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uniform, interval estimates are biased towards the mean of the prior,
and biases are generally larger for longer intervals that are associated
with more variable measurements (Fig. 6c). Such Bayes-optimal tem-
poral computations are evident in a wide range of timing tasks such as
time interval reproduction48, coincidence detection49, and cue
combination50.

A recent study developed a cerebellar model called TRACE for
temporal Bayesian computations33. TRACE implements Bayesian inte-
gration by incorporating two features. First, it assumes thatGCs forma
temporalbasis set that exhibits temporal scaling. This feature accounts
for the scalar variability of timing. Second, it assumes that prior-
dependent learning alters the GC-PC synapses. This feature allows the
dentate nucleus neurons (DNs) downstream of PCs to represent a
Bayesian estimate of the time interval.

In our analysis of eyelid conditioning (Fig. 2), we showed that
CCMSTP generates PC firing rate pauses whose width and amplitude
linearly scale with time (Fig. 6a). Therefore, we reasoned that CCMSTP

might have the requisite features for Bayesian integration. To test this
possibility quantitatively, we presented our model with variable
intervals drawn from various prior distributions. The interval was
introduced as a tonic input to MFs, similar to the CS in the eyelid

simulations. The onset of this tonic input caused an abrupt switch of
the MF input rates that persisted over the course of a trial. During
learning, we subjected the model to intervals sampled randomly from
a desired prior distribution.

We tested CCMSTP with five different uniform distributions of
ready-set intervals (25-150ms, 50–200ms, 100–300ms, 200–400ms,
300–500 ms), resulting in PC pauses that broadened for longer
interval distributions, and integrated DN activity that could easily
match the Bayesian least-square model33 by adjusting a single para-
meter, the Weber fraction wweber (see “Methods”"; Fig. 6d, h). The
reduced model interval estimates were more similar to the Bayesian
estimates than for CCMSTP with native synaptic parameters, especially
for the 200–400 ms and 300–500 ms intervals (Fig. 6h–k). Never-
theless, in both cases the CCMSTP simulations show that a GC basis
generated byMF-GC STP is sufficient for driving Bayesian-like learning
of time intervals spanning several hundreds of milliseconds. It should
be noted that our GC temporal basis was not explicitly constructed to
accommodate scalar properties. Nevertheless, as in the TRACEmodel,
we observed that interval estimates were biased towards themean and
that these biases were larger for longer intervals. These results suggest
that a GC basis set generated from the diverse properties of native
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Fig. 5 | Correlating release probability and MF firing rates improves learning
performance. a Top: distribution of MF firing rates (m) used to drive the network,
divided into low (supporter, green) and high (driver, yellow) rates. Bottom: Dis-
tributionof synaptic releaseprobabilities (pv), divided into low (light gray) andhigh
(dark gray) probabilities. b Top: pv versusm for 500 sample synapses for a network
with a strong negative rank correlation between the m category (supporter or
driver) and the pv category (high or low). Bottom: same as top, but for strongly
positive correlated m and pv. c Learned PC pauses for low (left) and high (right)
correlations. CS-US intervals are color-coded as in Fig. 2f. Each curve is the average

of n = 20 simulations with different realizations of MF patterns and MF-GC con-
nectivity. d–f Same as (a–c), but for distributions divided into five groups. g Left:
MF rates and release probabilities for five synapse types where the average group
firing rate is as in (d), but the firing rate variance progressively decreases with the
average rate. Right: resulting PC eyelid response learning for high correlations.
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Article https://doi.org/10.1038/s41467-022-35395-y

Nature Communications |         (2022) 13:7902 8



MF-GC synapses likely exhibits a scalar property necessary for gen-
erating optimally timed behaviors.

Discussion
In order to generate temporally precise behaviors, the brain must
establish an internal representation of time. This theoretical study
posits that the diversity of synaptic dynamics is a fundamental
mechanism for encoding sub-second time in neural circuits. By using
eyelid conditioning as a benchmark task for the CCMSTP, we eluci-
dated the conditions under which the variability in MF-GC synaptic
dynamics generates a GC temporal basis set that represents elapsed
time and is sufficient for temporal learning on a sub-second scale.
According to David Marr’s levels of analysis of information proces-
sing systems51, our study connects all three levels, from the circuit
computation (learning timed PC pauses) to its underlying algorithm
(learning with a temporal basis set), and the fundamental biological
mechanism (STP diversity).

STP diversity as a timer for neural dynamics
Cerebellar adaptive filtermodels posit thatGCs act as a heterogeneous
bank of filters that decompose MF activity into various time-varying
activity patterns - or temporal basis functions - which are selected and
summed by a synaptic learning rule at the PC to produce an output
firing pattern that generates behaviors that minimize error signals

arriving via climbing fibers36,37. CCMSTP can be viewed as an adaptive
filter in which MF-GC synapses act as non-linear elements whose filter
properties are determined by the experimentally defined synaptic
parameters and modulated by the presynaptic MF firing rates.

Recent theoretical work proposes that a scale-invariant neuronal
representation of a temporal stimulus sequence can be obtained by
using a population of leaky integrators that produce exponentially
decaying neural activity transients52. Indeed, exponential-like activity
has been observed in the entorhinal cortex—a region that projects to
the hippocampus6. The exponential-like population activity is remi-
niscent of the GC temporal basis set in CCMSTP following persistent
firing rate changes. However, the MF-GC synaptic inputs are always a
mixture of multiple exponential components. Nevertheless, our work
suggests that STP could be a plausible biological mechanism explain-
ing exponential dynamics in neuronal populations6 and merits further
theoretical and experimental investigation.

The use of an instantaneous and persistent change in MF activity
was motivated by the fact that eyelid conditioning can be achieved if
the CS is replaced with a constant MF stimulation44,45,53. Recent evi-
dence from pons recordings during reaching suggests thatMF activity
can be persistent with little dynamics54. For dynamic changes in MF
rates, STP is likely to generate outputs that are phase-shifted and/or
the derivatives of their input55. Using heterogeneity of MF-GC STP as a
mechanism for adaptive filtering, even time-varying inputs will
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effectively be diversifiedwithin theGC layer and improve the precision
of temporal learning.

Synapses within the prefrontal cortex56 and at thalamocortical
connections57 exhibit diverse firing rate inputs and release
probabilities58, generating synaptic dynamics that could drive complex
neural dynamics. Reminiscent of PC firing rate pauses during eyelid
conditioning, hippocampal time cells are thought to be generated by a
linear combination of exponentially decaying input activity patterns
from upstream entorhinal cortical neurons6. More generally, it has
been shownthatSTP alsoprovides a critical timingmechanismwithin a
recurrent neural network model of neocortical activity by facilitating
temporal pattern descrimination18. We note that all synapses in this
study featured only a single STP timescale, but we expect that the
addition of heterogeneous STP would further diversify the network’s
dynamics and enhance its computational properties. Thus, these pre-
vious studies and our present study underscore the proposal that STP
diversity is a tunable timing mechanism for generating neural
dynamics across brain regions.

Timing mechanisms in the cerebellar cortex
In addition to MF-GC STP, the cerebellar cortex is equipped with
multiplemechanismspotentially enabling temporal learning59. Indeed,
time-varying MF inputs could directly provide a substrate for learning
elapsed time60, but whether the observed diversity of MF firing is
sufficient to mediate temporally precise learning is unknown and
merits further exploration. Within the cerebellar cortex, unipolar
brush cells are thought to provide delay lines to diversify GC activity
patterns10,61,62, but these cell types are rare outside the mammalian
vestibular cerebellum. The diversity of GC STP63 could add to the
diversity of the effective GC-layer basis set64. Consistent with the
importance of MF-GC STP, delay eyelid conditioning was selectively
altered due to the loss of fast EPSCs in AMPAR KOmice65. Simulations
including realistic NMDA and spillover dynamics66 can further enrich
the temporal scales available to the network67. It would be of particular
interest to investigate the role of MF-GC STP in the context of recur-
rent GC-Golgi-Cell-cell network models that have been shown to gen-
erate rich GC temporal basis sets12,29. Finally, we note that MF-GC STP
and other timing mechanisms described above are not mutually
exclusive but presumably act in concert with the diverse intrinsic
properties of GCs68 and PCs69 to cover different timescales of learning
or increase mechanistic redundancy.

Predictions of the CCMSTP

Our theorymakes several testable predictions. The transient response
amplitude of PCs, which is proportional to the relative change in firing
rate, can serve as a detector of rapid changes in MF firing patterns
(novelty) and thus amplify pattern discrimination similar to that
demonstrated for synapse-dependent delay coding30. Consistent with
this prediction, single whisker deflections have been shown to gen-
erate transient PC activity42.

CCMSTP predicts that persistent changes in MF activity would
generate exponential-like GC activity profiles (Figs. 2, 4). However,
although the majority of simulated GCs shown here are active at the
onset of the CS, this is not a necessary feature of CCMSTP. When we
included a single, average-subtractingGolgi cell (possibly representing
the “common mode” of Golgi Cell population activity64), more GCs
showeddelayedonset firing and the variability of onset and peak times
(Fig. S6). This did not affect the learning performance of simulated
delay eyelid conditioning (Fig. S6). Note that our implementation of
Golgi cell feedback is simplified and does not account for reciprocal
inhibition between multiple Golgi cells, which in simulations has also
been shown to generate diverse GC activity12,29. To test these predic-
tions, MFs could be driven at constant rates using direct electrical or
optogenetic stimulation of the cerebellar peduncle in vivo or the white
matter in acute brain slices, with and without intact Golgi cell

inhibition. Unfortunately, high-temporal resolution population
recordings of GCs are challenging due to the small size of GC somata.
In the future, small impendence silicon probe recordings70 or ultra-fast
optical indicators71 might permit experimentally testing our hypoth-
eses. If successful, we predict that the time course of GC responses
should be diverse and exponential-like, with prominent delayed
activity in some granule cells when Golgi cells are intact. Furthermore,
decreasing or increasing the MF firing rate should in turn slow or
accelerate GC responses, respectively. Finally, for complex behavioral
experiments inwhich theMFactivity is dynamic (andmeasurable), one
could examine which circuit connectivity of the CCMSTP best repro-
duces the measured GC activity.

The CCMSTP is one of the few network models directly linking
quantal synaptic parameters and presynaptic activity dynamics to
population activity dynamics and temporal learning. Figures 3 and 4
show that the relative weight and temporal span of synaptic time
constants dictate the distribution of GC firing rate decay times and, in
turn, the timescales of temporal learning. Analytical solutions for
simple synapse models (Eq. (3)) provide insight into how synaptic
parameters influence STP. For example, high levels of correlation
between pv and m, coupled with balanced relative weights of the
synaptic time constants, generated a learning performance superior to
the native synapses (Fig. 5d). Therefore, CCMSTP predicts that MFs
forming driver synapses (high pv) would have a high baseline and sti-
mulated firing rates, while MFs forming supporter synapses (low pv)
would exhibit low baseline and stimulated firing rates, albeit with large
relative changes in firing rates. Indeed, vestibular neurons, which have
been shown to exhibit high firing rates72,73, produced MF-GC synapses
with high release probability30. In the C3 zone of the anterior lobe in
cats, specific firing rates were associated with differentMF types74. It is
tempting to hypothesize that nature tunes presynaptic activity and
synaptic dynamics (perhaps by homeostatic or activity-dependent
mechanisms) in order to preconfigure the window of temporal asso-
ciations required for a particular behavior.

Choice of the cerebellar learning rule
The learning rule we used here was adapted from a previousmodeling
study that investigated cerebellar adaptation of the vestibular ocular
reflex and was argued to be biologically plausible75. This synaptic
weight update rule is mathematically equivalent to a gradient descent
in which the error magnitude is transmitted via the climbing fiber75.
Consequently, CCMSTP learning rule features graded climbing-fiber
responses and a gradual reduction in climbing-fiber spiking that is
concomitant with the progression of learning. These phenomena have
been observed experimentally43,76. Moreover, a recent study that
thoroughly investigated the role of the climbing fiber spike in cere-
bellar learning found that the GC and climbing-fiber spike pairings
necessary for the induction of long-term depression/potentiation
under physiological conditions are compatible with a stochastic gra-
dient descent rule46. The CCMSTP learning rule can be seen as a
deterministic variant of this.

Synaptic implementation of a Bayesian computation
Bayesian theories of behavior provide an attractive framework for
understanding how organisms, including humans, optimize time per-
ception and precise actions despite the cumulative uncertainty in
sensory stimuli, neural representations, and generation of actions48,77.
We found that CCMSTP could generate biased time estimates con-
sistent with Bayesian computations. In general, the magnitude of bia-
ses for a Bayesian agent depends on the magnitude of timing
variability (i.e., Weber fraction). In our simulations, model parameters
corresponding to native synapses from the vestibular cerebellum
produced biases that were optimal for a typical weber fraction of 0.12.
However, CCMSTP is flexible and can be adjusted to generate optimal
biases for a wide range of weber fractions. The exact relationship
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between model parameters and wweber is an important question for
future research. We note that the timescales of synaptic properties
observed empirically in the vestibular cerebellum30 are only suitable
for generating optimal estimates for relatively short time intervals.
Therefore, whether the synaptic mechanisms that underlie CCMSTP

could accommodate timing behavior for longer timescales remains to
be seen. One intriguing hypothesis is that synaptic parameters in dif-
ferent cerebellar regions are tuned to generate optimal estimates for
different time intervals, similar to the timing variability observed for
cerebellar long-term synaptic plasticity rules78.

Methods
MF-GC synapse model
The synaptic weight between the jth MF and the ith GC is denoted by
Wij. The firing rate of the jth MF is represented by mj(t) and the
average current per unit time transmitted by the synapse betweenGC i
and MF j is

Isyn,ijðtÞ=Wij tð Þ �mj tð Þ: ð1Þ

Time-dependent MF-GC synaptic weights were modeled using
two ready-releasable vesicle pools38, each according to the general
form established by Tsodyks and Markram79. A similar model was
shown to accuratelydescribe STPat theMF-GC synapse38. Accordingly,
one vesicle pool was comparatively small, with a high release prob-
ability and a low rate of recovery from vesicle depletion (0.5 s−1), while
the other was comparatively large, with low release probability and a
high rate of recovery from depletion (20ms−1)38. We refer to these
pools as’slow’ and’fast’, respectively. In the Hallermann model38, the
slow pool is refilled by vesicles from the fast pool. For the sake of
mathematical tractability, we modeled the pools as being refilled
independently (see scheme in Fig. 1).

To model vesicle depletion, we use the variables xslow and xfast,
denoting the fraction of neurotransmitter available at the slow and fast
vesicle pool. The state of the pools between GC i and MF j at time t is
then described by

_xslowij ðtÞ=
1� xslowij ðtÞ

τslowref

� uslow
ij ðtÞ � ð1� pref Þ � xslowij ðtÞ �mjðtÞ

_xf astij ðtÞ=
1� xf astij ðtÞ

τf astref

� ufast
ij ðtÞ � xf astij ðtÞ �mjðtÞ,

ð2Þ

where, τslowref and τf astref are the time constants of recovery from vesicle
depletion for the slow and fast pools, and are identical for all synapses.
The variables uslow

ij ðtÞ and ufast
ij ðtÞ denote the pools’ respective release

probabilities at time t. Experimental data show that, in response to
trains of action potentials, MF-GC synapses approach synaptic steady-
state transmission with a long time constant38,39. This feature can be
captured with a serial pool model38 (see scheme in Fig. S7). In order to
capture this behavior with a parallel pool model, we added the
phenomenological parameter pref to the slow pool’s dynamical
equation. In mechanistic terms, pref can be thought of as the
probability of immediately refilling a synaptic docking site after the
release of a vesicle. This mechanism effectively mimics a simplified
formof activity-dependent recovery fromdepression. The final release
probabilities uslow

ij ðtÞ and ufast
ij ðtÞ aremodulated by synaptic facilitation

according to

_uslow
ij ðtÞ=

pα
v,slow
�uslow

ij ðtÞ
ταF

+pα
v,slow � ð1� uslow

ij ðtÞÞ �mjðtÞ

_ufast
ij ðtÞ=

pα
v,f ast
�ufast

ij ðtÞ
ταF

+pα
v,f ast � ð1� ufast

ij ðtÞÞ �mjðtÞ:
ð3Þ

Here, pα
v,f ast and pα

v,slow denote the release probabilities for the fast
and slow pools, respectively, and ταF is the facilitation time constant.

The index α denotes different synapse types (groups from Chabrol
et al.30) and varies from 1 to 5. The average number of vesicles released
at any time t can be written as:

nslow
ij ðtÞ=Nα

slow � uslow
ij ðtÞ � xslow

ij ðtÞ
nfast
ij ðtÞ=Nα

f ast � ufast
ij ðtÞ � x

f ast
ij ðtÞ:

ð4Þ

Postsynaptic receptor desensitization induces an additional
component of depression of phasic MF-GC synaptic transmission. As
both pools share the same postsynaptic target, we model desensiti-
zation via the modulation of a single variable qijðtÞ for each synapse
type, which represents the synaptic quantal size and which is influ-
enced by the total number of vesicles released from both pools:

_qijðtÞ=
q0�qij ðtÞ

τD
� ΔD � qijðtÞ �

nslow
ij ðtÞ+n

fast
ij ðtÞ

Ntot
�mjðtÞ ð5Þ

where Nα
tot =N

α
slow +Nα

f ast , τD is the time constant of recovery from
desensitization, q0 is the quantal size in the absence of ongoing sti-
mulation and ΔD is a proportionality factor that determines the frac-
tional reduction of qijðtÞ. As explained below, we set q0 = 1, i.e. qij(t) is
normalized. Both τD and ΔD are identical across all synapse types.
Finally, the total synaptic weight is equal to the sum of the contribu-
tions from both vesicle pools:

WijðtÞ=qijðtÞ � nslow
ij ðtÞ+nfast

ij ðtÞ
� �

, ð6Þ

Synaptic parameters for generating diverse synaptic strength
and dynamics
We set the synaptic parameters of ourmodel to reproduce the average
behavior of the 5 MF-GC synapse groups which were determined in
ref. 30 based on unitary response current amplitudes, pair pulse ratios,
and response coefficients of variation.

The vesicle pool refilling time constants τslowref and τf astref were set to
the valuesmeasured at theMF-GC synapse in ref. 38 andwere identical
for all synapse groups. The time constant of facilitation ταF for groups
1–4 was taken from ref. 39. The time constant of recovery from
desensitization, τD, was set equal to the value reported in ref. 38 for all
groups, and the parameters ΔD was chosen so as to obtain the relative
reduction in quantal size reported in the same ref. 38. To qualitatively
account for the slow approach to steady-state transmission observed
inMF-GC synapses38,39 we set pref to a value of 0.6 for all synapse types.

To set the presynaptic quantal parameters, we matched model
quantal parameters, q0, N and pv, to the average of those measured in
ref. 30 for each synapse group. The estimation of the experimental
values qα

0, exp, N
α
exp and pα

v, exp was carried out via multiple-probability
fluctuation analysis30, which assumes a single vesicle pool. To con-
strain the corresponding parameters of our two-pool model, we
assumed:

Nα
exp =N

α
tot =N

α
slow +Nα

f ast

pα
v, exp =

Nα
slowp

α
v,slow

+Nα
f astp

α
v,f ast

Nα
tot

ð7Þ

while keeping pα
v,slow>p

α
v,f ast . Since the quantal size did not significantly

differ between groups30, we set q0 = 1 for all groups for simplicity. As
group 4 featured almost no STP, we modeled these synapses without
slow pool.

The above equations do not have a unique solution. In order to
constrain the synaptic parameters further, we additionally required
that the relative unitary response current amplitudes between synapse
groups and their pair pulse ratios approximately equal the
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experimentally measured ones. To account for the fact that group 5’s
pair pulse ratio is larger than one, we set τF = 30ms for this group, as in
ref. 30.

Finally, we extracted the relative occurrence of each synapse type
from ref. 30.

A set of synaptic parameters that reproduces the behavior of the
five synapse groups from ref. 30 that we used in Figs. 1, 2, and 6 is
summarized in Table 1.

MF firing rate parameters
MF firing rate distributions of the full CCMSTPwere set according to the
broad range described in the literature40,41,70,72,73,80–84. MFs forming
synapse types 1 and 2, which convey primary sensory information,
were set to high firing frequencies according to experimental
observations40,41 (see Fig. 1b, left panels). In contrast, the firing rates for
the other synapses types were lower70,83. For the full model, this led to
synapses with high pv being associated with MF inputs with com-
paratively higher average firing rates (primary sensory groups 1, 2) and
synapses with low pv being associated with MF inputs with compara-
tively lower average firing rates (secondary/processed sensory groups
3, 4, 5). We chose to describe MF firing rate distributions by Gaussian
distributions whose negative tails were set to zero. Means and stan-
dard deviations of the Gaussian distributions were set such that the
means and standard deviations of the resulting thresholded distribu-
tions resulted in the values summarized in Table 2.

Cerebellar cortical circuit model
The standard cerebellar cortex model with STP (CCMSTP) consists of
firing rate units corresponding to 100MFs, 3000 GCs, a single PC, and
a single molecular layer interneuron (MLI). The PC linearly sums
excitatory inputs from GCs and inhibition from the MLI. Each GC
receives four MF synapses, randomly selected from the different
synapse types according to their experimentally characterized fre-
quency of occurrence30. The synaptic inputs to the GCs and their firing
rates are given by:

Igc,iðtÞ=
X
j2K

Isyn,ijðtÞ=
X
j2K

WijðtÞmjðtÞ

τg _gciðtÞ= � gciðtÞ+αi � maxðIgc,iðtÞ � θi,0Þ
ð8Þ

where the granulecellmembrane time constant τg = 10ms. In the above
equation, K is a set of four indices, randomly drawn from all MF. We
require that at least one MF per GC belongs to groups 1, 2 or 5, as
observed experimentally30. The gain αi and threshold θi are set indi-
vidually for each GC i as explained below.

MLI activity is assumed to represent the average rate of the GC
population, thus allowing each GC to have a net excitatory or inhibi-
tory effect depending on the difference between theMLI-PC inhibitory
weight and the respective GC-PC excitatory weight:

mliðtÞ= 1
N

XN
i= 1

gci tð Þ, ð9Þ

The synaptic weights between the ith GC and the PC and between
the MLI and PC were defined as JE,i and JI , respectively. The total
synaptic input to the PC is thus given by

IpcðtÞ=
XN
i= 1

JE,i
N

gciðtÞ � JImliðtÞ+ Ispont

=
1
N

XN
i= 1

ðJE,i � JI ÞgciðtÞ+ Ispont :
ð10Þ

Ispont is an input that maintains the spontaneous firing of the PC
at 40 Hz.

Finally, the PC firing rate is given by

pcðtÞ= maxðIpcðtÞ,0Þ: ð11Þ

In Fig. 1, the GC-PC weights JE,i were drawn from an exponential
distribution with mean equal to 1. To decrease or increase the ratio of
the average excitatory to inhibitory weight, in Figs. 1c and 1d we set
JI = 1:025 and JI =0:975, respectively. The full CC model and the
reduced model (described below) were numerically integrated using
the Euler method with step size 0.5 ms.

GCThreshold and gain adjustment. Changing the statistics of theMF
firing rate distributions changes the fraction of active GCs at any given
time and the average GC firing rates. To avoid the confounding impact
that co-varying these quantities has on learning performance when
comparing different MF parameter sets, we adjusted GC thresholds, θi

and gains αi such that, at steady state, the fraction of active GCs and
the average GC firing rates were identical for all MFparameter choices.
Specifically, we drew 1000 random MF patterns from the respective
firing rate distributions, and we calculated the steady inputs values of
the synaptic dynamics as follows:

uslow,μ
ij

� �*
=pα

v,slow �
1 + ταF �mμ

1 +pα
v,slow � ταF �m

μ
j

uf ast,μ
ij

� �*
=pα

v,f ast �
1 + ταF �mμ

1 +pα
v,f ast � ταF �m

μ
j

ð12Þ

xslow,μ
ij

� �*
=

1

1 + uslow,μ
ij

� �*
� τslowref � 1� pref

� �
�mμ

j

xf ast,μ
ij

� �*
=

1

1 + ufast,μ
ij

� �*
� τf astref �m

μ
j

ð13Þ

qμij
� �*

= Ntot

Ntot +ΔD �τD� nslow,μ
ij

� �*

+ nfast,μ
ij

� �*
� �

�mμ
j

ð14Þ

Table 1 | Synaptic parameters used in full model

Group 1 Group 2 Group 3 Group 4 Group 5 Ref.

Nslow 4 3 4 – 3 30

Nfast 16 12 6 10 12 30

pv,slow 0.9 0.8 0.4 – 0.4 30

pv,fast 0.72 0.55 0.35 0.3 0.15 30

τslowref [ms] 2000 2000 2000 – 2000 38

τfastref [ms] 20 20 20 20 20 38

τF [ms] 12 12 – 12 30 30,39

pref 0.6 0.6 0.6 – 0.6 –

ΔD 0.1 0.1 0.1 0.1 0.1 38

τD [ms] 100 100 100 100 100 38

occurrence 6% 16% 38% 24% 16% 30

Table 2 | MF firing rate parameters used in the full model

Group 1 Group 2 Group 3 Group 4 Group 5

μ [Hz] 200 200 20 20 20

σ [Hz] 20 20 20 20 20
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With these, we obtained, for each GC, the distribution of steady-
state inputs and firing rates:

Iμgc,i
� �*

=
X
j2K

Wμ� �*
ijm

μ
j tð Þ

gcμi
� �*

=αi �max Iμgc,i
� �*

� θi,0
� � ð15Þ

We then adjusted αi and θi for each GC to maintain an average
steady-state GC firing rate of 5 Hz for all patterns. The lifetime sparsity
of each GC was set to 0.2, which is within the range of experimental
observations84,85. Throughout the article, this adjustment was carried
out every time we changed synaptic parameters (Fig. 5), the para-
meters of the MF firing rate distributions (Fig. 4) or the MF to synapse
connectivity (Fig. 5).

Supervised learning rule. Purkinje cell pauses associated with eyelid
conditioning acquisition were generated by adjusting JE,i using a
supervised learning rule. The target PC firing rate ItargetðtÞ was set as a
Dirac pulse in which the PC rate is zero in the time bin around ttarget
following the start of the CS.:

ItargetðtÞ= Ispont � 1� S t � ttarget
� �h i

ð16Þ

where S= 1 in the time bin around ttarget and S=0 otherwise. We
quantify the deviation of the PC firing rate from the target rate by the
least squares loss E that is to be minimized during learning:

E =
1
2

Z TCS

�Tpre

dt ew2
err ðtÞϵ2ðtÞ

=
1
2

Z TCS

�Tpre

dt ew2
err ðtÞ IpcðtÞ � ItargetðtÞ

� �2 ð17Þ

½0,TCS� is the time interval after CS onset (at t =0) during which we
require the PC to follow the target signal and ½�Tpre,0� is a time interval
before CS onset during which the PC should fire at its spontaneous
rate. ϵðtÞ denotes the deviation between the target and the actual PC
output at time t. ewerr is a factor thatweuse to increase the sensitivity of
the loss E function to the target time, and is given by:

ewerrðtÞ=
werr ðtÞR TCS

�Tpre
dt’werrðt’Þ

werrðtÞ=
3:5 if t = ttarget
1 else

� ð18Þ

In all main figures, we used TCS = 1:4s and Tpre =0:1s.
GC-PC weights JE,i were modified during learning using gradient

descent to reduce the error E at each step of the learning algorithm:

Ji  Ji +ΔJi

ΔJi =η
∂E
∂Ji

=
η
N

Z TCS

�Tpre

dtew2
err ðtÞ � ϵðtÞ � gciðtÞ

ð19Þ

Here, η is a learning rate. For our simulations, we modified this basic
rule in two ways. Firstly, similar to ref. 75, we explicitly simulated a
climbing fiber (CF) rate, cf, that is modulated by the error signal
ϵðtÞ= IpcðtÞ � ItargetðtÞ according to

cf ðtÞ= maxðcf spont +βϵðtÞ,0Þ ð20Þ

where cf spont is the spontaneous CF rate and β a proportionality factor.
The CF rate was then used to update the synaptic weight according to
the following equation:

ΔJi =
η
N

Z TCS

�Tpre

d t ew2
errðtÞ � ðcf spont � cf ðtÞÞ � gciðtÞ ð21Þ

where we also set JE,i =0 when a learning iteration resulted in a nega-
tive weight. As the CF rate is required to be positive or zero, this
formulation limits the error information transmitted to the PC com-
pared to the simple gradient rule. This learning rule yields synaptic
long-term depression when CF and GC are simultaneously active and
long-term potentiation when GCs are active alone, consistent with
experimental data on GC-PC synaptic plasticity59.

Furthermore, recent experimental findings suggest that the tem-
poral properties of GC-PC plasticity rules are tuned to compensate for
the typical delays expected for error information arriving in the cere-
bellar cortex78. Here, we did not explicitly model CF error information
delays, and for the sake of simplicity, directlymodeled the timing of PC
activity to show that the GC basis set is sufficient to generate an
appropriately timed PC pause.

To increase the learning speed, we added a Nesterov acceleration
scheme to Eq. (21)86, introducing a momentum term to the gradient,
i.e. weight updates made during a given iteration of the algorithm
depended on the previous iteration. The implementation we chose
additionally features an adaptive reset of the momentum term,
improving convergence properties86. This addition is for practical
convenience and does not reflect biological mechanisms.

For theweight learning, we subsampled the simulatedGC rates by
a factor of 10 and set η = 0.0025, β=0:5 and the initial distribution of
weights to JE,i = JI = 10 for all i. For all eyelid response learning simu-
lations, we chose cf spont = 1Hz (Figs. 2, 4, 5).

Error measure of learned Purkinje cell pause. We defined the error
between the PC pause and the Itarget (see Fig. 4, S3, S4 and S5) in the
following way:

ϵtot = 1� ϵamp

hspont

 !
+
ϵf whm

s
+ 5 � ϵt

s
ð22Þ

The first term depends on the amplitude of the PC pause relative to
baseline firing, yielding a small error when the amplitude goes to zero.
The second term corresponds to the normalized width of the PC
pause. Finally, the third term is the normalized deviation of the pause’s
minimum from the target time, ϵt . To increase the importance of this
term, we scaled it by a factor 5. The error measure in Figs. S4 and S5 is
the sum of ϵtot over all tested delays.

Reduced CC model
The reduced synaptic model included only two synapse types.We also
neglected facilitation and desensitization, yielding constant release
probabilities and constant normalized quantal size:

uslow
ij ðtÞ=pα

v,slow

ufast
ij ðtÞ=pα

v,f ast

qijðtÞ= 1:
ð23Þ
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We obtain for the vesicle pool dynamics:

_xslowij ðtÞ=
1� xslow

ij ðtÞ
τslowref

� pα
v,slowð1� pref Þxslow

ij ðtÞ �mjðtÞ

_xf astij ðtÞ=
1� xfast

ij ðtÞ
τf astref

� pα
v,f astx

f ast
ij ðtÞ �mjðtÞ:

ð24Þ

and the total synaptic weight becomes

WijðtÞ=Nα
slow � pα

v,slow � xslow
ij ðtÞ+Nα

f ast � pα
v,f ast � xf ast

ij ðtÞ: ð25Þ

Here the index α denotes membership in the driver or supporter
category. The synaptic currents of the reducedmodel are computed as
in the full model. Each GC receives exactly two driver and two sup-
porter MF inputs with random and pairwise distinct identities. To
eliminate any non-synaptic dynamics from the reduced model, we
removed the GC membrane time constant yielding GC dynamics that
follow the synaptic input instantaneously:

gciðtÞ=αi �maxðIgc,iðtÞ � θi,0Þ: ð26Þ

Finally, GC threshold and gain adjustments were carried out similarly
to the full CCMSTP where instead of Eqs. (12) and (14) we used Eq. (23).

Synaptic parameters of the reduced model. The parameters of the
reduced model were set to create two synapse types that capture the
essence of the experimentally observed synaptic behavior: a strong
and fast driver synapse, and a weak and slow supporter synapse. All
synaptic parameters of the model used in Figs. 3, 4 and 6 are sum-
marized in Table 3.

In Fig. 5, firing rates and release probabilities were randomly
drawn fromuniformdistributions. In detail, the release probabilities of
the slow pool, pv,slow, were drawn from distributions with a lower and
upper bound of 0.1 and 0.9, respectively, (Fig. 5a, d, g, and h), and the
corresponding release probabilities of the fast pool were calculated
according to pv,f ast =

2
3pv,slow, keeping them strictly lower. The lower

and upper bounds of the distribution of firing rates used in panels a
and dwere 5Hz and 270Hz, resulting in firing rate standard deviations
of σrate≈38:2 Hz for the two-groups case (Fig. 5a) and σrate≈15:3 Hz for
the five groups case (Fig. 5d). The bounds of the distributions in panels
g and h were chosen to match the average group firing rates equal to
those in panel d and firing rate standard deviations that increasedwith
the group index, i.e. σrate≈f5:0,7:6,10:2,12:7,15:3g Hz for groups 1 to 5,
respectively. Finally, the sizes of the slow vesicle pool were fixed at
Nslow =4 and the size of the fast vesicle pools were set to decrease with
the group index, i.e. Nfast = f16,6g for the two-groups case, and
Nfast = f16,12,8,6,6g for the five groups case. Finally, the desired rank
correlation between pv identities and MF identities was achieved by
creating a Gaussian copula reflecting their statistical dependency and
reordering the marginal pv and MF distributions accordingly.

Derivation of τsyn and At
In the reducedmodel, we derived an analytical solution to the synaptic
current driving a GC in response to the CS. Since the equations
describing slow and fast vesicle pool dynamics are formally very
similar, we describe the derivation for a single slow pool only. Addi-
tionally, we suppress all indices for the sake of readability. We assume
that the MF rate mðtÞ switches instantaneously from mpreCS to mCS at
time t’=0. Integration of equations (Eq. (24)) from t’=0 to t yields:

xðtÞ= ðx*
preCS � x*

CSÞ exp �
1

τref
+pvð1� pref ÞmCS

 !
t

 !
+ x*CS, ð27Þ

Here, x*preCS and x*
CS denote the steady-state values of x before (preCS)

and after (CS) the firing rate switch. They are given by

x*γ =
1

1 +αpvmγ
, ð28Þ

with

α =
τref ð1� pref Þ for slow pool

τref for fast pool

(
ð29Þ

Equation (27) defines the synaptic time constant that governs the
speed of transition from a steady-state value before the CS to a steady-
state value during the CS:

τsyn = τref � x*CS =
τref

1 +αpvmCS
ð30Þ

This equation is similar to one derived previously55,87. The total
synaptic current per unit time for a single pool during the CS is given
by

IsynðtÞ=NpvxðtÞmCS ð31Þ

Combining Eqs. (27) and(31) we obtain

IðtÞ= NpvmCS

1 +αpvmCS
1 +

αpvðmCS �mpreCSÞ
1 +αpvmpreCS

exp � t
τsyn

 !" #

= As|{z}
steady state

+ At|{z}
transient amplitude

exp � t
τsyn

 ! ð32Þ

Thus, the transient amplitude for a single vesicle pool is

At =
NpvmCS

1 +αpvmCS

αpvðmCS �mpreCSÞ
1 +αpvmpreCS

ð33Þ

For a single synapse, the total transient amplitude is the sum of the
individual fast pool and slow pool transients:

Atot
t =Aslow

t +Afast
t ð34Þ

To generate the surface plots in Fig. 4 and Fig S3 we generated 105

firing rates from the driver and supporter MF rate distributions,
respectively, and used Equations (30), (33) and (34) to calculate the
corresponding values of the At and τsyn. From these, the plots of the
joint At and τsyn distribution and the marginal distributions were
generated using a two- or one-dimensional kernel density estimator,
respectively88. Note that, formally, τsyn ismaximalwhenmCS =0. In that
case, however, there is no synaptic transmission as
Atot
t =Aslow

t =Afast
t =0. When plotting the joint At -τsyn distribution in

Fig. 4 and Fig S3, we therefore omitted time constants and transient
amplitudes corresponding to mCS =0.

Table 3 | Synaptic parameters used in reduced model

Drivers Supporters

Nslow 3.5 4

Nfast 14 6

pv,slow 0.8 0.4

pv,fast 0.6 0.2

τslowref [ms] 2000 2000

τfastref [ms] 20 20

pref 0.6 0.6

occurrence 50% 50%
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Bayesian estimation of time intervals
To learn the mapping between tm and te, we presented CCMSTP with
variable intervals drawn from various prior distributions (ts) sub-
jected to measurement noise. The interval was introduced as a tonic
input to MFs, similar to the CS in the eyelid simulations. The onset of
this tonic input caused an abrupt switch of the MF input rates that
persisted over the course of a trial. For each iteration of our learning
algorithm, we generated target signals sampled randomly from one
of five different uniform prior distributions: 25–150 ms, 50–200 ms,
100–300 ms, 200–400 ms, 300–500 ms. Learning was carried out
separately for each interval and for 12000 iterations. We found that
to achieve the correct biases for the two longest intervals, we had to
introduce a higher CF baseline firing rate, cf spont = 5 Hz. The other
learning parameters were kept the same as in the eyelid learning
simulations.

In keeping with ref. 33, we modeled the DN neuron as an inte-
grator, whose rate was calculated according to

dn tð Þ=
Z

Iext � JpcpcðtÞ
� �

dt, ð35Þ

where the Jpc is the weight of the inhibitory PC-DN synapse and
Iext = pc

	 

is an external excitatory input to DN. It was set equal to the

average PC firing rate during the interval period to ensure that
excitation and inhibition onto the DN are of comparable size. For
simplicity, we set Jpc = 1.

In order to map the DN rate to a time axis (Fig. 6f, j), we rescaled
every individual DN output curve according to:

cdn tð Þ= ts,max � ts,min

� � dn tð Þ � dnmin

dnmax � dnmin
+ ts,min, ð36Þ

where ts,max and ts,min are the maximum and minimum of the
respective prior interval and dnmax and dnmin are the maximum and
minimum values of the DN firing rate. Since the transformation
described in Eq. (36) is linear, the essential features exhibited by the
DN firing rate (i.e. its biases) are preserved.

To show how the theoretical Bayesian least squares (BLS) interval
estimate can be obtained, we follow the reasoning from ref. 33. It is
assumed that to estimate a time-interval, ts, subjects perform a noisy
measurement, tm, according to:

p tm∣ts
� �

=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðwwebertsÞ2
q e

� ðts�tm Þ2
2ðwweber ts Þ2 : ð37Þ

Note that the standard deviation of the estimate of tm increases with
the length of the interval ts with proportionality factorwweber, which is
the weber fraction. Given the prior distribution of time intervals,ΠðtsÞ,
the Bayesian estimate of ts given tm is:

p ts ∣tm
� � / Π ts

� �
p tm∣ts
� �

: ð38Þ

TheBLS estimate is the expected valueof theprevious expression:

te = E½p ts∣tm
� ��: ð39Þ

We performed a least squares fit of the BLS model to the CCMSTP

outputs (from all five interval distributions simultaneously) withwweber

as a single free parameter.

Recurrent Golgi cell inhibition
To probe the effect of recurrent inhibition in the reduced CCMSTP, we
added oneGolgi cell (GoC) that received excitatory inputs fromall GCs
and formed inhibitory synapses onto all GCs. For simplicity, we

assumed that the GoC fires with a rate goc equal to the average GC
firing rate, similarly to the MLI, and that all GoC to GC synapses have
identical weights, Jgoc:

gocðtÞ= 1
N

XN
i= 1

gciðtÞ= hgcðtÞi

Igc,iðtÞ=
X
j2K

WijðtÞmjðtÞ � Jgoc � gocðtÞ

gciðtÞ=αi � maxðIgc,iðtÞ � θi,0Þ:

ð40Þ

The above equations imply that, in this configuration, the GoC acts as
an activity-dependent GC threshold.

To ensure that the overall GC activity level in the reduced
CCMSTP with GoC inhibition is comparable to the case without, we
require the same criterion as above: an average GC rate of 5 Hz and a
fraction of activated GCs of 0.2 in steady state. Since the average GC
input now depends on the average GC firing rate itself, manual
adjustment of GC thresholds, θi, and gains, αi, carried out as above, is
not feasible.

Instead, a steady-state solution of the set of Eq. (40) satisfying our
requirements has to be found numerically. We first set up the CC
networkwithout the GoC and adjustedGC thresholds, θi, and gains, αi,
according to the procedure described above. Note that in the reduced
model, due to every GC receiving the same combination of inputs (i.e.
2 supporter and two driver inputs), both θi and αi are similar across
GCs.We thusmade the additional simplification of setting θ=EðθiÞ and
α =EðαiÞ for all GCs. We then reduced GC thresholds by 10% and
introduced the GoC.

To obtain the average steady-state GC firing rate we assumed that
the synaptic currents of a single GC are normally distributed acrossMF
input patterns or, equivalently, across GCs. Mean and variance of the
GC inputs are:

I*gc
D E

=E I*gc,i
� �

=E
X
j2K

W *
ij �mj

 !
� Jgoc � gc*

	 

σ2
I*
= Var I*gc,i

� �
=Var

X
j2K

W *
ij �mj

 ! ð41Þ

We can then express the average GC firing rate in the N!1 limit as:

hgc*i=α
Z +1

�1
max I*gc

D E
+ σ*

I � ξ � ~θ, 0
� �

exp � ξ2

2

 !
dξffiffiffiffiffiffi
2π
p ð42Þ

where eθ=0:9θ. The fraction of active GCs f can be written as:

f =
1
2
erfc

θ� I*gc
D E
ffiffiffi
2
p

σI*

0@ 1A ð43Þ

We can now impose that

gc*
	 


= 5Hz

f =0:2
ð44Þ

and find a self-consistent solution of Eqs. (41), (42), and (43) by adjusting
the parameters Jgoc and α. To do so we used the hybrid numerical root-
finder from the GNU scientific library89 with default step size.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
No experimental data were generated in this study.

Code availability
Figures were generated with Matlab (R2019b) and python (3.8). All
simulationswereperformedwithC++11 using theGNUscientific library
(2.6)89 and the armadillo library (11.0.1)90. The code is available on the
following GitHub repository: https://github.com/alessandrobarri/
cerebellar_cortex_input_STP.
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