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GENET ICS

TATTOO-seq delineates spatial and cell type–specific
regulatory programs in the developing limb
Sébastien Bastide1,2,3, Elad Chomsky4,5, Baptiste Saudemont1, Yann Loe-Mie1,6,
Sandrine Schmutz7, Sophie Novault7, Heather Marlow1,8, Amos Tanay4, François Spitz1,3*

The coordinated differentiation of progenitor cells into specialized cell types and their spatial organization into
distinct domains is central to embryogenesis. Here, we developed and applied an unbiased spatially resolved
single-cell transcriptomics method to identify the genetic programs underlying the emergence of specialized
cell types during mouse limb development and their spatial integration. We identify multiple transcription
factors whose expression patterns are predominantly associated with cell type specification or spatial position,
suggesting two parallel yet highly interconnected regulatory systems. We demonstrate that the embryonic limb
undergoes a complex multiscale reorganization upon perturbation of one of its spatial organizing centers, in-
cluding the loss of specific cell populations, alterations of preexisting cell states’ molecular identities, and
changes in their relative spatial distribution. Our study shows how multidimensional single-cell, spatially re-
solved molecular atlases can allow the deconvolution of spatial identity and cell fate and reveal the intercon-
nected genetic networks that regulate organogenesis and its reorganization upon genetic alterations.

Copyright © 2022

The Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim to

original U.S. Government

Works. Distributed

under a Creative

Commons Attribution

License 4.0 (CC BY-NC).

INTRODUCTION
During embryonic development, cells acquire different identities
according to a specific patterning blueprint, which ensures that
organs and other structures are correctly positioned along the
body plan (1). Impaired establishment of spatial cues or the inability
of cells to correctly acquire and interpret positional information can
lead to developmental abnormalities (2, 3), and modulation of pat-
terning centers’ activity has been suggested to underlie evolutionary
morphological diversification (4–7). The recent development of
single-cell transcriptomics has allowed the characterization of cell
state diversity within a tissue and to identify the associated gene sig-
natures (8). However, spatial position is usually lost in the process,
which is problematic in the context of embryonic patterning.
Several methods have been developed to preserve or retrieve
spatial information in single-cell data, each with specific strengths,
limitations, and trade-offs. Retrospective mapping of single-cell
clusters using spatial landmark genes (9, 10) relies on arbitrary
binary thresholds and may become impractical when experimental
conditions affect landmark genes. Highly multiplexed single-mole-
cule RNA–fluorescence in situ hybridization (FISH) (multiplexed
error-robust–FISH and sequential FISH) (11, 12) and in situ se-
quencing methods (fluorescent in situ sequencing and spatially-re-
solved transcript amplicon readout mapping) (13, 14) provide
direct quantitative spatial measurements, but their detection
power remains limited to a couple thousands of genes simultane-
ously. Spatially resolved mRNA captured via barcoded beads

(Slide-seq and Stereo-seq) (15, 16) offers high spatial resolution
for tissue sections but yields sparse datasets that impede lowly ex-
pressed gene detection and does not currently provide single-cell
resolution. Furthermore, both approaches remain technically chal-
lenging, requiring specialized equipment and reagents, and often
inconvenient for large specimens. Here, we present a simple alter-
native approach, TATTOO-seq, allowing the characterization of
thousands of cells by single-cell RNA sequencing (scRNA-seq),
while independently recording their spatial position of origin and
transcriptome.
As a proof of principle, we applied TATTOO-seq to characterize

the genetic programs coordinating spatial patterning and cell iden-
tity in the developing mouse limb, a classic model of patterning and
differentiation. In the limb, secreted fibroblast growth factors
(FGFs) from the distal apical ectodermal ridge (AER) and sonic
hedgehog (SHH) from the posterior zone of polarizing activity
(ZPA) define a coordinate system along the proximal-distal (PD)
and anterior-posterior (AP) axes, respectively (7, 17). Within this
patterned field, mesenchymal progenitor cells, migrating myoblasts,
and neurons will differentiate and organize into cartilage and bone,
muscles, tendons, ligaments, connective tissues, nerves, and blood
vessels (18–20). Undifferentiated mesenchymal precursors that
populate the limb bud expand at different rates and adopt different
fates depending on their location. Notably, chondrogenic conden-
sations form in response to these positional cues and build a carti-
lage anlagen that will later on be ossified. Others make up the
fibrous connective tissue that connects the musculoskeletal
system: tendons and ligaments. Spatial information thus directly
affects the number, position, shape, and length of the skeletal ele-
ments, as well as the attachment of muscle and connective tissues
that make up a functional limb. Accordingly, the extensive diversity
of limb morphologies observed in tetrapods often seems to result
from changes to early limb patterning mechanisms or their inter-
pretation by chondrogenic progenitors (4, 5, 7, 21). Similarly, alter-
ations in the genes regulating the formation and activity of the limb
patterning centers underlie many of the limb malformations found
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in human patients [e.g., (22–25)]. Although decades of genetic
studies have identified the signaling pathways (26, 27) and tran-
scription factors (TFs) (28–31) controlling limb patterning and
the differentiation of its cell types, we still lack a comprehensive un-
derstanding on how individual cells define and adapt their gene reg-
ulatory programs according to their position. Furthermore, while
limb patterning has been extensively studied in the context of the
formation of the skeletal elements, the influence of patterning
signals on the organization and specialization of the other types
of connective tissues are far less understood.

RESULTS
An unbiased strategy for spatially resolved scRNA-seq
TATTOO-seq is based on an optical registration system (Fig. 1A)
using the constitutively expressed photoconvertible protein
Kikume Green-Red (KikGR1) (32). The modulation of the degree
of photoconversion of cellular KikGR1 proteins produces distinct
levels of red-to-green fluorescence ratios, which are used as a posi-
tional index in a flexible, user-defined, spatial coordinate system.
This index can be recorded as cells are fluorescence-activated cell
sorting (FACS)–sorted into barcoded 384-well plates and processed
by massively parallel scRNA-seq (MARS-seq) (33). This strategy
enables the independent determination of single-cell positions
and transcriptomes, with improved flexibility over simple photoac-
tivation [as used for NICHE-seq (34)].

Fig. 1. TATTOO-seq simultaneously records the position and measures the transcriptome of single cells in the mouse limb bud. (A) Overview of TATTOO-seq. (B)
Expression of PD markers Meis1, Hoxa11, and Hoxa13 (78) for each color along the PD axis. (C) Two-dimensional projection of the metacell graph. (D) Marker gene
expression in each annotated cell type.
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We used TATTOO-seq to study patterning and differentiation in
embryonic day 10.5 (E10.5) to E11.5 mouse forelimb buds. Under
our experimental conditions, photoconversion was homogeneous
throughout the limb thickness and did not affect cell viability or
gene expression (fig. S1). To characterize the developing limb bud
transcriptional landscape, we sorted ~10,000 live cells from E11.5
forelimbs (45 to 51 somites; embryos, n = 4; limbs, n = 7) and per-
formed MARS-seq (33). A total of 8750 cells were kept after quality
control filtering [unique molecular identifier (UMI) > 2000] (fig.
S2A). To limit batch effects, we used different photoconversion pat-
terns on the two forelimbs of each embryo. We first examined the
efficiency of the KikGR1-encoded optical registration method to
correctly identify the position of origin of cells. We considered
the expression of the positional markers Meis1 (proximal),
Hoxa11 (medial), and Hoxa13 (distal) (17) in samples photocon-
verted along the PD axis (Fig. 1B). The expression of these
markers showed strong concurrence with the expected indexed
color, validating that TATTOO-seq accurately retains positional
information.

A molecular atlas of the developing limb bud
We used MetaCell (35) to identify transcriptionally homogeneous
groups of cells and reconstruct the developing limb bud’s transcrip-
tional manifold. We identified 109 metacells (Fig. 1C). As a control
for batch- or stage-specific biases, we analyzed the contribution of
each embryo to the different metacells (fig. S2, B and C). The vast
majority of the metacells comprised cells from all four embryos, in-
dicating that the corresponding cell states are present in the limb
throughout the period analyzed (45 to 51 somites). We, however,
noticed that metacells 5, 17 to 19, 21, and 27 showed a biased con-
tribution from embryo #2 (45 somites), but not from embryo #5 (45
somites as well), a bias that could be explained by the specific sam-
pling of medial and distal cell states in sample #2 or a batch effect.
For example, the transcriptome of metacell 27 (mostly from embryo
#2) is very similar to that of metacell 26 (which is depleted from cells
from embryo #2). This suggests that metacells 26 and 27 represent
the same cell state, up to a batch effect. We then assigned eachmeta-
cell to the different cell populations present in the limb bud using
known cell type–specific markers (Fig. 1D and fig. S3). The average
expression in each metacell (as a ratio to the median expression in
all metacells) is provided in table S1. Mesenchymal cell states con-
stituted the bulk of the data and formed a continuum of related cell
states. Multiple metacells represented the chondrogenic lineage,
comprising Sox9+-condensing chondroprogenitors, Col2a1+
early-stage chondrocytes, and some Acan+ chondrocytes (fig.
S3D). Each differentiation stage spread throughout the mesenchy-
mal projection (Fig. 1C, brownmetacells). Dense regular connective
tissue progenitors differentiating into tenocytes and ligament fibro-
blasts showed expression for Col3a1, while more differentiated
tendon progenitors expressed Scx (fig. S3E). Noteworthy, Col3a1
transcripts were also detected in the most differentiated chondro-
cyte metacells. The remaining uncommitted mesenchymal cells ex-
pressed none of the canonical chondrogenic or connective tissue
markers. This undifferentiated mesenchyme exhibited a diversity
of cell states that could be classified into two main classes based
on Lhx2 andHand2 expression (fig. S3F). At this level of resolution,
we did not capture any transcriptional difference along the dorsal-
ventral (DV) axis in the mesenchyme (fig. S4, A and B), and al-
though our clustering allowed separating the AER from the dorsal

and ventral ectoderm, we were not able to separate the dorsal
Wnt7a-expressing ectoderm from the En1-expressing ventral ecto-
derm (36) (En1 is also expressed in the AER; fig. S4C). Two meta-
cells representing cell states derived from the same cell type often
show multiple differentially expressed TFs (log fold change > 2).
This highlights the existence of distinct regulatory programs
within a given cell type, corresponding to differentiation stage,
spatial position, or other factors (fig. S5).

The fine-scale organization of limb bud patterning
As mentioned above, the flexibility of optical registration allows
using patterns that closely fit the spatial organization of the struc-
ture of interest and capture its multidimensional organization by
different user-defined patterns of photoconversion. For the limb,
we applied patterns of photoconversion to register cell positions
along the PD and AP axes of the limb bud, with respect to the dis-
tance to the AER (Fig. 2A). The gating strategy is shown in fig. S6.
Overlaying this color information about the metacell graph revealed
a strong spatial component to its organization (Fig. 2A). With the
exception of endothelial and ectodermal metacells, metacells’ color
composition was more homogeneous than expected by chance (fig.
S7), indicating that metacells reside at precise spatial locations. This
fact supports that metacells represent different biological states and
are not clustering artifacts. It directly demonstrates that cell position
is a strong component of mesenchymal cell identity as reflected by
the expression of position-specific transcriptional programs.
Although the information provided by a single cell is limited to

one axis of our coordinate system, metacells comprise cells from all
three photoconversion axes. Each metacell can thus be positioned
into a more complex 14-bin spatial grid (Fig. 2B and fig. S8; see Ma-
terials and Methods) by calculating the spatial probability distribu-
tion that maximized the likelihood of observing a metacell’s color
composition. Individual metacells’ probability distributions were
aggregated by cell type annotations, resulting in cell type spatial dis-
tributions (Fig. 2C).
This spatially resolved atlas showed that transcriptionally related

metacells can have markedly different spatial distributions and
allowed for the exploration of gene expression with increased pre-
cision and resolution. For each expressed gene, we derived a virtual
in situ hybridization (vISH) pattern by computing the probability
distribution over space for a random UMI of that gene to be
found in each spatial bin. vISH results closely matched actual in
situ hybridization experiments (Fig. 2D and fig. S9). We provide
access to a precomputed atlas of vISH for ~17,000 mouse genes at
http://nobelmarlowlab.uchicago.edu:8888/TATTOOseq_vISH/.
vISH further enabling to visualize genes and pathways across cell
types at new depth and precision. We not only can readily
compare the expression of two or more genes (fig. S10A) but can
also break down gene expression patterns by cell type (fig. S10B).
Process-specific gene expression profiles can also be combined to
examine the spatial distribution of integrated pathways or biological
processes, such as cell proliferation or signaling pathway-responsive
cells (Fig. 2E).
As an example, we used vISH to map the ZPA, which organizes

limb patterning along the AP axis (1, 26). Its defining gene, Shh, was
robustly expressed in four metacells Shh (23, 24, 26, and 27)
(Fig. 2F) which collectively mapped to ZPA at the limb’s posterior
margin. Metacells 23 and 24 were located medially, whereas meta-
cells 26 and 27 were located more distally, suggesting that they may
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Fig. 2. Integrating TATTOO-seq data to build a spatial map of cell state and gene expression. (A) Maximum intensity projection of z-stack images of each of the three
photoconversion patterns. (B) Strategy to assemble information from different patterns of photoconversion to infer the position of cell states. (C) Spatial distribution for
some aggregated mesenchymal cell types. (D) Examples of vISH obtained ab initio from TATTOO-seq data. Images were obtained from the EMBRYS database (79). (E)
Spatial projection of summarized gene expression for relevant gene sets. (F) Spatial and transcriptomic dissection of the Shh-positive ZPA. FC, fold change. (G) Schema of
the ZRS enhancer–regulating Shh and its cohort of TF-binding sites.

Bastide et al., Sci. Adv. 8, eadd0695 (2022) 14 December 2022 4 of 15

SC I ENCE ADVANCES | R E S EARCH RESOURCE
D

ow
nloaded from

 https://w
w

w
.science.org at Institut Pasteur on A

pril 26, 2023



represent previously unknown ZPA subdomains. As mentioned
above, metacells 26 and 27 are likely to represent the same general
state, and the differences are the possibility of consequences of a
batch effect or a stage difference. Levels of Tbx2 expression consti-
tutes the main difference between distally located metacells 26 and
27, which is consistent with the distal extension of the Tbx2 expres-
sion domain throughout the hand plate formation and the possible
earlier stage of development of the cells assigned to metacell 27.
Several TFs showed differential expression between metacells 23
and 24 and 26 and 27 (Fig. 2F and fig. S11), including Hand2,
Hox, and Ets TFs, which have been shown to regulate Shh expres-
sion (37–39). Conserved binding motifs for these TFs are present
within the zone of polarizing activity regulatory sequence (ZRS),
the Shh limb enhancer (Fig. 2H) (4, 23, 40). The existence of differ-
ent transcriptional regimes between the proximal (represented by
metacells 23 and 24) and distal (represented by metacells 26 and
27) parts of the ZPA, including ZRS-associated TFs, raises the pos-
sibility that Shh may use different modes of regulation in different
parts of the ZPA. On the proximal side, its activity may be primarily
driven by Tbx2/3 andHand2, whose expression is higher proximal-
ly. Whereas distally, other factors (Hoxd13, Tfap2b, and ETS TFs)
may play a relatively increased role. Supporting the multiplicity of
ZRS-associated complements of TFs, mutations in the ZRS have
been shown to affect its activity to different degrees along the PD
axis (39). It should be emphasized that these different regimes of
regulation of Shh through its ZRS enhancer, as proposed here, do
not necessarily imply the partition of the ZPA into distinct
domains. These regimes may coexist within the ZPA, with their rel-
ative contribution to Shh expression varying along the PD axis (23/
24 versus 26/27) and possibly the AP axis (23 versus 24). This hith-
erto hidden diversity of regulatory regimes within the ZPA may
contribute to the diversity of limb morphologies resulting from
genetic variants in the ZRS or ZRS-associated TFs as they maymod-
ulate the shape and signaling strength of the ZPA (41–43).

A TF code of spatial position
We next sought to use the TATTOO-seq atlas to comprehensively
identify TFs whose expression exhibits strong spatial trends in the
medial and distal mesenchymal cells. Of 1390 TFs detected in the
autopod and zeugopod mesenchymal metacells (>100 UMIs in
total), 202 showed variable expression (≥1 metacell with expression
of >1.5 × median expression across all mesenchymal metacells). We
used Spearman’s rank correlation to assess monotonic trends in
gene expression as a function of the distance to the AER and
along the AP axis (Fig. 3A). We uncovered a multitude of TFs
whose expressions are correlated with position, highlighting the
spatial heterogeneity of regulatory states in the limb bud. TFs
forming anterior-to-posterior gradients not only included previ-
ously known genes, such as Alx4, Asb4, and Zic3 (31), but also re-
vealed new genes with unknown functions in limb development
(Thra, Lmo4, and Cited2). Twenty-six TFs formed posterior-to-an-
terior gradients of expression, comprising the 5′-Hoxd genes
(Hoxd10 toHoxd13 and Evx2) andHand2. Forty-nine TFs were ex-
pressed close to the AER, including many of the known targets of
AER-secreted FGFs and bone morphogenetic proteins (BMPs)
(Lhx2/9, Msx1/2, and Etv4) and distal Hox genes (Hoxd13 and
Hoxa13). A total of 104 genes, including genes involved in connec-
tive tissue differentiation (Sox5/6/9, Scx, and Runx1/3) (29, 44–46)

showed the opposite trend, with weaker expression underneath
the AER.

Deconvoluting spatial patterning and cell differentiation
programs
As an attempt to deconvolute the spatial and cell type–specific reg-
ulatory logics operating in the mesenchyme, we sought to classify
genes as primarily carrying “spatial” or “cell type”–related informa-
tion. We reasoned that genes encoding spatial information would
have a similar spatial distribution of expression across cell states,
while genes regulated in a strictly cell type–specific manner would
show poor predictability from metacell position. We used linear re-
gression to predict gene expression from the spatial probability dis-
tribution of each metacell for all genes and computed overall
significance using F test. After Bonferroni correction for multiple
testing, we retained models for 4713 genes (of 17,537, adjusted P
< 0.01). These genes include major components of limb signaling
pathways (table S2). We then compared two pairwise correlation
matrices between metacells computed using either all highly vari-
able genes (HVGs) or only non–“spatially regulated” HVGs
(Fig. 3B). We noted two types of changes: The correlation
between two groups of distal metacells decreased without spatial
HVGs, while the correlation between one of these groups and prox-
imal chondrogenic metacells increases. Nonnegative matrix factor-
ization (NMF) of the gene-by-metacell expression matrix revealed
gene modules that could explain these changes. NMF module 4 ex-
hibited high weights for known patterning genes with strong spatial
regulation (14 of 15 top genes with R2 > 0.45), while module 9 ex-
hibited high weights for chondrogenesis genes with overall low
spatial regulation (Fig. 3C). The exclusion of spatially regulated
genes to compute correlations decreased the influence of module
4 and, therefore, the similarity between metacells that simply
reside at similar positions. It also unmasked a high similarity
between chondrocytes in the distal and proximal compartments,
which also appeared if single-cell data are clustered using only non-
spatially regulated genes (Fig. 3D and fig. S12). This new graph pro-
jection grouped cells together by cell types, reducing the notable
position-driven dispersal of the initial projection (Fig. 1C).
To further investigate the interplay between cell position and cell

fate, we used fastTopics (47, 48) to model each cell as a mixture of
different (k = 8) topics, describing cell states as combinations of
more or less independent modules (Fig. 3E). This uncovered a spec-
trum of combinatorial topic utilization consistent with the contin-
uum of cell states highlighted by MetaCell. Notably, two
anticorrelated topics reflected positional information in the undif-
ferentiated mesenchyme 1 (topics 6 and 7). The relative importance
of these topics followed a medial-anterior to distal-posterior axis,
showing the strong correlation of these two topics with spatial po-
sition. These spatial topics 6 and 7 were also widely expressed at dif-
ferent levels in chondrogenic progenitors, providing position-
associated diversity to cells otherwise defined by the core chondro-
genic topic 1.

Integration of spatial information by position-specific
regulatory landscapes
As chondrogenesis is initiated as the limb develops along the PD
axis, chondroprogenitors at different stages of their differentiation
lie in different spatially regulated transcriptomic subspaces, which is
heavily reflected in the single-cell clustering and may mask lineage
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Fig. 3. Deconvoluting positional information and cell type–specific regulatory programs. (A) Average expression per spatial compartment for TFs that exhibit spatial
trends in the mesenchyme. Top 10 TFs with most significant positive and negative Spearman correlation values are annotated. (B) Pairwise correlation heatmap for
metacells. Top: Using all genes defined as HVGs. Bottom: Excluding spatial genes. Cell types are indicated using the same color code as for Fig. 1 and color composition
for the PD photoconversion pattern. (C) Normalized expression of the top 15 genes (by weight) in NMF modules 4 and 9 across metacells 13 to 30 and 76 to 92. For each
gene, the R2 of the spatial regression is indicated. (D) Two-dimensional projection after clustering the TATTOO-seq dataset with no spatial genes. Top: Cells are colored by
annotation. Bottom: Cell colors for each photoconversion pattern. (E) fastTopics structure plot. Top: Cell colors for each pattern (black if the cell originates from a different
pattern of photoconversion).
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relationships between cells located at different positions. To
compare chondrocyte differentiation trajectories in different PD
compartments, we constructed a single-cell graph of chondrogene-
sis in a stepwise manner, using the subspaces defined for groups of
cells originating from consecutive spatial positions, adapting an ap-
proach used to reconstruct cell trajectories across time series (fig.
S13A) (49). By allowing us to compare chondrogenesis gene expres-
sion despite the confounding effect of spatial compartmentaliza-
tion, this method showed that spatially segregated chondrocytes
display overlapping core chondrogenic transcriptomic states.
Further analysis suggested that spatially segregated chondrocytes
follow a largely stereotypic differentiation trajectory marked by
the same core genes (fig. S13B).
Among those genes, Sox9 is a key regulator of chondrogenesis

(50). It shows a dynamic and complex regulation during limb devel-
opment (51), involving a large regulatory landscape extending over
2 Mb and comprising dozens of potential limb enhancers (52, 53).
To assess whether this landscape was identically activated along the
limb PD axis, we leveraged published wild-type E11.5 limb bud
single-cell assay for transposase-accessible chromatin sequencing
(scATAC-seq) data (54) to identify chromatin-accessible elements.
We used Seurat (55) to transfer the position along the PD axis and
Sox9 expression levels from our TATTOO-seq dataset to the
scATAC-seq data and generated pseudo-bulk ATAC profiles based
on position and Sox9 expression (Fig. 4). Despite the limited
number of cells in each category (<300 distal Sox9+ cells), we
were able to detect seven ATAC peaks (P < 0.05; table S3) in the
Sox9 regulatory domain/topologically associating domain that are
differentially represented along the PD axis (Fig. 4), five of which
correspond to previously described Sox9 enhancers (56). While pre-
liminary, these data suggest that spatial information could be
relayed to cell-fate controlling genes via position-specific enhanc-
ers, enabling specific modulation of other stereotypic differentiation
regulatory networks.

High-resolution characterization of cell fate and patterning
alteration in mutant limbs
Patterning defects can lead to complex phenotypic consequences by
perturbing cell differentiation programs, as well as their spatial
modulation and coordination. We sought to apply TATTOO-seq
to assess how limb patterning and differentiation are reorganized
when positional information is perturbed. FGF8 is the main FGF
molecule controlling the growth and patterning function of the
AER (27). DEL(PolL-SHFM) (57) mice carry a deletion of the
main Fgf8 enhancers in the AER and fail to express Fgf8 in the
AER. They display shortened bones and lack proximal and anterior
skeletal elements (humerus, radius, and digits 1 and 2) (Fig. 5A). To
examine the molecular and positional changes that ultimately lead
to the observed malformations, we produced a TATTOO-seq atlas
for E11.5 DEL(PolL-SHFM) homozygous forelimb buds (embryos,
n = 3; limbs, n = 4). The gating strategy (fig. S14) used for the
mutant samples is the same as that of wild-type samples, but
since mutant limbs are shorter, the AER pattern was applied to
the whole limb, including the proximal cells. After filtering, we ob-
tained high-quality transcriptomes for 3349 mutant cells. To
compare the cell populations and their transcriptome between
wild-type and mutant limbs, we produced a coarser joint clustering
using Seurat (55), as the high-resolution clustering provided by
MetaCell places mutant and wild-type cell in different metacells.

As a control, we first examined the expression of genes studied by
single-gene in situ hybridization experiments in Fgf8 mutants (27,
57). In our dataset, we found that Dpcd, a bystander gene included
in the DEL(PolL-SHFM) deletion, was almost undetectable in the
mutant cells (Fig. 5B). Furthermore, as expected, Fgf8 expression
was abolished in the mutant AER cluster, while we detected a com-
pensatory up-regulation of Fgf4, as reported previously (27).
We then investigated how reduced AER function affected the

presence of the different cell types, their transcriptomes, and
spatial distributions. The average gene expression for each Seurat
cluster (both aggregated and split between by genotype) is indicated
in table S4. The comparison of stage-specific marker expression
with E10.5 data did not suggest a simple developmental delay
(fig. S15). We first determined the relative fraction of wild-type
and mutant cells for each cluster (Fig. 5C). Although we could
not unambiguously calculate the expected cluster-wise fractions
under the null hypothesis (AER pattern samples were enriched
for distal cells, by up to twofold), several robust differences could
not be explained by this limited sorting bias. At this level of resolu-
tion, we did not detect mutant-specific cell states. However, several
wild-type cell states were almost absent from the mutant samples
(Fig. 5C).Many depleted clusters (expressing Zic3 distally, Pax9me-
dially, and Gsc proximally) were located in the limb’s anterior com-
partment (Fig. 5D), which likely explained the absence of anterior
skeletal elements at later stages. However, we also noted that poste-
riorly located cell states (e.g., cluster 3) and some secondary signal-
ing centers for connective tissue differentiation defined by Cxcl12
and Fgf18 (58, 59) were strongly diminished in the mutant. Exam-
ining chondrogenic cell states, we observed that although chondro-
genesis appear to proceed overall normally in the mutant, the
reduction in distal FGF signaling led to a reduced diversity of spa-
tially distributed chondrogenic cell states: We found fewer distal
Sox9-positive cell states expressing Eomes [base of digit 4 (60)]
and Irx1 [tip of digits 2 to 4 (61)] (Fig. 5, C and D). These distal
chondrogenic cell states have been proposed to act as regulation
centers expressing different BMP pathway components involved
in joint formation, including Gdf5, Inhb, Nog, and Chrdl1 (62–
65). Although the depletion of these cell states is only partial, no
expression of these signaling-related genes was detected in the
mutant data (fig. S16A), which could account for the missing
elbow joint in mutant limbs (27, 57). To facilitate the exploration
of those cell states, fig. S17 shows the contribution of each wild-
type metacell to each Seurat cluster.
Besides changes in specific cell state populations, we also identi-

fied a pervasive adaptation of the transcriptional states of otherwise
conserved cell types, with the expression of multiple genes being af-
fected by directly or indirectly by the reduction of FGF signaling
from the AER (fig. S16C and table S5). Regarding the spatial distri-
bution of the different limb cell states, only a few positional changes
were detected along the PD and AER axes, and most of the spatial
rearrangements were observed along the AP axis (Fig. 5E and fig.
S18). Consistent with the absence of most anterior mesenchyme
cell states, mutant cell states exhibited relatively more anterior
colors than their wild-type counterparts. However, we also identi-
fied some cell states that were located more posteriorly in the
mutant than in the wild-type, indicated complex alterations of pat-
terning information, maybe resulting from the effect of reduced
FGF signaling on the maintenance of ZPA activity and reduced
Shh signaling (66, 67).
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DISCUSSION
siTATTOO-seq constitutes a simple, robust, and flexible approach
to integrating spatial position and single-cell transcriptomes. The
data and analyses provided here illustrate how TATTOO-seq can
help making progress toward an integrated and high-resolution de-
scription of the dynamic processes involved in embryonic pattern-
ing. Orthogonal analyses such as NMF, topic modeling, and graph
manifold assembly on TATTOO-seq data reveal the respective con-
tributions of patterning and differentiation-specific gene modules
to cell states, identify specific TFs that mediate spatial identity,
and constitute a first step in disentangling spatial and cell type–spe-
cific gene regulatory programs. We show that positional informa-
tion substantially modulates the transcriptome of limb
chondrocytes and their core differentiation program and suggest
that this core differentiation program operates at distinct positions
through different, context-specific, modalities, which associate po-
sition-specific TFs to position-specific cis-regulatory elements.
These differentially activated enhancers may act as specific position-
al integrators for common differentiation pathways and might be
primary targets for regionalized natural and pathological variations
in morphology (68). TATTOO-seq further offers a new integrative
and multilevel description of developmental defects, as illustrated
by the complex cellular, molecular, and spatial changes revealed

in the Fgf8-mutant limb buds. We expect that such a comprehen-
sive, spatially resolved molecular data could provide a much finer-
grained representation of “mutant phenotypes” and reveal how
genetic or environmental perturbations may propagate through de-
velopmental gene regulatory networks and rewire them.
TATTOO-seq requires only standard equipment, namely, a con-

focal microscope and an FACS.While coupled here to amicroplate–
based single-cell technology, it can easily be adapted to other pro-
tocols, including droplet-based protocols, for example, using cell
multiplexing/hashing strategies to label sorted cells of the same
color. TATTOO-seq shares conceptual similarities to Tomo-seq
(69), although it provides single-cell resolution and the simplicity
and rapidity of optic labeling over physical sectioning. While the
approach as shown here can be used on thick samples (up to 500
μm), the shape of the sample and, ideally, its patterning geometry
must be compatible with the flat geometry of the microscope. For
nonflat structures, the use of thick vibratome sections is
recommended.
Because our approach relies on in silico cell aggregates, instead of

individual cells, it is suitable for relatively sparse datasets and works
without imputation. TATTOO-seq does not require spatial land-
mark reference genes nor does it assume the homogeneity of gene
expression at a given position, which are strong limitations of

Fig. 4. Putative spatial regulation of the accessibility landscape at the Sox9 locus. Cell identity and position were transferred from our TATTOO-seq data to limb
scATAC-seq data (54) using Seurat’s TransferData function. All peaks in the Sox9 regulatory domain (chr11: 111,503,853 to 113,206,397, mm10) were tested for differential
accessibility. The top track shows the H3K27ac chromatin immunoprecipitation (ChIP) sequencing signal in E11.5 whole limb buds (two replicates were aggregated) from
(80). Differentially accessible (DA) peaks are indicated and previously described Sox9 enhancers (56).
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Fig. 5. Using TATTOO-seq for high-content phenotyping of a patterningmutant. (A) Top: Schematic representation of the E11.5 wild-type andmutant forelimb buds.
Bottom: Skeletal preparation of wild-type and mutant forelimbs (Alcian blue/alizarin red). (B) Expression of Fgf8, Dpcd, and Fgf4 for each genotype. (C) Top: Uniform
Manifold Approximation and Projection (UMAP) of the combinedwild-type andmutant datasets colored by cluster-wise fraction of wild-type cells. Bottom: The fraction of
wild-type cells. (D) UMAP showingmarker gene expression for mutant cell–depleted clusters. (E) Top: UMAP showing cell colors for each photoconversion pattern split by
genotype. Bottom: Color distribution in some Seurat clusters for each genotype (left, wild-type mutant; right, Fgf8 mutant).
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retrospectivemapping (9, 70) or pseudo-spatial ordering (71). Thus,
it is immediately suitable for the analysis of mutant phenotypes
without the need to build a mutant reference map of gene
expression.
Although the spatial resolution used in this study is relatively

coarse (50 to 100 μm, depending on the photoconversion
pattern), this resolution is in par with other spatial transcriptomics
methods such as Slide-seq (15) or the commercial Visium platform
(10x Genomics), which are based on barcoded beads or spots cov-
ering 50- to 100-μm regions of a tissue section. While recent pro-
gress in bead/spot arraying can theoretically offer a resolution of 10
μm (72), these approaches do not offer true single-cell resolution,
are still better suited to identify the spatial distributions of single-
cell clusters acquired separately, and may come at a much higher
cost. In comparison, our approach could resolve finer spatial grids
as specified by the user, since it is only limited by the precision of
the photoconversion and the capacity of flow cytometry to detect
graded fluorescence levels. However, as the number of relative fluo-
rescence levels that can be reliably separated is not infinite (at least
four with our current set up), a higher spatial resolution comes with
a reduction of the area that can be studied. While a genetically
encoded photoconvertible protein is at the basis of our method,
the recent development of photoconvertible and clickable dyes or
the use of photoconvertible membrane labeling dyes (73, 74) may
allow further implementation of TATTOO-seq–based approaches
in nontransgenic and nonmodel organisms or in patient-
derived samples.

MATERIALS AND METHODS
Animals
Transgenic CAG-KikGR-1 mice (32) (KikGR1 hereafter, gift of
A. Aulehla) were maintained inbred and genotyped either by poly-
merase chain reaction (PCR) using internal primers (p1, GAAAT
GAAGATCGAGCTGCGTATGG; p2, CACCCTTCAGCACTC
CATCACGCAC) and a standard programwith 65°C annealing tem-
perature or by assessing green fluorescence in distal phalanx biopsy.
DEL(PolL-SHFM) mice (57) were maintained on an inbred C57BL/
6J background.
Homozygous KikGR1 males and wild-type females were crossed

to generate control embryos. For mutant analysis, KikGR1/+;
DEL(PolL-SHFM)/+ males and DEL(PolL-SHFM)/+ females were
crossed to generate experimental and control embryos. E0.5 was
defined as noon of the day when the vaginal plug was detected.
Embryos were collected at E11.5 and dissected in ice-cold phos-
phate-buffered saline (PBS) supplemented with magnesium and
calcium chloride. KikGR1 heterozygous embryos displayed strong
and widespread green fluorescence in all tissues at all observed
stages. All animal procedures were approved and performed accord-
ingly to the ethical principles and regulatory guidelines and proto-
cols set up by the Institutional Animal Care and Use Committees at
the Institut Pasteur and the University of Chicago.

Photoconversion and imaging
Samples were mounted in PBS supplemented with magnesium and
calcium chloride between a glass slide and a coverslip separated by
several layers of adhesive tape. Photoconversion was performed,
and all fluorescence images were acquired using a Zeiss inverted
confocal microscope (LSM 800) using a 10× objective. Green and

red fluorescence images were obtained by excitation with the 488-
nm (1 mW, gain = 580, digital gain = 2) and 561-nm (1 mW,
gain = 580, digital gain = 2) laser diodes, respectively. The spectra
of enhanced green fluorescent protein and mCherry were used for
nonphotoconverted and photoconverted version of KikGR1, re-
spectively, and adjusted such that they did not overlap. For green-
to-red photoconversion of kikGR1 proteins, the 405-nm laser diode
was used with variable power (100% laser power was equal to 5
mW). Full conversion (red color) was obtained after four iterations
at 40% power, while partial conversion was obtained after four iter-
ations at 10% power (for the PD pattern), 9% power (for the AP
pattern), or 10 and 6% power (for the four-color AER pattern).
For the photoconversion along the PD and AP axes, the size of
the photoconverted regions was determined to be one-third of
the length of the limb bud (from the tip to the flank or from the
anterior-most part to the posterior-most part, respectively) as mea-
sured with the ZEN software. For the AER axis, the photoconverted
regions were determined to be approximately one-fourth of the
radius of the dissected autopods and zeugopods. While we could
easily create 4° of photoconversion and separate them by flow cy-
tometry, we grouped the two red-most colors into one color bin to
increase the number of cells. We always applied the partial photo-
conversion (9 or 6% power) to both the “partially” and “fully” pho-
toconverted target regions to ensure that cells at the border between
the two regions are photoconverted to the same degree as the fully
photoconverted region. To maximize the homogeneity of the pho-
toconversion, we measured the thickness of the limb and chose the
plane of photoconversion to coincide with the middle of the limb.
The total duration of the photoconversion process was ~3 min in
our particular setup. E10.5 samples were processed identically to
E11.5 samples.

Tissue dissociation and FACS
Limb buds were dissected and incubated for 5 min in 270 μl of Lib-
erase (0.22 Wunsch unit/ml; Roche, 5401119001) in EDTA-free,
calcium-free, and magnesium-free PBS with agitation (900 rpm)
at 37°C in a low-binding microcentrifuge tube (Biozym, 710176).
Mechanical disruption was then performed by pipetting through
a p200 gelatin-coated tip. The enzyme was inhibited by adding 30
μl of 0.5 M EDTA, and volume was adjusted to 1 or 1.5 ml with
calcium- and magnesium-free PBS. While this method allows the
efficient recovery of mesenchymal cells, it is not optimized to
recover ectodermal cells. Tight junctions could show limited sensi-
tivity to short-duration collagenase treatment, thereby explaining
why we recovered few ectodermal cells.
Calcein Violet AM (1 μM; Life Technologies, C34858) and 5 nM

Sytox Red (Thermo Fisher Scientific, S34859) from Invitrogen were
used as live and dead cell markers for the sorting, respectively. Ex-
citation and emission spectra were well separated from those of the
nonphotoconverted and photoconverted KikGR1. Single-cell sus-
pensions were filtered through the 35-μm BD Falcon Cell-Strainer
Cap (352235) into an FACS tube, which was maintained on ice
before sorting and at 4°C during the experiment in the injection
chamber. Sorting was done on a BD FACSAria III with a flow
rate at the lowest value (“1.0”). A mild spectral compensation was
applied to phycoerythrin-allophycocyanin (PE-A) (red) and
Violet-F-450/40-A (violet) channels from the fluorescein isothio-
cyanate–A (FITC-A; green) channel.
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Debris and doublets were excluded from the analysis using a se-
quential gating strategy relying on first side scatter (SSC-A) versus
forward scatter (FSC-A), followed by FSC-H versus FSC-W. Live
cells were selected on the basis of live/dead staining gating on
Violet-F-450/40-A (Calcein Violet AM) versus allophycocyanin-A
(Sytox Red). Only Calcein-positive Sytox-negative cells were includ-
ed in the analysis. Cells showed similar viability percentages regard-
less of themounting and photoconversion status (~90 to 97%). Cells
with a low fluorescence value in both green (FITC-A) and red (PE-
A) channels were also excluded. No further binning on red and
green fluorescence is performed. Cell colors are inferred a posteriori
as described below (see the “Identification of cell colors” section).
E10.5 samples were processed identically to E11.5 samples.

Massively parallel scRNA-seq
Cells were processed by MARS-seq as previously described (33).
Briefly, live single cells were sorted into 384-well capture plates con-
taining lysis solution and barcoded poly(T) reverse transcription
(RT) primers. UMI barcodes contain a cell-specific/well-specific
label and an 8–base pair random molecular tag (RMT). After evap-
oration of the lysis buffer, the RT reaction was performed in the
presence of External RNA Controls Consortium (ERCC) RNA
Spike-in (Ambion). Unused RT primers were digested using Exo-
nuclease I [New England Biolabs (NEB)], and wells were pooled
by half plates. Second-strand cDNA synthesis was then performed,
and products were in vitro transcribed overnight using T7 polymer-
ase (NEB) for linear amplification. After RNA fragmentation, a
partial Illumina Read1 sequencing adapter containing a plate-spe-
cific barcodewas single strand–ligated using T4 RNA ligase I (NEB),
and the product was reverse-transcribed. Last, the product was pu-
rified and PCR-amplified by PCR (14 cycles) with primers contain-
ing the Illumina P5-Read1 and P7-Read2 sequences. Concentration
of the purified library was assessed with a Qubit fluorometer (Life
Technologies), and mean molecule size was determined with a 2200
TapeStation instrument (Agilent Technologies). Libraries were
pooled and paired-end sequenced using an Illumina NextSeq 500
sequencer at a median depth of ~45,000 reads per cell. Read1 was
70 nt long and covered the plate-specific barcode and the cDNA.
Read2 was 16 nt long and covered the UMI and well-specific
label. Raw and processed data sets are available from the Gene Ex-
pression Omnibus (GEO) repository (GSE202326).

Quality check and read mapping
Reads were demultiplexed and count tables were built as described
in (33) (scripts are available at https://github.com/tanaylab/MARS-
SEQ and https://doi.org/10.5281/zenodo.7316279). Cell-specific/
well-specific labels and RMTs were extracted. Reads with low-
quality (Phred < 27) barcodes were discarded to prevent ambiguous
or spurious assignments of reads to cells or unique molecules.
Read2 reads whose cell-specific or well-specific labels were
unknown or mutated were discarded. Read1 reads were mapped
to the mouse genome (mm9) using Ensembl gene annotations
(downloaded in July 2017) using Bowtie2 (75).

Metacell analysis
We clustered the wild-type E11.5 dataset using MetaCell (35).
Briefly, an ideal metacell is a group of cells whose expression profiles
are statistically equivalent to independent sampling from a single
underlying transcriptional state. This is achieved by first creating

a k-nearest neighbor (k-NN) graph of the individual cells based
on expression similarity and by partitioning this graph into a dis-
joint sets of cells, metacells, which are both small (~100 cells each)
and as close to the above ideal metacell as possible.
Because plates were processed in two batches, we filtered out

cells with fewer than 2000 or 2500 UMIs (lower-quality transcrip-
tomes) or more than 15,000 UMIs (potential doublets). We exclud-
ed mitochondrial genes (annotated with the prefix “mt-”) from the
analysis. Variable genes were selected using the parameters
Tvm = 0.1, Ttot = 50, and T_top3 = 3. We then excluded cell
cycles, histone genes, ribosomal genes, small nuclear riboprotein
genes, some long noncoding RNA (annotated with the suffix
“Rik”), and poorly supported gene models (annotated with the pre-
fixes “RP-,” “Gm,” and “AC”) from the variable genes. In addition,
we identified genes that showed a batchy expression. To do so, we
performed a first clustering, and for each metacell with a sufficient
number of cells from both batches (>15), we repeatedly (10 times)
randomly sampled and aggregated UMIs from 10 cells (UMIs from
individual cells were downsampled to eliminate the effect of se-
quencing depth). If the median fold change for a gene was >1.6 in
at least one metacell, then the gene was considered batchy and
blacklisted for feature selection (but not omitted from the analysis).
When excluding spatial genes, we additionally blacklisted genes
with adjusted P < 0.01 for the linear regression. A k-NN graph
was built using Pearson correlation and k = 100, and 500 bootstrap
iterations were performed (0.75 resampling probability). Metacells
were built with a minimum size of 20, k = 30, and α = 3. Inhomo-
geneous metacells were split, and outlier was removed (Tlfc = 3).
Otherwise, default parameters were used.

Identification of cell colors
To infer a single-cell color from the intensities of the PE (red, pho-
toconverted) and FITC (green, nonphotoconverted) channels, we
examined the ratio between the log of these intensities

s ¼
log2 PE
log2 FITC

The distribution of this ratio exhibited the expected number of
peaks (3 or 4) across all samples, although the exact location of the
peaks and their separation varied. We therefore modeled the distri-
bution of each individual limb separately as a mixture of skewed
normal distributions whose parameters were estimated using an ex-
pectation-maximization algorithm implementer in the R package
mixsmsn (76) (“smsn.mix”, family = “Skew.normal”, nu = 3).
Three components were used for the PD and AP patterns, and
four were used for the AER pattern. The color of each individual
cell was determined using the posterior probabilities. For the AER
pattern, we merged the two red-most compartments (high ratio-of-
log values) to increase the number of cells in that category.

Modeling the TATTOO-seq photoconversion process
We treated the limb-bud as a two-dimensional shape, constructed
through concatenation of Bézier curves. We then assumed that the
AP and PD photoconversion patterns split this shape into three
regions of equal length along the relevant axis, whose fluorescence
is mostly green, mostly yellow, or mostly red. On the basis of pic-
tures of the photoconverted limb buds, we estimated that the part of
the limb bud that was dissected for AER pattern photoconversion
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roughly matched the yellow and red regions of the PD pattern. We
then approximated the boundaries of the AER photoconversion
regions using further concatenations of Bézier curves, choosing
the parameters that best fit the pictures. Note that although the
AER photoconversion split the limb bud into four regions, we com-
bined the two red-most regions in our model, as the number of cells
collected that had red-most fluorescence was extremely low.
We then created a generative model connecting a cell’s original

position within the limb bud with its measured fluorescence. We
split the modeled limb bud’s shape into distinct spatial bins (re-
ferred to henceforth as sbins). Given the sbin containing the cell
and the pattern that was used for photoconversion, it is possible
to infer a distribution over the cell’s fluorescence being measured
as green, yellow, or red. It is also possible to infer the probability
that the cell will be completely missed by the experiment (as is
the case with proximal cells when the AER photoconversion
pattern is used).
Theoretically, on the basis of the above photoconversion model,

it is possible to split the limb bud into 17 sbins, which set a single,
deterministic fluorescence color under all photoconversion pat-
terns. However, using these sbins to infer cell positions led to ex-
tremely poor results, probably due to the failure of such a strictly
deterministic model from handling slight deviations between the
model and the experimental reality (for example, the limb bud’s
shape and the exact dissection line differed slightly between
embryos). Instead, we split the limb bud into 36 sbins based on a
square 6 × 6 equidistant grid along the AP-PD axes. Within each
such sbin, the fluorescence color under the AP and PD colors is de-
terministically defined, while the distribution of fluorescence under
the AER pattern is assumed to be proportional to the area of the sbin
that is modeled to be photoconverted to green, yellow, and red, re-
spectively. We then merged together sbins whose distributions were
highly similar, ending up with 14 sbins.

Inferring cell positions
The fluorescence information provided for each cell by TATTOO-
seq only limits its position to one of three or four broad spatial
regions. To gain a finer spatial resolution, we used the reproducibil-
ity of patterning of the mouse embryo system. This allowed us to
pool together spatial information collected across multiple limb
buds and multiple photoconversion patterns and infer a distribu-
tion over the limb bud’s sbins.
We will mark by λ one of the photoconversion pattern, i.e.

l [ fAER;AP;PDg

Given a subset of cells, we can calculate the regularized, empir-
ical distribution of the measured fluorescence under each of the
pattern λ

Pemp;lðFÞ

We assumed that the subset of cells defines some transcriptional
criterion M (e.g., a cell type) that implies a distribution over the
model’s sbins. Then, the sbins containing cells belonging to M
will be distributed according to

Pu;lðS j MÞ

where θ is a parameter. Last, the photoconversion model described
in the previous section implies a distribution over the measured

fluorescence given the sbin and the photoconversion patterns

PlðF j S ¼ sÞ

Given the above, we can calculate the expected fluorescence of
cells belonging to M

Pu;lðF j MÞ ¼
X

s
PlðF j S ¼ sÞ � Pu;lðS ¼ s j MÞ

To infer the correct value of θ, we minimize the Kullback-Leibler
divergences between the inferred distributions and the empirical
ones

u ¼ argmin
u

X

l

DKL½Pu;lðF j MÞ jj Pemp;lðFÞ�

As the distributions Pθ, λ(S ∣M) are discrete, the parameter θ can
be taken to be the complete definition of the distribution. To solve
the minimization problem, we used a constrained interior point al-
gorithm, implemented in the scipy.optimize.minimize() function
(from the scipy Python package) with a method parameter of
“trust-constr.” To ensure convergence to a proper distribution func-
tion, the sum of the probabilities was constrained to 1

X

s
Pu;lðS ¼ s j MÞ ¼ 1

In addition, the value of the probability of each sbin was con-
strained to a segment that strictly contain the [0,1] segment

� 0:00005 � Pu;lðS ¼ s j MÞ � 1

When calculating the Kullback-Leibler divergences, the individ-
ual sbin probabilities were clamped to the [0.001, 1] segment. Fol-
lowing the convergence of the algorithm, any negative sbin
probabilities were set to 0, and the probabilities were renormalized
to ensure that they sum to 1.
As an initial validation for the cell positioning algorithm, we

used all collected cells, effectively inferring the fraction of the cells
residing in each of the spatial bins. Assuming that the mean cell size
is similar across all bins, the area-normalized fraction provides an
estimate of the thickness of the limb bud thickness at each spatial
bin. As expected, the inferred limb bud thickness decreases as we
move away from the embryo’s trunk and toward the edge of the
limb bud.

Inferring positions of metacells
The cells of a single metacell form a natural candidate for applying
the cell positioning algorithm described in the previous section. We
expect that the expression profiles of most of the limb bud’s cell
types depend on spatial signaling fields. We can therefore assume
that cells with a highly similar expression pattern (as the cells of a
single metacell are guaranteed to be) are also tightly localized within
the limb bud. The use of ametacell also provides a natural definition
to the transcriptional criterionM, i.e., the inferred sbin distribution
describes the expected spatial localization of new cells whose expres-
sion profile is close to the metacell’s centroid.

Metacell-specific TFs
The metacell specificity of TFs was estimated using a method
similar to the “roc” method in Seurat. For each gene, the empirical
cumulative distribution function (CDF) was computed on the basis
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of the rescaled (from 0 to 1) gene expression in metacells. The area
under the curve (AUC) was then computed. Genes that have very
specific patterns of expression (i.e., expression in very fewmetacells)
display large values of AUC because most metacells exhibit low
values of gene expression.

Chondrogenic trajectory and pseudo-time
Each chondrogenic progenitor was assigned to a compartment
along the PD axis based on its color. Cells originating from other
photoconversion patterns were assigned to the compartment for
which their metacells had the highest probability. We performed
principal components analysis on the top 2000 variable genes
within each compartment (thus excluding variation resulting
from spatial compartment-specific genes) and built graphs connect-
ing each cell to its 40 nearest neighbors within its compartment.
Projecting medial cells into the distal principal component (PC)
space, we built a graph between distal and medial cells. Similarly,
we built a graph connecting medial and proximal cells in the
medial PC space. Edges were then filtered to keep at most 10
mutual edges. The resulting graph was projected using the DrL
graph layout. ElPigraph (77) was then used to compute the
pseudo-time for each cell. Gene expression as a function of the
pseudo-time was computed and smoothed using loess regression.

Supplementary Materials
This PDF file includes:
Figs. S1 to S18
References

Other Supplementary Material for this
manuscript includes the following:
Tables S1 to S5

REFERENCES AND NOTES
1. L. Wolpert, Positional information and the spatial pattern of cellular differentiation. J. Theor.

Biol. 25, 1–47 (1969).
2. F. R. Goodman, Congenital abnormalities of body patterning: Embryology revisited. Lancet

362, 651–662 (2003).
3. L. A. Lettice, A. E. Hill, P. S. Devenney, R. E. Hill, Point mutations in a distant sonic hedgehog

cis-regulator generate a variable regulatory output responsible for preaxial polydactyly.
Hum. Mol. Genet. 17, 978–985 (2008).

4. E. Z. Kvon, O. K. Kamneva, U. S. Melo, I. Barozzi, M. Osterwalder, B. J. Mannion, V. Tissières,
C. S. Pickle, I. Plajzer-Frick, E. A. Lee, M. Kato, T. H. Garvin, J. A. Akiyama, V. Afzal, J. Lopez-
Rios, E. M. Rubin, D. E. Dickel, L. A. Pennacchio, A. Visel, Progressive loss of function in a limb
enhancer during snake evolution. Cell 167, 633–642.e11 (2016).

5. M. Towers, Evolution of antero-posterior patterning of the limb: Insights from the chick.
Genesis 56, e23047 (2018).

6. A. Abzhanov, M. Protas, B. R. Grant, P. R. Grant, C. J. Tabin, Bmp4 and morphological var-
iation of beaks in Darwin’s finches. Science 305, 1462–1465 (2004).

7. A. Zuniga, Next generation limb development and evolution: Old questions, new per-
spectives. Development 142, 3810–3820 (2015).

8. J. Cao, M. Spielmann, X. Qiu, X. Huang, D. M. Ibrahim, A. J. Hill, F. Zhang, S. Mundlos,
L. Christiansen, F. J. Steemers, C. Trapnell, J. Shendure, The single-cell transcriptional
landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

9. R. Satija, J. A. Farrell, D. Gennert, A. F. Schier, A. Regev, Spatial reconstruction of single-cell
gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

10. K. Achim, J.-B. Pettit, L. R. Saraiva, D. Gavriouchkina, T. Larsson, D. Arendt, J. C. Marioni,
High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Bi-
otechnol. 33, 503–509 (2015).

11. E. Lubeck, A. F. Coskun, T. Zhiyentayev, M. Ahmad, L. Cai, Single-cell in situ RNA profiling by
sequential hybridization. Nat. Methods 11, 360–361 (2014).

12. K. H. Chen, A. N. Boettiger, J. R. Moffitt, S. Wang, X. Zhuang, Spatially resolved, highly
multiplexed RNA profiling in single cells. Science 348, aaa609 (2015).

13. J. H. Lee, E. R. Daugharthy, J. Scheiman, R. Kalhor, T. C. Ferrante, R. Terry, B. M. Turczyk,
J. L. Yang, H. S. Lee, J. Aach, K. Zhang, G. M. Church, Fluorescent in situ sequencing (FISSEQ)
of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 10,
442–458 (2015).

14. X. Wang, W. E. Allen, M. A. Wright, E. L. Sylwestrak, N. Samusik, S. Vesuna, K. Evans, C. Liu,
C. Ramakrishnan, J. Liu, G. P. Nolan, F.-A. Bava, K. Deisseroth, Three-dimensional intact-
tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

15. S. G. Rodriques, R. R. Stickels, A. Goeva, C. A. Martin, E. Murray, C. R. Vanderburg, J. Welch,
L. M. Chen, F. Chen, E. Z. Macosko, Slide-seq: A scalable technology for measuring genome-
wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

16. A. Chen, S. Liao, M. Cheng, K. Ma, L. Wu, Y. Lai, X. Qiu, J. Yang, J. Xu, S. Hao, X. Wang, H. Lu,
X. Chen, X. Liu, X. Huang, Z. Li, Y. Hong, Y. Jiang, J. Peng, S. Liu, M. Shen, C. Liu, Q. Li, Y. Yuan,
X. Wei, H. Zheng, W. Feng, Z. Wang, Y. Liu, Z. Wang, Y. Yang, H. Xiang, L. Han, B. Qin, P. Guo,
G. Lai, P. Muñoz-Cánoves, P. H. Maxwell, J. P. Thiery, Q.-F. Wu, F. Zhao, B. Chen, M. Li, X. Dai,
S. Wang, H. Kuang, J. Hui, L. Wang, J.-F. Fei, O. Wang, X. Wei, H. Lu, B. Wang, S. Liu, Y. Gu,
M. Ni, W. Zhang, F. Mu, Y. Yin, H. Yang, M. Lisby, R. J. Cornall, J. Mulder, M. Uhlén,
M. A. Esteban, Y. Li, L. Liu, X. Xu, J. Wang, Spatiotemporal transcriptomic atlas of mouse
organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21 (2022).

17. C. Tabin, L. Wolpert, Rethinking the proximodistal axis of the vertebrate limb in the mo-
lecular era. Genes Dev. 21, 1433–1442 (2007).

18. H. Shimizu, S. Yokoyama, H. Asahara, Growth and differentiation of the developing limb
bud from the perspective of chondrogenesis. Dev. Growth Differ. 49, 449–454 (2007).

19. M. Buckingham, P. W. J. Rigby, Gene regulatory networks and transcriptional mechanisms
that control myogenesis. Dev. Cell 28, 225–238 (2014).

20. S. Nassari, D. Duprez, C. Fournier-Thibault, Non-myogenic contribution to muscle devel-
opment and homeostasis: The role of connective tissues. Front. Cell Dev. Biol. 5, 22 (2017).

21. K. L. Cooper, K. E. Sears, A. Uygur, J. Maier, K.-S. Baczkowski, M. Brosnahan, D. Antczak,
J. A. Skidmore, C. J. Tabin, Patterning and post-patterning modes of evolutionary digit loss
in mammals. Nature 511, 41–45 (2014).

22. D. Basel, A. DePaepe, M. Kilpatrick, P. Tsipouras, Split hand foot malformation is associated
with a reduced level of Dactylin gene expression. Clin. Genet. 64, 350–354 (2003).

23. L. A. Lettice, S. J. H. Heaney, L. A. Purdie, L. Li, P. de Beer, B. A. Oostra, D. Goode, G. Elgar,
R. E. Hill, E. de Graaff, A long-range Shh enhancer regulates expression in the developing
limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet. 12,
1725–1735 (2003).

24. J. Kohlhase, A. Wischermann, H. Reichenbach, U. Froster, W. Engel, Mutations in the SALL1
putative transcription factor gene cause Townes-Brocks syndrome. Nat. Genet. 18,
81–83 (1998).

25. P. Hill, B. Wang, U. Rüther, The molecular basis of Pallister Hall associated polydactyly. Hum.
Mol. Genet. 16, 2089–2096 (2007).

26. R. D. Riddle, R. L. Johnson, E. Laufer, C. Tabin, Sonic hedgehog mediates the polarizing
activity of the ZPA. Cell 75, 1401–1416 (1993).

27. M. Lewandoski, X. Sun, G. R. Martin, Fgf8 signalling from the AER is essential for normal
limb development. Nat. Genet. 26, 460–463 (2000).

28. H. Akiyama, J.-E. Kim, K. Nakashima, G. Balmes, N. Iwai, J. M. Deng, Z. Zhang, J. F. Martin,
R. R. Behringer, T. Nakamura, B. De Crombrugghe, Osteo-chondroprogenitor cells are
derived from Sox9 expressing precursors. Proc. Natl. Acad. Sci. U.S.A. 102,
14665–14670 (2005).

29. Y. J. Wang, R. M. Belflower, Y.-F. Dong, E. M. Schwarz, R. J. O’Keefe, H. Drissi, Runx1/AML1/
Cbfa2 mediates onset of mesenchymal cell differentiation toward chondrogenesis. J. Bone
Miner. Res. 20, 1624–1636 (2005).

30. I. Tzchori, T. F. Day, P. J. Carolan, Y. Zhao, C. A. Wassif, L. Q. Li, M. Lewandoski, M. Gorivodsky,
P. E. Love, F. D. Porter, H. Westphal, Y. Yang, LIM homeobox transcription factors integrate
signaling events that control three-dimensional limb patterning and growth. Development
136, 1375–1385 (2009).

31. S. Yokoyama, S. Furukawa, S. Kitada, M. Mori, T. Saito, K. Kawakami, J. C. I. Belmonte,
Y. Kawakami, Y. Ito, T. Sato, H. Asahara, Analysis of transcription factors expressed at the
anterior mouse limb bud. PLOS ONE 12, e0175673 (2017).

32. S. Nowotschin, A.-K. Hadjantonakis, Use of KikGR a photoconvertible green-to-red fluor-
escent protein for cell labeling and lineage analysis in ES cells and mouse embryos. BMC
Dev. Biol. 9, 49 (2009).

33. D. A. Jaitin, E. Kenigsberg, H. Keren-Shaul, N. Elefant, F. Paul, I. Zaretsky, A. Mildner,
N. Cohen, S. Jung, A. Tanay, I. Amit, Massively parallel single-cell RNA-seq for marker-free
decomposition of tissues into cell types. Science 343, 776–779 (2014).

34. C. Medaglia, A. Giladi, L. Stoler-Barak, M. De Giovanni, T. M. Salame, A. Biram, E. David, H. Li,
M. Iannacone, Z. Shulman, I. Amit, Spatial reconstruction of immune niches by combining
photoactivatable reporters and scRNA-seq. Science 358, 1622–1626 (2017).

Bastide et al., Sci. Adv. 8, eadd0695 (2022) 14 December 2022 13 of 15

SC I ENCE ADVANCES | R E S EARCH RESOURCE
D

ow
nloaded from

 https://w
w

w
.science.org at Institut Pasteur on A

pril 26, 2023



35. Y. Baran, A. Bercovich, A. Sebe-Pedros, Y. Lubling, A. Giladi, E. Chomsky, Z. Meir,
M. Hoichman, A. Lifshitz, A. Tanay, MetaCell: Analysis of single-cell RNA-seq data using K-nn
graph partitions. Genome Biol. 20, 206 (2019).

36. C. A. Loomis, R. A. Kimmel, C. X. Tong, J. Michaud, A. L. Joyner, Analysis of the genetic
pathway leading to formation of ectopic apical ectodermal ridges in mouse Engrailed-1
mutant limbs. Development 125, 1137–1148 (1998).

37. L. A. Lettice, I. Williamson, J. H. Wiltshire, S. Peluso, P. S. Devenney, A. E. Hill, A. Essafi,
J. Hagman, R. Mort, G. Grimes, C. L. DeAngelis, R. E. Hill, Opposing functions of the ETS
factor family define Shh spatial expression in limb buds and underlie polydactyly. Dev. Cell
22, 459–467 (2012).

38. M. Osterwalder, D. Speziale, M. Shoukry, R. Mohan, R. Ivanek, M. Kohler, C. Beisel, X. Wen,
S. J. Scales, V. M. Christoffels, A. Visel, J. Lopez-Rios, R. Zeller, HAND2 targets define a
network of transcriptional regulators that compartmentalize the early limb bud mesen-
chyme. Dev. Cell 31, 345–357 (2014).

39. L. A. Lettice, P. Devenney, C. De Angelis, R. E. Hill, The conserved sonic hedgehog limb
enhancer consists of discrete functional elements that regulate precise spatial expression.
Cell Rep. 20, 1396–1408 (2017).

40. T. Sagai, M. Hosoya, Y. Mizushina, M. Tamura, T. Shiroishi, Elimination of a long-range cis-
regulatory module causes complete loss of limb-specific Shh expression and truncation of
the mouse limb. Development 132, 797–803 (2005).

41. C. A. Gurnett, A. M. Bowcock, F. R. Dietz, J. A. Morcuende, J. C. Murray, M. B. Dobbs, Two
novel point mutations in the long-range SHH enhancer in three families with triphalangeal
thumb and preaxial polydactyly. Am. J. Med. Genet. Part A. 143A, 27–32 (2007).

42. D. Wieczorek, B. Pawlik, Y. Li, N. A. Akarsu, A. Caliebe, K. J. W. May, B. Schweiger, F. R. Vargas,
S. Balci, G. Gillessen-Kaesbach, B. Wollnik, A specific mutation in the distant sonic hedge-
hog (SHH) cis-regulator (ZRS) causes Werner mesomelic syndrome (WMS) while complete
ZRS duplications underlie Haas type polysyndactyly and preaxial polydactyly (PPD) with or
without triphalangeal thumb. Hum. Mutat. 31, 81–89 (2010).

43. C. Xu, X. Yang, H. Zhou, Y. Li, C. Xing, T. Zhou, D. Zhong, C. Lian, M. Yan, T. Chen, Z. Liao,
B. Gao, D. Su, T. Wang, S. Sharma, C. Mohan, N. Ahituv, S. Malik, Q. Z. Li, P. Su, A novel ZRS
variant causes preaxial polydactyly type I by increased sonic hedgehog expression in the
developing limb bud. Genet. Med. 22, 189–198 (2020).

44. T. Ikeda, H. Kawaguchi, S. Kamekura, N. Ogata, Y. Mori, K. Nakamura, S. Ikegawa, U.-I. Chung,
Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation.
J. Bone Miner. Metab. 23, 337–340 (2005).

45. D. Y. Soung, Y. Dong, Y. J. Wang, M. J. Zuscik, E. M. Schwarz, R. J. O’Keefe, H. Drissi, Runx3/
AML2/Cbfa3 regulates early and late chondrocyte differentiation. J. Bone Miner. Res. 22,
1260–1270 (2007).

46. R. Schweitzer, J. H. Chyung, L. C. Murtaugh, A. E. Brent, V. Rosen, E. N. Olson, A. Lassar,
C. J. Tabin, Analysis of the tendon cell fate using Scleraxis, a specificmarker for tendons and
ligaments. Development 128, 3855–3866 (2001).

47. K. K. Dey, C. J. Hsiao, M. Stephens, Visualizing the structure of RNA-seq expression data
using grade of membership models. PLOS Genet. 13, e1006599 (2017).

48. P. Carbonetto, K. Luo, K. Dey, J. Hsiao, M. Stephens, fastTopics: Fast algorithms for fitting
topic models and non-negative matrix factorizations to count data. R package version 0.4–
11. (2021).

49. D. E. Wagner, C. Weinreb, Z. M. Collins, J. A. Briggs, S. G. Megason, A. M. Klein, Single-cell
mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360,
981–987 (2018).

50. E. Wright, M. R. Hargrave, J. Christiansen, L. Cooper, J. Kun, T. Evans, U. Gangadharan,
A. Greenfield, P. Koopman, The Sry-related gene Sox9 is expressed during chondrogenesis
in mouse embryos. Nat. Genet. 9, 15–20 (1995).

51. B. Boehm, M. Rautschka, L. Quintana, J. Raspopovic, Ž. Jan, J. Sharpe, A landmark-free
morphometric staging system for the mouse limb bud. Development 138,
1227–1234 (2011).

52. G. Andrey, R. Schöpflin, I. Jerković, V. Heinrich, D. M. Ibrahim, C. Paliou, M. Hochradel,
B. Timmermann, S. Haas, M. Vingron, S. Mundlos, Characterization of hundreds of regula-
tory landscapes in developing limbs reveals two regimes of chromatin folding.Genome Res.
27, 223–233 (2017).

53. The ENCODE Project Consortium, J. E. Moore, M. J. Purcaro, H. E. Pratt, C. B. Epstein,
N. Shoresh, J. Adrian, T. Kawli, C. A. Davis, A. Dobin, R. Kaul, J. Halow, E. L. Van Nostrand,
P. Freese, D. U. Gorkin, Y. Shen, Y. He, M. Mackiewicz, F. Pauli-Behn, B. A. Williams,
A. Mortazavi, C. A. Keller, X.-O. Zhang, S. I. Elhajjajy, J. Huey, D. E. Dickel, V. Snetkova, X. Wei,
X. Wang, J. C. Rivera-Mulia, J. Rozowsky, J. Zhang, S. B. Chhetri, J. Zhang, A. Victorsen,
K. P. White, A. Visel, G. W. Yeo, C. B. Burge, E. Lécuyer, D. M. Gilbert, J. Dekker, J. Rinn,
E. M. Mendenhall, J. R. Ecker, M. Kellis, R. J. Klein, W. S. Noble, A. Kundaje, R. Guigó,
P. J. Farnham, J. M. Cherry, R. M.Myers, B. Ren, B. R. Graveley, M. B. Gerstein, L. A. Pennacchio,
M. P. Snyder, B. E. Bernstein, B. Wold, R. C. Hardison, T. R. Gingeras,
J. A. Stamatoyannopoulos, Z. Weng, Expanded encyclopaedias of DNA elements in the
human and mouse genomes. Nature 583, 699–710 (2020).

54. I. Desanlis, Y. Kherdjemil, A. Mayran, Y. Bouklouch, C. Gentile, R. Sheth, R. Zeller, J. Drouin,
M. Kmita, HOX13-dependent chromatin accessibility underlies the transition towards the
digit development program. Nat. Commun. 11, 2491 (2020).

55. T. Stuart, A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W. M. Mauck, Y. Hao,
M. Stoeckius, P. Smibert, R. Satija, Comprehensive integration of single-cell data. Cell 177,
1888–1902.e21 (2019).

56. A. Despang, R. Schöpflin, M. Franke, S. Ali, I. Jerković, C. Paliou, W.-L. Chan, B. Timmermann,
L. Wittler, M. Vingron, S. Mundlos, D. M. Ibrahim, Functional dissection of the Sox9–Kcnj2
locus identifies nonessential and instructive roles of TAD architecture. Nat. Genet. 51,
1263–1271 (2019).

57. M. Marinić, T. Aktas, S. Ruf, F. Spitz, An integrated holo-enhancer unit defines tissue and
gene specificity of the Fgf8 regulatory landscape. Dev. Cell 24, 530–542 (2013).

58. Z. Liu, J. Xu, J. S. Colvin, D. M. Ornitz, Coordination of chondrogenesis and osteogenesis by
fibroblast growth factor 18. Genes Dev. 16, 859–869 (2002).

59. S. Nassari, C. Blavet, M.-A. Bonnin, S. Stricker, D. Duprez, C. Fournier-Thibault, The che-
mokines CXCL12 and CXCL14 differentially regulate connective tissue markers during limb
development. Sci. Rep. 7, 17279 (2017).

60. G. S. Kwon, A.-K. Hadjantonakis, Eomes::GFP—A tool for live imaging cells of the tropho-
blast, primitive streak, and telencephalon in the mouse embryo. Genesis 45,
208–217 (2007).

61. A. Zülch, M. B. Becker, P. Gruss, Expression pattern of Irx1 and Irx2 during mouse digit
development. Mech. Dev. 106, 159–162 (2001).

62. E. E. Storm, D. M. Kingsley, GDF5 coordinates bone and joint formation during digit de-
velopment. Dev. Biol. 209, 11–27 (1999).

63. R. Merino, D. Macias, Y. Gañan, J. Rodriguez-Leon, A. N. Economides, C. Rodriguez-Esteban,
J. C. Izpisua-Belmonte, J. M. Hurle, Control of digit formation by activin signalling. Devel-
opment 126, 2161–2170 (1999).

64. J. M. Allen, E. McGlinn, A. Hill, M. L. Warman, Autopodial development is selectively im-
paired by misexpression of chordin-like 1 in the chick limb. Dev. Biol. 381, 159–169 (2013).

65. E. Degenkolbe, J. König, J. Zimmer, M. Walther, C. Reißner, J. Nickel, F. Plöger, J. Raspopovic,
J. Sharpe, K. Dathe, J. T. Hecht, S. Mundlos, S. C. Doelken, P. Seemann, A GDF5 point mu-
tation strikes twice - Causing BDA1 and SYNS2. PLOS Genet. 9, e1003846 (2013).

66. A. M. Moon, M. R. Capecchi, Fgf8 is required for outgrowth and patterning of the limbs. Nat.
Genet. 26, 455–459 (2000).

67. P. H. Crossley, G. Minowada, C. A. MacArthur, G. R. Martin, Roles for FGF8 in the induction,
initiation, and maintenance of chick limb development. Cell 84, 127–136 (1996).

68. J. D. White, K. Indencleef, S. Naqvi, R. J. Eller, H. Hoskens, J. Roosenboom, M. K. Lee, J. Li,
J. Mohammed, S. Richmond, E. E. Quillen, H. L. Norton, E. Feingold, T. Swigut, M. L. Marazita,
H. Peeters, G. Hens, J. R. Shaffer, J. Wysocka, S. Walsh, S. M. Weinberg, M. D. Shriver, P. Claes,
Insights into the genetic architecture of the human face. Nat. Genet. 53, 45–53 (2021).

69. F. Kruse, J. P. Junker, A. van Oudenaarden, J. Bakkers, Tomo-seq: A method to obtain
genome-wide expression data with spatial resolution. Methods Cell Biol. 135,
299–307 (2016).

70. N. Karaiskos, P. Wahle, J. Alles, A. Boltengagen, S. Ayoub, C. Kipar, C. Kocks, N. Rajewsky,
R. P. Zinzen, The Drosophila embryo at single-cell transcriptome resolution. Science 358,
194–199 (2017).

71. M. Nitzan, N. Karaiskos, N. Friedman, N. Rajewsky, Gene expression cartography. Nature
576, 132–137 (2019).

72. R. R. Stickels, E. Murray, P. Kumar, J. Li, J. L. Marshall, D. J. Di Bella, P. Arlotta, E. Z. Macosko,
F. Chen, Highly sensitive spatial transcriptomics at near-cellular resolution with slide-
seqV2. Nat. Biotechnol. 39, 313–319 (2021).

73. J. V. Jun, C. M. Haney, R. J. Karpowicz, S. Giannakoulias, V. M.-Y. Lee, E. J. Petersson,
D. M. Chenoweth, A “clickable” photoconvertible small fluorescent molecule as a mini-
malist probe for tracking individual biomolecule complexes. J. Am. Chem. Soc. 141,
1893–1897 (2019).

74. A. L. Carlson, J. Fujisaki, J. Wu, J. M. Runnels, R. Turcotte, C. Lo Celso, D. T. Scadden,
T. B. Strom, C. P. Lin, Tracking single cells in live animals using a photoconvertible near-
infrared cell membrane label. PLOS ONE 8, e69257 (2013).

75. B. Langmead, S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. Nat. Methods 9,
357–359 (2012).

76. M. O. Prates, C. R. B. Cabral, V. H. Lachos, Mixsmsn: Fitting finite mixture of scale mixture of
skew-normal distributions. J. Stat. Softw. 54, 1–20 (2013).

77. L. Albergante, E. Mirkes, J. Bac, H. Chen, A. Martin, L. Faure, E. Barillot, L. Pinello, A. Gorban,
A. Zinovyev, Robust and scalable learning of complex intrinsic dataset geometry via ElPi-
Graph. Entropy. 22, 296 (2020).

78. N. Mercader, L. Selleri, L. M. Criado, P. Pallares, C. Parras, M. L. Cleary, M. Torres, Ectopic
Meis1 expression in the mouse limb bud alters P-D patterning in a Pbx1-independent
manner. Int. J. Dev. Biol. 53, 1483–1494 (2009).

Bastide et al., Sci. Adv. 8, eadd0695 (2022) 14 December 2022 14 of 15

SC I ENCE ADVANCES | R E S EARCH RESOURCE
D

ow
nloaded from

 https://w
w

w
.science.org at Institut Pasteur on A

pril 26, 2023



79. S. Yokoyama, Y. Ito, H. Ueno-Kudoh, H. Shimizu, K. Uchibe, S. Albini, K. Mitsuoka, S. Miyaki,
M. Kiso, A. Nagai, T. Hikata, T. Osada, N. Fukuda, S. Yamashita, D. Harada, V. Mezzano,
M. Kasai, P. L. Puri, Y. Hayashizaki, H. Okado, M. Hashimoto, H. Asahara, A systems approach
reveals that the myogenesis genome network is regulated by the transcriptional repressor
RP58. Dev. Cell 17, 836–848 (2009).

80. J. Malkmus, L. Ramos Martins, S. Jhanwar, B. Kircher, V. Palacio, R. Sheth, F. Leal,
A. Duchesne, J. Lopez-Rios, K. A. Peterson, R. Reinhardt, K. Onimaru, M. J. Cohn, A. Zuniga,
R. Zeller, Spatial regulation by multiple Gremlin1 enhancers provides digit development
with cis-regulatory robustness and evolutionary plasticity. Nat. Commun. 12, 5557 (2021).

81. R. D. Riddle, M. Ensini, C. Nelson, T. Tsuchida, T. M. Jessell, C. Tabin, Induction of the LIM
homeobox gene Lmx1 by WNT6a establishes dorsoventral pattern in the vertebrate limb.
Cell 83, 631–640 (1995).

82. Y. Lan, P. D. Kingsley, E. S. Cho, R. Jiang, Osr2, a newmouse gene related to Drosophila odd-
skipped, exhibits dynamic expression patterns during craniofacial, limb, and kidney de-
velopment. Mech. Dev. 107, 175–179 (2001).

83. P. Lu, Y. Yu, Y. Perdue, Z. Werb, The apical ectodermal ridge is a timer for generating distal
limb progenitors. Development 135, 1395–1405 (2008).

84. J. M. Salbaum, Punc, a novel mouse gene of the immunoglobulin superfamily, is expressed
predominantly in the developing nervous system. Mech. Dev. 71, 201–204 (1998).

Acknowledgments:We thankT. Fujimori and the RIKEN Laboratory for Animal Resources and
Genetic Engineering for giving us access to the KikGR-1 transgenic line (reference CDB0201T-1)
and A. Aulehla (EMBL) for sharing with us these mice. We acknowledge greatly the contribution
of the members of the animal facilities at the Institut Pasteur. We thank members of the Spitz,
Marlow, and Tanay laboratories for sharing reagents, ideas, and comments. We also thank
C. Moreau for helping with the pilot photoconversion experiments. We particularly

acknowledge the contribution of E. Brient-Litzler and J.-C. Olivo-Marin (Institut Pasteur, CiTech)
in the development of a single-cell initiative and single-cell technological platform at the
Institut Pasteur, which was essential to this project. Funding: The development of this platform
was supported by the Region Ile-de-France (program Sesame 16016329 “Paris Single Cell
Centre” and DIM Elicit 2017 “The molecular microscope: Spatially-resolved single-cell
transcriptomics in 3D samples”). This work was directly supported by the Institut Pasteur, the
University of Chicago and la Fondation pour la Recherche Médicale (programme Equipe
Labellisée 2018, DEQ20180339222, to F.S.). Author contributions: F.S and H.M. conceived the
project. F.S., A.T., and H.M. designed the experimental strategies and supervised the
experiments and data analyses. S.B. and B.S. performed all experiments and optimized the
protocols. E.C. and A.T. designed and developed the computational tools to map cells on a
spatial model, with help of S.B. S.B. designed and performed all additional computational data
analysis. Y.L.-M. processed the different scRNA-seq data and provided additional computational
support. S.S. and S.N. provided expert advice for FACS setup, processing, and analysis. S.B. and
F.S. wrote the manuscript with input from all authors. Competing interests: The authors
declare that they have no competing interests. Data and materials availability: Original raw
and processed data described in the paper can be found on the GEO repository (accession
number: GSE202326). Previously published publicly available datasets used in the described
analysis are also available on GEO: limb scATAC-seq (GSE145657) and limb H3K27ac chromatin
immunoprecipitation sequencing (GSE151488). All other relevant data supporting the key
findings of this study are available within the article or in the Supplementary Materials.

Submitted 18 May 2022
Accepted 14 November 2022
Published 14 December 2022
10.1126/sciadv.add0695

Bastide et al., Sci. Adv. 8, eadd0695 (2022) 14 December 2022 15 of 15

SC I ENCE ADVANCES | R E S EARCH RESOURCE
D

ow
nloaded from

 https://w
w

w
.science.org at Institut Pasteur on A

pril 26, 2023



Use of this article is subject to the Terms of service

Science Advances (ISSN ) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW,
Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.
Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY-NC).

TATTOO-seq delineates spatial and cell type–specific regulatory programs in the
developing limb
Sbastien Bastide, Elad Chomsky, Baptiste Saudemont, Yann Loe-Mie, Sandrine Schmutz, Sophie Novault, Heather
Marlow, Amos Tanay, and Franois Spitz

Sci. Adv., 8 (50), eadd0695. 
DOI: 10.1126/sciadv.add0695

View the article online
https://www.science.org/doi/10.1126/sciadv.add0695
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org at Institut Pasteur on A
pril 26, 2023

https://www.science.org/content/page/terms-service

	INTRODUCTION
	RESULTS
	An unbiased strategy for spatially resolved scRNA-seq
	A molecular atlas of the developing limb bud
	The fine-scale organization of limb bud patterning
	A TF code of spatial position
	Deconvoluting spatial patterning and cell differentiation programs
	Integration of spatial information by position-specific regulatory landscapes
	High-resolution characterization of cell fate and patterning alteration in mutant limbs

	DISCUSSION
	MATERIALS AND METHODS
	Animals
	Photoconversion and imaging
	Tissue dissociation and FACS
	Massively parallel scRNA-seq
	Quality check and read mapping
	Metacell analysis
	Identification of cell colors
	Modeling the TATTOO-seq photoconversion process
	Inferring cell positions
	Inferring positions of metacells
	Metacell-specific TFs
	Chondrogenic trajectory and pseudo-time

	Supplementary Materials
	This PDF file includes:
	Other Supplementary Material for this &break /;manuscript includes the following:

	REFERENCES AND NOTES
	Acknowledgments

